建材秒知道
登录
建材号 > 生物质能 > 正文

生物质能在使用时可以转化为哪些形式的能

端庄的秀发
生动的棒棒糖
2022-12-22 09:54:03

生物质能在使用时可以转化为哪些形式的能?请举例说明

最佳答案
彩色的时光
粗暴的猫咪
2025-08-28 10:50:17

生物质能的利用主要有直接燃烧(热能.光能)、热化学转换(热能.化学能)和生物化学(热能.化学能)转换等3种途径.生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式.当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一.生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术.生物质的生物化学转换包括有生物质-沼气转换和生物质-乙醇转换等.沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气、乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇.

其实能量是能相互转换的,经过处理生物质能能产生其他形式的能量!

最新回答
光亮的月亮
阳光的金毛
2025-08-28 10:50:17

在线粒体或细胞质中,呼吸作用分解糖类等有机物为丙酮酸,再分解为二氧化氧和水或者酒精或者乳酸,分解过程中释放有机物中贮存的能量供生物体利用。

动物的能量来自于食物,食物在体内氧化和在空气中燃烧氧化有相似之处,但进行的方式不同.呼吸作用是一个缓慢的氧化过程,能量是逐步释放的。

新陈代谢是机体生命活动的基本特征,新陈代谢包括物质代谢与相传伴的能量代谢,简称代谢。

糖、脂肪、蛋白质三种营养物质,经消化转变成为可吸收的小分子营养物质而被吸收入血。在细胞中,这些营养物质经过同化作用(合成代谢),构筑机体的组成成分或更新衰老的组织;同时经过异化作用(分解代谢)分解为代谢产物。合成代谢和分解代谢是物质代谢过程中互相联系的、不可分割的两个侧面。

在分解代谢过程中,营养物质蕴藏的化学能便释放出来。这些化学能经过转化,便成了机体各种生命活动的能源,所以说分解是代谢的放能反应。而在合成代谢过程中,需要供给能量,因此是吸能反应。可见,在物质代谢过程中,物质的变化与能量的代谢是紧密联系着的。生物体内物质代谢过程中所伴随的能量释放、转移和利用等,称为能量代谢(energy metabolism)。

机体所需的能量来源于食物中的糖、脂肪和蛋白质。这些能源物质分子结构中的碳氢键蕴藏着化学能,在氧化过程中碳氢键断裂,生成CO2和H2O,同时释放出蕴藏的能。这些能量的50%以上迅速转化为热能,用于维持体温,并向体外散发。其余不足50%则以高能磷酸键的形式贮存于体内,供机体利用。体内最主要的高能磷酸键化学物是三磷酸腺苷(ATP)。此外,还可有高能硫酯键等。机体利用ATP去合成各种细胞组成分子、各种生物活性物质和其他一些物质;细胞利用ATP去进行各种离子和其它一些物质的主动转运,维持细胞两侧离子浓度差所形成的势能;肌肉还可利用ATP所载荷的自由能进行收缩和舒张,完成多种机械功。总的看来,除骨骼肌运动时所完成的机械功(外功)以外,其余的能量最后都转变为热能。例如心肌收缩所产生的势能(动脉血压)与动能(血液流速),均于血液在血管内流动过程中,因克服血流内、外所产生的阻力而转化为热能。在人体内,热能是最“低级”形式的能,热能不能转化为其它形式的能,不能用来作功。

在安静状态下摄入食物后,人体释放的热量比摄入的食物本身氧化后所产生的热量要多。例如摄入能产100kJ热量的蛋白质后,人体实际产热量为130kJ,额外多产生了30kJ热量,表明进食蛋白质后,机体产热量超过了蛋白质氧化后产热量的30%。食物能使机体产生“额外”热量的现象称为食物的特殊动力作用(specific dynamic action)。糖类或脂肪的食物特殊动力作用为其产热量的4%-6%,即进食能产100kJ热量的糖类或脂肪后,机体产热量为104-106kJ。而混合食物可使产热量增加10%左右。这种额外增加的热量不能被利用来作功,只能用于维持体温。因此,为了补充体内额外的热量消耗,机体必须多进食一些食物补充这份多消耗的能量。

食物特殊动力作用的机制尚未完全了解。这种现象在进食后1h左右开始,并延续到7-8h。有人将氨基酸注入静脉内,可出现与经口给予相同的代谢率增值现象,这些事实使人们推想,食后的“额外”热量可能来源于肝处理蛋白质分解产物时“额外”消耗的能量。因此,有人认为肝在接脱氨基反应中消耗了能量可能是“额外”热量产生的原因。

重要的彩虹
飘逸的鸡
2025-08-28 10:50:17
生物体中的能量转化分为植物和动物。

地球中的生物所需的能量都是从太阳能开始的,

最先是植物通过光合作用将太阳能转化为化学能,6CO2+6H2O=C6H12O6+6O2 ,贮存在植物体内,常常是以C6H12O6的形式贮存的,植物会通过一些化学反应将C6H12O6转化为植物蛋白,油脂,

植物也会通过呼吸作用,又将部分C6H12O6转化为CO2和H2O返回大自然。但大部分能量贮存在植物体内,

动物,动物不能进行光合作用,只以其它贮存能量的植物或动物为桥梁,通过食物获取能量,动物中,分为食草动物和食肉动物,食草动物通过进食,从植物中获取能量,部分贮存在体内,由于生命活动必需,食草动物也会消耗能量。在这过程中,将从植物中的能量转化为自己的能量,在食草动物中,常以,糖类,脂肪,蛋白质,的形式贮存,部分的能量通过呼吸作用转化为CO2和H2O,以热能的形式散开,

食肉动物常从食草动物那里获取能量,通过捕食,从食草动物的化学能转化为自己的化学能,消耗和食地动物一样的。

太阳能到--植物体内的化学能到--动物体内的化学能,

C6H12O6+6O2=6CO2+6H2O{葡萄糖在人体内的氧化}

柔弱的母鸡
糊涂的学姐
2025-08-28 10:50:17
首先明确一点\

一切能量的来源都来自于核能!

我们所常说的能量,比如风能,水能,化学能等等均来自于太阳能,来自于太阳中发生核聚变放出的能量

就拿你的问题来说吧

1,热能转化为电能的例子

热电站,不是吗?其他宏观的能量转化为电能的方式无非是电磁效益

运动的闭合导线切割磁感应线,产生感应电势,从而形成电流

2,生物能转化为化学能的例子

生物能和化学能这两类有很大一部分是相交的

化学能转化为生物能很好理解,跑步的时候,肌糖原燃烧释放能量,驱动你的肌肉伸缩,带动腿部运动-生物能

在这里,我想说下什么是生物能

生物能就是 以生命物质为载体的能量

我总觉得他是属于化学能的一种

所以说它转化成化学能,我总觉得这种说法不好,不是你们老师出的吧

3,动能转化为生物能的例子

这种说法也很难受,动能,势能所谓的这种能量和刚刚外面说的化学能啊,热能啊,太阳能啊,他们的分类的方式是不同的

动能:是指物体运动所具有的能量,宏观物体为1/2 mv^2,微观的就是爱因斯坦质能方程E=mc^2,所谓势能,是指 受"场"所作用的物体在场中所具有的能量!

而什么太阳能啊,生物能 啊,是按能量的载体不同来分的

不具有可比性!

其实,所有的能量之间都可以相互转化

只是经过不同途径和步骤而已

飘逸的冬天
淡然的航空
2025-08-28 10:50:17

电灯:电能转化成光能和热能;摩擦生热:动能转化成热能;电钻工作时的火花:动能转化成热能;太阳能热水器:太阳能转化成热能;电风扇:电能转化成机械能和热能;发电机:机械能转化成电能;电饭锅:电能转化成热能。

在能量转换过程中,输出的能量通常可分为易利用能量与难利用能量两种。易利用能量即正欲求之的能量,难利用能量则是指在能量转换过程中流失、散逸掉的能量。在所有的能量利用过程中,能量的损耗都不可避免。

能量转换

1、所有的能量在转化和转移的过程中都遵守能量守恒定律。

2、永动机的理论是不可能实现的。

3、能量转化是有方向性的。

4、能量转化的效率在任何情况下都小于1。

5、各种形式的能量,在一定条件下都可以相互转化。

6、能量既不会被凭空创造,也不会被绝对消灭。当能量从一个物体转移到另一个物体,或从一种形式转化成另外一种形式时,能量的总量始终保持不变。

提高能量利用中的转化效率是节能问题的核心,是可持续发展的重要措施之一。

悲凉的大树
积极的唇膏
2025-08-28 10:50:17
1 生物质能简介

植物

水 + 二氧化碳 ----->有机体 + 氧

太阳能

生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物质所含能量的多少与下列诸因素有密切的关系:品种、生长周期、繁殖与种值方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、雨量、土壤条件等,在太阳能直接转换的各种过程中,光合作用是效率最低的,光合作用的转化率约为0.5%-5%,据估计温带地区植物光合作用的转化率按全年平均计算约为太阳全部辐射能的0.5%-2.5%,整个生物圈的平均转化率可达3%-5%。生物质能潜力很大,世界上约有250000种生物,在提供理想的环境与条件下,光合作用的最高效率可达8~15%,一般情况下平均效率为0.5%左右。

据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物质遍布世界各地,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。虽然不同国家单位面积生物质的产量差异很大,但地球上每个国家都有某种形式的生物质,生物质能是热能的来源,为人类提供了基本燃料。

生物能具备下列优点:

* 提供低硫燃料;

* 提供廉价能源(於某些条件下);

* 将有机物转化成燃料可减少环境公害(例如,垃圾燃料);

* 与其他非传统性能源相比较,技术上的难题较少。

至於其缺点有:

*小规模利用;

*植物仅能将极少量的太阳能转化成有机物;

*单位土地面的有机物能量偏低;

*缺乏适合栽种植物的土地;

*有机物的水分偏多(50%~95%)。

生物能大致可以分为两类——传统的和现代的。现代生物能是指那些可以大规模用于代替常规能源亦即矿物类固体、液体和气体燃料的各种生物能。巴西、瑞典、美国的生物能计划便是这类生物能的例子。现代生物质包括:1、木质废弃物(工业性的);2、甘蔗渣(工业性的);2、城市废物;3、生物燃料(包括沼气和能源型作物)。传统生物能主要限于发展中国家、广义来说它包括所有小规模使用的生物能,但它们也并不总是置于市场之外。第三世界农村烧饭用的薪柴便是其中的典型例子。传统生物质包括:1、家庭使用的薪柴和木炭;2、稻草,也包括稻壳;3、其他的植物性废弃物;4、动物的粪便。

世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林产品加工的下脚料,城市固体废弃物,生活污水和水生植物等等(中国生物质资源主要是农业废弃物及农林产品加工业废弃物、薪柴、人畜粪便、城镇生活垃圾等四个方面),下面举一些例子说明:

薪柴:至今仍为许多发展中国家的重要能源,仍需依赖柴薪来满足大部分能量需求.不过由于日益增加薪柴的需求,将导致林地日减,需适当规划与植林方可解决这一问题。

农作物残渣:农作物残渣遗留於耕地上也有水土保持与土壤肥力固化的功能,因此,农作物残渣不可毫无限制地供作能源转换。

牲畜粪便:牲畜的粪便,经干燥可直接燃烧供应热能。若将粪便经过厌氧处理,会产生甲烷和可供肥料使用之淤渣。若用小型厌氧消化糟,仅需三至四头牲畜之的粪便即能满足发展中国家中小家庭每天能量的需要。

制糖作物:对具有广大未利用土地的国家而言,如将制糖作物转化成乙醇将可成为一种极富潜力的生物能。制糖作物最大的优点,在於可直接发酵变成乙醇。

水生植物:如一些水生藻类,主要包括海洋生的马尾藻、巨藻、海带等,淡水生的布袋草、浮萍、小球藻等。利用水生植物化成燃料也为增加能源供应方法之一。

光合成微生物:如硫细菌、非硫细菌等等。

城市垃圾:将城市垃圾直接燃烧可产生热能,或是经过热解体处理而制成燃料使用。

城市污水:一般城市污水约含有0.02~0.03%固体与99%以上的水分。下水道污泥有望成为厌氧消化槽的主要原料。

生物质不同的用途使生物质有不同的价值,因此如要统一确定生物质的经济性是十分困难,大规模商业化应用生物质会对其他市场,如食品市场和造纸市场产生重大影响。在评价生物质的经济性时,必须考虑生产生物质的成本和能源投资,所需的水和肥料以及开发利用生物质对土地利用和人口分布形式的总体影响等。生物质常常最适于分散应用,如在人口密度低的地区使用。典型的生物质能开发利用设备均比较小。生物质是到2020年唯一能极大地影响运输行业(不包括电车)燃料利用状况的可再生能源,然而,若大规模开发利用生物质资源,必须注意保护生物多样性,保护自然风景区和环境敏感区,同时还要注意控制废水和废气。

生物能的开发和利用具有巨大的潜力。下面的技术手段目前看来是最有前途:

直接燃烧生物质来产生热能、蒸汽或电能。

利用能源作物生产液体燃料。目前具有发展潜力的能源作物,包括:快速成长作物树木、糖与淀粉作物(供制造乙醇)、含有碳氧化的合作物、草本作物、水生植物。

生产木炭和炭

生物质(热解)气化后用于电力生产,如集成式生物质气化器和喷气式蒸汽燃气轮机(BIG/STIG)联合发电装置。

对农业废弃物、粪便、污水或城市固体废物等进行厌氧消化,以生产沼气和避免用错误的方法处置这些物质,以免引起环境危害。

而根据生物质能的作用和我国的现状,目前重点发展的项目如下:

(1)近期优先发展项目

生物质气化供气

生物质气化发电

大型沼气工程

生物质直接燃烧供热

(2)中长期化发展项目

生物质高度气化发电项目(BIG/CC)

生物质制氢等优质燃气

生物质热解液化制油

2 生物质能资源

一、 森林能源

森林能源是森林生长和林业生产过程提供的生物质能源,主要是薪材,也包括森林工业的一些残留物等。森林能源在我国农村能源中占有重要地位,1980年前后全国农村消费森林能源约1亿吨标煤,占农村能源总消费量的30%以上,而在丘陵、山区、林区,农村生活用能的50%以上靠森林能源。

薪材来源于树木生长过程中修剪的枝杈,木材加工的边角余料,以及专门提供薪材的薪炭林。1979年全国合理提供薪材量8885万吨,实际消耗量18100万吨,薪材过樵1倍以上;1995年合理可提供森林能源14322.9万吨,其中薪炭林可供薪材2000万吨以上,全国农村消耗21339万吨,供需缺口约7000万吨。

二、农作物秸秆

农作物秸秆是农业生产的副产品,也是我国农村的传统燃料。秸秆资源与农业主要是种植业生产关系十分密切。根据1995年的统计数据计算,我国农作物秸秆年产出量为6.04亿吨,其中造肥还田及其收集损失约占15%,剩余5.134亿吨。可获得的农作物秸秆5.134亿吨除了作为饲料、工业原料之外,其余大部分还可作为农户炊事、取暖燃料,目前全国农村作为能源的秸秆消费量约2.862亿吨,但大多处于低效利用方式即直接在柴灶上燃烧,其转换效率仅为10%一20%左右。随着农村经济的发展,农民收入的增加,地区差异正在逐步扩大,农村生活用能中商品能源的比例正以较快的速度增加。事实上,农民收入的增加与商品能源获得的难易程度都能成为他们转向使用商品能源的契机与动力。在较为接近商品能源产区的农村地区或富裕的农村地区,商品能源(如煤、液化石油气等)已成为其主要的炊事用能。以传统方式利用的秸秆首先成为被替代的对象,致使被弃于地头田间直接燃烧的秸秆量逐年增大,许多地区废弃秸秆量已占总秸秆量的60%以上,既危害环境,又浪费资源。因此,加快秸秆的优质化转换利用势在必行。

三、 禽畜粪便

禽畜粪便也是一种重要的生物质能源。除在牧区有少量的直接燃烧外,禽畜粪便主要是作为沼气的发酵原料。中国主要的禽畜是鸡、猪和牛,根据这些禽畜品种、体重、粪便排泄量等因素,可以估算出粪便资源量。根据计算,目前我国禽畜粪便资源总量约8.5亿吨,折合7840多万吨标煤,其中牛粪5.78亿吨,4890万吨标煤,猪粪2.59亿吨,2230万吨标煤,鸡粪0.14亿吨,717万吨标煤。

在粪便资源中,大中型养殖场的粪便是更便于集中开发、规模化利用的。我国目前大中型牛、猪、鸡场约6000多家,每天排出粪尿及冲洗污水80多万吨,全国每年粪便污水资源量1.6亿吨,折合1157.5万吨标煤。

四、 生活垃圾

随着城市规模的扩大和城市化进程的加速,中国城镇垃圾的产生量和堆积量逐年增加。1991和1995年,全国工业固体废物产生量分别为5.88亿吨和6.45亿吨,同期城镇生活垃圾量以每年10%左右的速度递增。1995年中国城市总数达640座,垃圾清运量10750万吨。

城镇生活垃圾主要是由居民生活垃圾,商业、服务业垃圾和少量建筑垃圾等废弃物所构成的混合物,成分比较复杂,其构成主要受居民生活水平、能源结构、城市建设、绿化面积以及季节变化的影响。中国大城市的垃圾构成已呈现向现代化城市过渡的趋势,有以下特点:一是垃圾中有机物含量接近1/3甚至更高;二是食品类废弃物是有机物的主要组成部分;三是易降解有机物含量高。目前中国城镇垃圾热值在4.18兆焦/千克(1000千卡/千克)左右。

3生物质能发展现状

一、沼气

90年代以来,我国沼气建设一直处于稳步发展的态势。到1998年底,全国户用沼气池发展到688万户,比上年增长7.8%,利用率达到91.7%。全国大中型沼气工程累计建成748处,城市污水净化沼气池累计49300处。以沼气及沼气发酵液在农业生产中的直接利用为主的沼气综合利用有了长足发展,达到339万户,其中北方“四位一体”能源生态模式21万户,南方“猪沼果” 能源生态模式81万户。

以沼气利用技术为核心的综合利用技术模式由于其明显的经济和社会效益而得到快速发展,这也成为中国生物质能利用的特色,如“四位一体”模式,“能源环境工程”等。所谓“四位一体”就是一种综合利用太阳能和生物质能发展农村经济的模式,其内容是在温室的一端建地下沼气池,池上建猪舍、厕所。在一个系统内既提供能源,又生产优质农产品。“能源环境工程”技术是在原大中型沼气工程基础上发展起来的多功能、多效益的综合工程技术,既能有效解决规模化养殖场的粪便污染问题,又有良好的能源、经济和社会效益。其特点是粪便经固液分离后液体部分进行厌氧发酵产生沼气,厌氧消化液和渣经处理后成为商品化的肥料和饲料。

二、薪炭林

1981年我国开始有计划的薪炭林建设,至1995年10年间,全国累计营造薪炭林494.8万公顷,其中“六五”完成205万公顷,“七五”186.3万公顷,“八五”103.5万公顷。根据这些年全国造林成效调查,薪炭林成林面积和单位面积年生物量测算,薪炭林年增加薪材量2000-2500万吨,对缓解农村能源短缺起到了重要作用。

三、生物质气化

生物质气化即通过化学方法将固体的生物质能转化为气体燃料。由于气体燃料高效、清洁、方便。因此生物质气化技术的研究和开发得到了国内外广泛重视,并取得了可喜的进展。在我国,将农林固体废弃物转化为可燃气的技术也已初见成效,应用于集中供气、供热、发电方面。中国林科院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/h。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000kJ/Nm3,气化热效率达70%以上。山东省能源研究所研究开发了下吸式气化炉,主要用于秸秆等农业废弃物的气化,在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模,到1998年底,已建成秸秆气化集中供气站164处,供气4572万立方米,用户7700户。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外大连环科院、辽宁能源所、北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。

四、 生物质固化及其它

具有一定粒度的生物质原料,在一定压力作用下(加热或不加热),可以制成棒状、粒状、块状等各种成型燃料。原料经挤压成型后,密度可达1.1、1.4吨/立方米,能量密度与中质煤相当,燃烧特性明显改善,火力持久黑烟小,炉膛温度高,而且便于运输和贮存。

用于生物质成型的设备主要有螺旋挤压式、活塞冲压式和环模滚压式等几种主要类型。目前,国内生产的生物质成型机一般为螺旋挤压式,生产能力多在100-200千克/B寸之间,电机功率7.5一18千瓦,电加热功率2-4千瓦,生产的成型燃料为棒状,直径50-70毫米,单位产品电耗70一120千瓦时/吨。曲柄活塞冲压机通常不用电加热,成型物密度稍低,容易松散。

环模滚压成型方式生产的为颗粒燃料,直径5一12毫米,长度12-30毫米,也不用电加热。物料水分可放宽至22%,产量可达4吨/小时,产品电耗约为40千瓦时/吨,原料粒径要求小于 l毫米;该机型主要用于大型木材加工厂木屑加工或造纸厂秸秆碎屑的加工,粒状成型燃料主要用作锅炉燃料。

利用生物质炭化炉可以将成型生物质块进一步炭化,生产生物炭。由于在隔绝空气条件下,生物质被高温分解,生成燃气、焦油和炭,其中的燃气和焦油又从炭化炉释放出去,所以最后得到的生物炭燃烧效果显著改善,烟气中的污染物含量明显降低,是一种高品位的民用燃料。优质的生物炭还可以用于冶金工业。

辽宁省能源研究所、西北农业大学、中国林科院林产化工研究所、陕西武功轻工机械厂、江苏东海县粮食机械厂等10余家单位研究和开发生物质成型燃料技术和设备。

沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国体科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。

虚心的机器猫
现实的招牌
2025-08-28 10:50:17

所谓生物质能是指从生物质转化产生的能。常用的生物质包括植物——农作物、薪材、草、木、人畜粪便、工农业有机废物、有机废水等。这些生物质能都直接或间接地(经过人和动物的消化或工农业加工)来源于绿色植物,来源于太阳能,因此,它又称“绿色能源”,实质上它是物化的太阳能。据计算,每年全球靠光合作用可产生生物质能1200亿吨,其所含能量是当前全球能耗总量的5倍。

由于生物质能的数量巨大,同时转化过程中很少或不产生污染物,世界各国都正在开发深度利用高效生物能的转换技术,使生物质成为具有广泛用途的热能、电能和动力用燃料,转化技术有下面两种:

通过液化将生物质转化为酒精。燃烧1千克酒精,可以放出29726千焦的热量,比普通煤的发热量高。而且酒精是液体能源,便于使用、贮存、运输。普通汽油发电机稍加改装,就可以用纯酒精作燃料。如果用汽油和酒精的混合物来开汽车,汽车发电机甚至不需改装就可以使用。1升酒精可以驱动汽车在公路上行使16千米。

酒精是用淀粉、糖等有机物经过微生物发酵作用生产出来的。含有淀粉和糖的生物质很多,包括甘蔗、甜菜、玉米、高粱、木薯、马铃薯以及水草、藻类等,它们都可以是生产酒精的原料。

巴西在这方面获得了巨大的成就,早在1975年,巴西就制定了“酒精计划”,逐步用酒精或酒精和汽油的混合物部分替代了石油,解决了交通用能供应的问题,目前巴西有90%的小汽车用酒精做燃料。美国目前有30%的汽油掺有酒精,酒精的掺入量约为10%左右。

通过发酵过程制作以甲烷为主的沼气。我国每年作为农家燃料烧掉的柴草合标准煤2亿吨,占全国总能耗的15%。但能量的利用效率比较低。

利用人畜粪便和秸秆为主要原料发展沼气池,既解决了家用燃料问题,又保持了农田肥力,减少化肥对水的污染。1990年,我国就有400多万户使用小沼气池,年产沼气10多亿立方米,沼气电站装机2000多千瓦,我国目前是户用沼气池最多的国家。

目前,我国很多的大型城市污水处理厂,利用处理厂中的固体废物进行沼气发酵,产生的沼气用来发电。在英国的5000多个污水处理厂中,有1/3是用通过发酵所产生的沼气作为动力的。法国在南部利摩日地区建造了两座垃圾发酵处理站,每年处理垃圾8.45万吨,每小时生产沼气800立方米,这些沼气已供一些工厂和煤气公司使用。

如过去的10多年中,美国已建成生物发电的容量达400多万千瓦,主要是采用木材及木制品工业废料气化后的气体燃料发电。国外结合治理城市环境污染,开始进行垃圾发电,技术已经成熟。仅日本就运行约100座垃圾电站,并计划把垃圾电站的装机容量发展到400万千瓦。因此,利用生物质能发电是当今新能源发电的新趋势之一。

我国是一个农业国,物质能资源非常丰富,年资源量是薪材3000万吨,秸秆4.5亿吨,稻壳0.15亿吨,另外还产生大量的城市排放的生活污水、垃圾、工业废水等。

利用生物质能发电在我国目前还是小规模、小范围的利用,稻壳转化发电容量只有5000瓦,沼气发电装置140个左右,总容量也只有2000千瓦。另外,我国还引进发电容量为4000千瓦的垃圾发电站。

魔幻的黑夜
称心的哑铃
2025-08-28 10:50:17
生活中能量转化的事例:

电灯——电能转化成光能和热能

摩擦生热——动能转化成热能

电钻工作时的火花——动能转化成热能

太阳能热水器——太阳能转化成热能

电风扇——电能转化成机械能和热能

发电机——机械能转化成电能

电饭锅——电能转化成热能

勤劳的鞋子
冷静的睫毛膏
2025-08-28 10:50:17
生物质能,就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。

来自百度百科。