建材秒知道
登录
建材号 > 生物质能 > 正文

生物质能是怎么发电的

酷酷的美女
淡淡的饼干
2022-12-22 13:30:09

生物质能是怎么发电的?

最佳答案
缥缈的猫咪
懦弱的小鸽子
2025-09-13 08:43:37

所谓生物质能是指从生物质转化产生的能。常用的生物质包括植物——农作物、薪材、草、木、人畜粪便、工农业有机废物、有机废水等。这些生物质能都直接或间接地(经过人和动物的消化或工农业加工)来源于绿色植物,来源于太阳能,因此,它又称“绿色能源”,实质上它是物化的太阳能。据计算,每年全球靠光合作用可产生生物质能1200亿吨,其所含能量是当前全球能耗总量的5倍。

由于生物质能的数量巨大,同时转化过程中很少或不产生污染物,世界各国都正在开发深度利用高效生物能的转换技术,使生物质成为具有广泛用途的热能、电能和动力用燃料,转化技术有下面两种:

通过液化将生物质转化为酒精。燃烧1千克酒精,可以放出29726千焦的热量,比普通煤的发热量高。而且酒精是液体能源,便于使用、贮存、运输。普通汽油发电机稍加改装,就可以用纯酒精作燃料。如果用汽油和酒精的混合物来开汽车,汽车发电机甚至不需改装就可以使用。1升酒精可以驱动汽车在公路上行使16千米。

酒精是用淀粉、糖等有机物经过微生物发酵作用生产出来的。含有淀粉和糖的生物质很多,包括甘蔗、甜菜、玉米、高粱、木薯、马铃薯以及水草、藻类等,它们都可以是生产酒精的原料。

巴西在这方面获得了巨大的成就,早在1975年,巴西就制定了“酒精计划”,逐步用酒精或酒精和汽油的混合物部分替代了石油,解决了交通用能供应的问题,目前巴西有90%的小汽车用酒精做燃料。美国目前有30%的汽油掺有酒精,酒精的掺入量约为10%左右。

通过发酵过程制作以甲烷为主的沼气。我国每年作为农家燃料烧掉的柴草合标准煤2亿吨,占全国总能耗的15%。但能量的利用效率比较低。

利用人畜粪便和秸秆为主要原料发展沼气池,既解决了家用燃料问题,又保持了农田肥力,减少化肥对水的污染。1990年,我国就有400多万户使用小沼气池,年产沼气10多亿立方米,沼气电站装机2000多千瓦,我国目前是户用沼气池最多的国家。

目前,我国很多的大型城市污水处理厂,利用处理厂中的固体废物进行沼气发酵,产生的沼气用来发电。在英国的5000多个污水处理厂中,有1/3是用通过发酵所产生的沼气作为动力的。法国在南部利摩日地区建造了两座垃圾发酵处理站,每年处理垃圾8.45万吨,每小时生产沼气800立方米,这些沼气已供一些工厂和煤气公司使用。

如过去的10多年中,美国已建成生物发电的容量达400多万千瓦,主要是采用木材及木制品工业废料气化后的气体燃料发电。国外结合治理城市环境污染,开始进行垃圾发电,技术已经成熟。仅日本就运行约100座垃圾电站,并计划把垃圾电站的装机容量发展到400万千瓦。因此,利用生物质能发电是当今新能源发电的新趋势之一。

我国是一个农业国,物质能资源非常丰富,年资源量是薪材3000万吨,秸秆4.5亿吨,稻壳0.15亿吨,另外还产生大量的城市排放的生活污水、垃圾、工业废水等。

利用生物质能发电在我国目前还是小规模、小范围的利用,稻壳转化发电容量只有5000瓦,沼气发电装置140个左右,总容量也只有2000千瓦。另外,我国还引进发电容量为4000千瓦的垃圾发电站。

最新回答
俊逸的鸵鸟
忧心的冬天
2025-09-13 08:43:37

5.6吨蒸汽

4200x1000X0.8=3360000,1吨生物质投入到锅炉中除去热损失能获得3360000大卡热量,一吨蒸汽需要600000大卡热量,3360000÷600000=5.6吨蒸汽

生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生性。低污染性。广泛分布性。

老迟到的云朵
坚定的御姐
2025-09-13 08:43:37

在地球上面,我们之前的“蒸汽时代”,靠的是煤作为燃料。但是,缺点很明显,比如说煤的数量有限,属于不可再生能源,而且燃烧后会产生污染环境的气体,对我们的地球家园影响十分地不好。所以,我们发现出了一种清洁能源,那么它就是生物质能,它有很多优点,当然也有许多缺点,下面我就来列举一下。

优点:

1、取之不尽,用之不竭。

生物质能是一种十分清洁的能源,它是如何形成地呢?它就是将太阳能以化学能地形式储存在生物体内的一种能量形式。太阳能,我们都知道,取之不尽用之不竭,地球上的生物也有很多,所以这种能源是无穷无尽的,它不像煤一样,总有一天会用完。

2、是一种很清洁的能源。

生物质能由于它独特的特性,使用后不会产生有害气体。而且它是植物通过光合作用而产生的一种能源,使用后产生的二氧化碳能够参与到光合作用当中,能够在自然界中循环,不会对自然界产生伤害。生物质能的使用,符合绿色发展的理念,是一种十分清洁的能源。

但是,任何事物都有利弊,生物质能除了以上优点以外,还有以下缺点。

1、热值低。

与煤炭产生的热量相比,生物质能产生的热值实在是低。燃烧相同质量的煤与生物质,生物质产生的能量或许只有煤的三分之一。

2、建造成本高。

不像燃烧煤炭或其他物质一样,只需要一把火即可。但是要想生物质能投入使用,需要建设很多措施,所以,使用生物质能建设成本很高。

总之,我认为,我们还是要大力发展生物质能的,尽管它现在依然有许多缺点,但是,随着技术的提高,我相信这些缺点会被解决。

洁净的枫叶
无私的飞机
2025-09-13 08:43:37

一个成年人一天正常活动的情况下不去进行锻炼,他每天就是正常走路正常的思考,大概每天要消耗1500~2000大卡的能量,而正常人一天吃三顿饭,摄入的能量也差不多,就在这样一个总量总体来说身体的能量是平衡的。

如果你有锻炼的习惯,每天能抽出一个小时的时间去锻炼,那这个一小时起码也能够消耗400~500大卡的能量也就是能消耗一顿饭,但是你要是一直运动,不能你运动了5分钟歇半个小时,这种情况下是没有燃烧的效果的。

所以想要减肥,你要控制住能量的摄入,减少一顿饭,然后你再加一个小时的运动量,坚持一下就会有效果短期内可能不是特别明显,但你要能坚持一个月,两个月的体重就会逐渐下去。

机灵的小蝴蝶
感动的山水
2025-09-13 08:43:37
能量(energy)简称“能”,质量的时空分布可能变化程度的度量,用来表示物理系统做功的本领。

现代物理学已明确了质量与能量之间的数量关系,即爱因斯坦的质能关系式:E=MC_。能量的单位与功的单位相同,在国际单位制中是焦耳(J)。在营养学中除了用焦耳(J)作为能量单位以外,有时也用卡路里(cal)作为能量单位,1卡路里约等于4.184焦耳。在原子物理学、原子核物理学、粒子物理学等领域中也用电子伏特(eV)作为能量单位,1电子伏特=1.602,18×10-19焦。在理论物理领域,也有用尔格(erg)作为能量单位的,1尔格=10-7焦。能量以多种不同的形式存在。

按照物质的不同运动形式分类,能量可分为核能、机械能、化学能、内能(热能)、电能、辐射能、光能、生物能等。这些不同形式的能量之间可以通过物理效应或化学反应而相互转化。

各种场也具有能量。在营养学中,能量指的是食物中所含有的能被人体所吸收的化学能(生物质能),食物中的能量有时也可以称作热量,正常成年人每天消耗的能量约为8.4×106焦(8400千焦,NRV营养素参考值)。

单身的战斗机
温柔的绿茶
2025-09-13 08:43:37
内能

热力学系统的热运动能量。广义地说,内能是由系统内部状况决定的能量。热力学系统由大量分子、原子组成,储存在系统内部的能量是全部微观粒子各种能量的总和,即微观粒子的动能、势能、化学能、电离能、核能等等的总和 。由于在系统经历的热力学过程中,物质的分子、原子、原子核的结构一般都不发生变化,即分子的内禀能量(原子间相互作用能、原子内的能量、核能)保持不变,可作为常量扣除。因此,系统的内能通常是指全部分子的动能以及分子间相互作用势能之和,前者包括分子平动、转动、振动的动能(以及分子内原子振动的势能),后者是所有可能的分子对之间相互作用势能的总和。内能是态函数。真实气体的内能是温度和体积的函数。理想气体的分子间无相互作用,其内能只是温度的函数。

通过作功、传热,系统与外界交换能量,内能改变,其间的关系由热力学第一定律给出。

热能

热能又称热量、能量等,它是生命的能源。人的每天劳务活动、体育运动、上课学习和从事其他一切活动,以及人体维持正常体温、各种生理活动都要消耗能量。就像蒸汽机需要烧煤、内燃机需要用汽油、电动机需要用电一样。人体的热能来源于每天所吃的食物,但食物中不是所有营养素都能产生热能的,只有碳水化合物、脂肪蛋白质这三大营养素会产生热能。每克碳水化合物在体内氧化时产生的热能为16.74千焦耳(4千卡),脂肪每克为37.66千焦耳(9千卡),蛋白质每克为16.74千焦耳(4千卡) 热能的单位,常指能使1升水升高1摄氏度所需的热量,就相当于4.184千焦耳的热能。单位换算如下: 1千卡=4.184千焦耳 1千焦耳=0.239千卡 热能的需要量指的是维持身体正常生理功能及日常活动所需的能量,如低于这个数量,将对身体产生不良影响。人体需要的能量也即包括基础代谢所需的能量、劳动活动所需的能量、消化食物所需的能量等三个方面。对于处在生长发育阶段的儿童青少年,由于身体的新陈代谢特别旺盛,对热能的需要量较高。一个人如果期热量摄入不足,就会使体内贮存的糖逐渐减少,到一程度时,就将开始动用脂肪,并消耗部分蛋白质,使肌肉和内脏萎缩、消瘦、乏力、体重减轻、变得"骨瘦如柴",各种生理功能受到严重影响,甚至危及生命。在日常生活中,有些学生经常少吃或不吃早餐,由于体内热能不足,使得血糖降低,在上第二节课以后往往产生饥饿感,自觉手足无力,上课时思想不集中。这就是吃的食物不够,能量不足所造成的,日久还会影响生长发育。 但是,如果每天吃过多的糖果、甜食等,使食物的产热量超过需要量,那么多余的能量就会转化脂肪,积聚在皮下组织,使皮下脂肪增厚,体重超过正常范围,出出肥胖现象。并将成为成年期的高血压、糖尿病、心血管病等器质性疾病的先兆因子。 11.营养就是生长发育的"建筑材料" 生长是指细胞的繁殖、增大及细胞间质的增加,表现为全身各部分、各器官、各组织的大小、长短及重量的增加;发育是指身体各系统、各器官、各组织功能的完善。生长主要是量的变化,发育主要是质的变化。生长发育除产生体格方面的生理变化以外,还包括神经系统以及由此引起的心理素质的变化。影响生长发育的主要因素有遗传和营养、疾病、锻炼、生活水平、社会环境、气候因素等,其中营养因素占有十分重要地位。蛋白质、脂肪、糖类及维生素等七大营养素,对生长发育均起着极其重要的作用。例如,构成人体组织的基本单位是细胞,细胞的主要成分是蛋白质。新的组织细胞的构成,细胞的繁殖、增大及细胞间质的增多,都离不开蛋白质。又如碳水化合物、脂肪、鲺等营养素,也都是构成组织细胞的重要成分和生长发育的重要物质基础。 学生的身高、体重发育受膳食结构发生了很大变化,以致1935-1980年期间,日本儿童的生长发育水平来了个加速性提高。由于日本政府十分重视营养,从而使日本成为当今世界的经济强国和长寿之国。以致被世界从多学者概括为:"一顿营养午餐即振兴了日本民族"。我国儿童青少年的生长发育水平,非常显著的为90年代高于60年代高于40年代。这也充分说明了营养因素对中国儿童青少年身高、体重的增长起到了明显的促进作用。 因此,不论是生长还是发育都少不了营养,营养既是决定生长发育潜在水平最终发挥行如何的重要因素,也是影响生长发育最为重要的"建筑材料"。

化学能

化学能是一种很隐蔽的能量,它不能直接用来做功,只有在发生化学变化的时候才释放出来,变成热能或者其他形式的能量。像石油和煤的燃烧,炸药爆炸以及人吃的食物在体内发生化学变化时候所放出的能量,都属于化学能。化学能是指化合物的能量,根据能量恒定律,这种能量的变化与反应中热能的变化是大小相等、符号相反,参加反应的化合物中各原子重新排列而产生新的化合物时,将导致化学能的变化,产生放热或吸热效应。

生物能

生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物质所含能量的多少与下列诸因素有密切的关系:品种、生长周期、繁殖与种值方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、雨量、土壤条件等,在太阳能直接转换的各种过程中,光合作用是效率最低的,光合作用的转化率约为0.5%-5%,据估计温带地区植物光合作用的转化率按全年平均计算约为太阳全部辐射能的0.5%-2.5%,整个生物圈的平均转化率可达3%-5%。生物质能潜力很大,世界上约有250000种生物,在提供理想的环境与条件下,光合作用的最高效率可达8~15%,一般情况下平均效率为0.5%左右。

以生物质为载体的能量.生物界一切有生命的可以生长的有机物质,包括动植物和微生物.所有生物质都有一定的能量,而作为能源利用的主要是农林业的副产品及其加工残余物,也包括人畜分粪便和有机废弃物.生物质能为人类提供了基本燃料。

生物能具备下列优点:

(1)提供低硫燃料,

(2)提供廉价能源(于某些条件下),

(3)将有机物转化成燃料可减少环境公害(例如,垃圾燃料),

(4)与其他非传统性能源相比较,技术上的难题较少。

至于其缺点有:

(1)植物仅能将极少量的太阳能转化成有机物,

(2)单位土地面的有机物能量偏低,

(3)缺乏适合栽种植物的土地,

(4)有机物的水分偏多(50%~95%)

生物能是太阳能以化学能形式贮存在生物中的一种能量形式。它直接或间接地来源于植物的光合作用,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。

生物能的开发和利用具有巨大的潜力。目前主要从三个方面研究开发:

一是建立以沼气为中心的农村新的能量,物质循环系统,使秸秆中的生物能以沼气的形式缓慢地释放出来,解决燃料问题;

二是建立“能量林场”,“能量农场”,“海洋能量农场”。建立以植物为能源的发电厂。变“能源植物”为“能源作物”,如“石油树”,绿玉树,续随子;

三是种植柑蔗,木薯,海草,玉米,甜菜,甜高粱等,既有利于食品工业的发展,植物残渣又可以制造酒精以代替石油。

机械能

机械能是动能与势能的总和,势能分为重力势能和弹性势能.决定动能的是质量与速度,决定重力势能的是高度和质量决定弹性势能的是劲度系数与形变量.动能与势能可相互转化。 机械能只是动能与势能的和。 机械能是表示物体运动状态与高度的物理量。 机械能守恒指:物体动能与势能的变化量相等,也就是动能的增加与减少等于势能的减少与增加。

动能 风吹着帆船航行,空气对帆船做了功;急流的河水把石头冲

走,水对石头做了功;运动着的钢球打在木块上,把木块推走,钢球对木

块做了功.流动的空气和水,运动的钢球,它们能够做功,它们都具有能

量.空气、水、钢球是由于运动而能够做功的,它们具有的能量叫做动能.一

切运动的物体都具有动能.

动能的大小跟哪些因素有关呢?

实验 如图1—1 所示,让钢球从斜面上滚下,打到一个小木块上,

推动木块做功.让同一个钢球从不同高度滚下,看哪次木块被推得远.换

用质量不同的钢球,让它们从同一高度滚下,看哪个钢球把木块推得远.

同一个钢球,原来的位置越高,滚到斜面下端时速度越大,把木块推

得越远.在滚下速度相同时,钢球的质量越大,把木块推得越远.

实验结果表明,钢球的质量越大,它运动的速度越大,把木块推得越

远,对木块做的功越多,表示钢球的动能越大.因此,运动物体的速度越

大,质量越大,动能就越大.

势能 人们在打桩时,先把重锤高高举起,重锤落下就能把木桩打入

地里(图l—2).重锤是由于被举高而能够做功的,举高的物体具有的能

量叫重力势能.物体的质量越大,举得越高,它具有的重力势能就越大.

图1—2 被举高的重锤具有重力势能.重锤的质量越大,被举得越高,

下落时做的功越多,表示重锤的重力势能越大.

射箭运动员把弓拉弯,放手后被拉弯的弓能把箭射出去(图1—3).被

压缩的弹簧在放松后能把压在上面的砝码举起(图1—4).弓和弹簧都是

由于发生弹性形变①而能够做功的,发生弹性形变的物体具有的能量叫弹性

势能.物体的弹性形变越大,它具有的弹性势能就越大.

机械能 动能和势能统称为机械能.一个物体可以既有动能,又有势

能,例如,飞行中的飞机因为它在运动而具有动能,又因为它在高处而具

有重力势能,把这两种能量加在一起,就得到它的总机械能.机械能是最

常见的一种形式的能量.

前面说过,一个物体能够做的功越多,表示这个物体的能量越大,因

此,能量的大小可以用做功的多少来衡量.动能、势能或机械能的单位跟

功的单位相同,也是焦耳.例如我们说在空中飞行的一个球的重力势能是

5 焦,动能是4 焦,球的机械能则为9 焦.

想想议议 举起的重锤落下时能把木桩打入地里,举高的重锤具有重

力势能.高山上有一块大石头,稳稳地在那里,它有没有重力势能?说一

说你的看法.

① 物体受到外力作用而发生的形状变化,叫做形变.如果外力撤消,物体能恢复原状,这种形变叫做弹性

形变.

机械能守恒首先由伽利略提出,他做出斜面实验,在斜面左端下滑的物体如果不受阻力作用它会运动到同样高度的另一端。

还单身的雪碧
虚幻的大象
2025-09-13 08:43:37
‍‍

所谓生物质能,就是利用秸秆、稻草、蔗渣、木糠等植物燃料直接燃烧或发酵成沼气后燃烧,燃烧产生的热量使水蒸汽带动汽轮机发电。目前国内最大的机组为1.5万千瓦,主要是将平原地带农民废弃的麦杆、稻草拿来燃烧发电,燃烧后的草木灰作为肥料,国家视作清洁能源,有政策补贴,但目前已运行的机组基本上亏损.......

生物质发电主要是利用农业、林业和工业废弃物为原料,也可以将城市垃圾为原料,采取直接燃烧或气化的发电方式。

近年来中国能源、电力供求趋紧,国内外发电行业对资源丰富、可再生性强、有利于改善环境和可持续发展的生物质资源的开发利用给予了极大的关注。于是生物质能发电行业应运而生。世界生物质发电起源于20世纪70年代,当时,世界性的石油危机爆发后,丹麦开始积极开发清洁的可再生能源,大力推行秸秆等生物质发电。自1990年以来,生物质发电在欧美许多国家开始大发展。

中国是一个农业大国,生物质资源十分丰富,各种农作物每年产生秸秆6亿多吨,其中可以作为能源使用的约4亿吨,全国林木总生物量约190亿吨,可获得量为9亿吨,可作为能源利用的总量约为3亿吨。如加以有效利用,开发潜力将十分巨大。为推动生物质发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东3个秸秆发电示范项目,颁布了《可再生能源法》,并实施了生物质发电优惠上网电价等有关配套政策,从而使生物质发电,特别是秸秆发电迅速发展。

‍‍

醉熏的牛排
醉熏的发箍
2025-09-13 08:43:37

地球上的各类能源。有用的能必须是可控的,召之即来,挥之即去,令行禁止,能源指能提供这种可控能量的各种资源。各种不同形式能量间可以转变,人类活动所“消耗”的机械能大部分是转变成了热能(物体分子无规则运动的动能。)

太阳能,帮我们发电,加热,动能,使得物体可以移动。植物内部的化学能量,使得植物可以进行光合作用。人体的化学能两,使得人体可以进行代谢与分解。

能量(energy)简称“能”,质量的时空分布可能变化程度的度量,用来表征物理系统做功的本领。现代物理学已明确了质量与能量之间的数量关系,即爱因斯坦的质能关系式:E=MC²。

能量的单位与功的单位相同,在国际单位制中是焦耳(J)。在营养学中除了用焦耳(J)作为能量单位以外,有时也用卡路里(cal)作为能量单位,1卡路里约等于4.184焦耳。

在原子物理学、原子核物理学、粒子物理学等领域中也用电子伏特(eV)作为能量单位,1电子伏特=1.602,18×10-19焦。在理论物理领域,也有用尔格(erg)作为能量单位的,1尔格=10-7焦。

能量以多种不同的形式存在。按照物质的不同运动形式分类,能量可分为核能、机械能、化学能、内能(热能)、电能、辐射能、光能、生物能等。这些不同形式的能量之间可以通过物理效应或化学反应而相互转化  。各种场也具有能量。

在营养学中,能量指的是食物中所含有的能被人体所吸收的化学能(生物质能),食物中的能量有时也可以称作热量,正常成年人每天消耗的能量约为8.4×106焦(8400千焦,NRV营养素参考值)。

轻松的荔枝
碧蓝的乐曲
2025-09-13 08:43:37
 太阳能(Solar)一般指太阳光的辐射能量。在太阳内部进行的由“氢”聚变成“氦”的原子核反应,不停地释放出巨大的能量,并不断向宇宙空间辐射能量,这种能量就是太阳能。太阳内部的这种核聚变反应,可以维持几十亿至上百亿年的时间。太阳向宇宙空间发射的辐射功率为3.8x10^23kW的辐射值,其中20亿分之一到达地球大气层。到达地球大气层的太阳能,30%被大气层反射,23%被大气层吸收,其余的到达地球表面,其功率为800000亿kW,也就是说太阳每秒钟照射到地球上的能量就相当于燃烧500万吨煤释放的热量。平均在大气外每平米面积每分钟接受的能量大约1367w。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。 生物能源(又名生物质能)是利用有机物质(例如植物等)作为燃料,通过气体收集、气化(化固体为气体)、燃烧和消化作用(只限湿润废物)等技术产生能源。只要适当地执行,生物质能也是一种宝贵的可再生能源,但要看生物质能燃料是如何产生出来。 天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、生物圈和岩石圈中各种自然过程形成的气体。而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物,主要存在于油田气、气田气、煤层气、泥火山气和生物生成气中。天然气又可分为伴生气和非伴生气两种。伴随原油共生,与原油同时被采出的油田气叫伴生气;非伴生气包括纯气田天然气和凝析气田天然气两种,在地层中都以气态存在。凝析气田天然气从地层流出井口后,随着压力和温度的下降,分离为气液两相,气相是凝析气田天然气,液相是凝析液,叫凝析油。 核能(或称原子能)是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc²,其中E=能量,m=质量,c=光速常量。核能通过三种核反应之一释放:1、核裂变,打开原子核的结合力。2、核聚变,原子的粒子熔合在一起。3、核衰变,自然的慢得多的裂变形式。 地热能〔Geothermal Energy〕是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃,而在80至100公英里的深度处,温度会降至650至1200℃。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。 在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。 氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。

深情的流沙
瘦瘦的灰狼
2025-09-13 08:43:37
世界上生物质能源的开发利用技术,长期以来主要是采用直接燃烧,尽管经过不断的技术改造,利用效率仍很低。为了提高效率、方便运输、贮存如多功能使用生物质能源,减少直接燃烧造成的环境污染,近几十年来,不少国家,尤其是经济发达国家,大力研究、开发利用生物质转型优化的能源技术,也就是将低品位的生物质能源转变成液体、气体、固化、电力等形式的优质新能源的技术以及高效节能技术,并开发种植“石油”植物,增加生物质能源的资源储备。

一、生物质热解综合技术

该项技术是生物质在反应器中完全缺氧或只提供有限氧和不加催化剂条件下,高温分解为生物炭、生物油和可燃气的热化学反应过程。可热解的生物质非常广泛,农业、林业和加工时废弃的有机物,都可以作为热解的原料。生物质热解后,其能量的80%-90%转化为较高品位的燃料,有很高的商业价值。农业、林业废弃生物质热解产生的固体和液体燃料燃烧时不冒黑烟,废气中含硫量低,燃烧残余物很少,减少了对环境的污染。分选后的城市垃圾和废水处理生成的污泥经热解后,体积大为缩小,臭味、化学污染和病原菌被除去在消除公害的同时,获得了能源。

热裂解工艺有以下3种类型。

1、慢速热解(烧炭法):主要用于烧木炭业。将木材放在种型式的窑内,在隔绝空气的情况下,加热烧成木炭。一个操作期一般要几天,可得到原料重量30%-35%的木炭,烧木炭法也称木材干馏或碳化。低温干馏的加热温度为50 0-580℃,中温干馏温度为660-750℃,高温干馏温度为900-1100℃。

2、常规热解:是将生物质原料通过常规热解的装置,一般要经过几个小时的热解,可得到原料重量20%-25%的生物炭、10%-20%的生物油。

3、快速热解:是将磨细的生物质原料在快速热解装置中进行,过程经历的时间很短,只有几秒钟,热解产物中生物油的比率明显提高,一般可以达到原料重量的40%-60%,快速热解过程需要的热量以热解产生的部分气体为热源供应。

另外,国内外正在研究“闪激加热”热解气化技术,加热速率越高,热解所获得的气态和液态的燃料产品率越高。

热解所用原料和工艺不同,所得生物炭、生物油和燃料气3种产品的比率及其热值也有差异。

二、生物质液化技术

该技术是以生物质为原料,制取液体燃料的工艺。将生物质转化为液体燃料使用,是有效利用生物质能的最佳途径。其转换方法可分为热化法、生化法、机械法和化学法。生物质液化的主要产品是醇类和生物柴油。

醇类是含氧的碳氢化合物,其分子式为R-OH,其中R表示烷基。常用是甲醇和乙醇。甲醇可用木质纤维素经蒸馏获得,亦可将生物质气化产物一氧化碳与氢经催化反应合成。生产甲醇的原料比较便宜,但设备投资较大。乙醇可由生物质热解产物乙炔与乙烯合成制取,但能耗太高,采用生物质经糖化发酵制取方法较经济可行。一般情况下,乙醇生产成本的60%以上为原料所占。因此选用廉价原料对降低乙醇成本很重要。制取乙醇的原料主要有两类,一类是本质纤维原料,另一类是含糖丰富的植物原料,也可选用农业废弃物,如高梁秸、玉米秸、制糖废渣等。

乙醇作为燃料使用已有很久的历史,1900年英国就出现了以乙醇为燃料的内燃机。70年代以来的能源危机使乙醇燃料又得到发展,据统计,世界上有上千万辆汽车用汽油混合乙醇为燃料。

生物柴油是动植物油脂加定量的醇,在催化剂作用下经化学反应,生成性质近似柴油的酯化燃料。生物柴油可代替柴油直接用于柴油发动机上,也可与柴油掺混使用。生物质液体燃料的可再生性和低污染性使期成为良好的替代能源,作为动力燃料和发电能源有持久的生命力,但目前仍受到石油市场的左右。

巴西利用甘蔗大规模生产乙醇作汽车燃料,以替代进口石油,节约外汇。僵已建有480多家加工厂,年产乙醇127亿升,乙醇汽车累计量达530多万辆。美国利用玉米、马铃薯等生产乙醇,以1:10的比例渗入汽油作汽车燃料,1993年有39个工厂,年产11亿加仑乙醇,每吨玉米可产40加仑乙醇。

三、生物质气化技术

世界上研究应用生物质气化技术发展较快,主要有热解气化技术和厌氧发酵生产沼气技术等。

1、热解气化技术。国外以不同种类的生物质为原料,大都采用压力燃烧气化技术以驱动燃气轮机,还有发生炉煤气甲烷化,流化床气化炉或固定床气化炉热解气化等技术。美国、日本、加拿大、瑞典等国的气化技术已能大规模生产水煤气。

2、厌氧发酵生产沼气,是有机物在厌氧条件下被微生物分解发酵生成一种可燃性气体——沼气,又称生物气。其主要成分是甲烷,含量占60%左右。每立方米沼气的热值相当于1公斤煤的热量。

沼气是1776年由意大利物理学家A??沃尔塔在沼泽发现的。1781年法国人L?穆拉根据沼气产生的原理,将简易沉淀池改造成世界上第一个沼气发生器。但是,资本主义国家在发展工业化、城市化过程中,走了一条“先污染后治理”的路子,对沼气并未引起重视,直至20世纪七八十年代,才越来越引起世界各国的重视。不论是研究、开发、利用厌氧消化技术和大型沼气工程处理城市、工业污泥和垃圾,既治理了污染,又获得了能源。

四、生物质发电技术

1、生物质发电。对于以生物质资源为原料进行发电,工业发达国家已有成熟的技术设备,并形成一定的生产规模。美国采用这种生物质能转型优化方式有三种技术的支持:一是能源林生产技术,包括种子选型、培育和种植。美国利用退耕或轮作的土地种植能源作物,包括树和草,因为这类土地种树或草只需要很少的化肥、农药和管理费用,有利于改良土壤结构,保护水土资源,改善生态环境。二是有专用的加工设备,包括秸秆打捆机、粉碎机、木材削片、整树粉碎等设备和专用的运输工具等。三是生产设备,主要是燃烧炉、蒸汽发电装置等。而毛里求斯、哥斯达黎加等国则大量使用蔗渣发电。

1998年12月英国首座利用特殊培育的柳树为燃料的发电厂在西约克郡奠基。这座新型发电厂使用的主要燃料是生长速度很快的矮柳。该柳树3-4年便可成材。柳树的种植和采伐将使用轮作方式,采伐后立即种植,保证电厂能获得持续的燃料供应。除了柳树外,电厂还可使用农业和渔业废物作为燃料。

2、垃圾发电。随着城市化和食品、医药等工业的发展,城市垃圾迅速增加,许多城市面临着垃圾围城的困扰,大量垃圾堆放占用土地、污染环境。而卫生掩埋、焚化、就也燃烧、堆肥、填低洼地及任意倾弃,衍生出二次污染,危害生态环境和人们的健忘。随着科学技术进步,现代垃圾中被认定为可回收的成分越来越多,因而发达国家,加强了利用垃圾发电的技术研究、开发与应用。