什么是光伏组件电位诱发衰减,如何避免pid衰减
存在于晶体硅光伏组件中的电路与其接地金属边框之间的高电压,会造成组件的光伏性能的持续衰减。
造成此类衰减的机理是多方面的,例如在上述高电压的作用下,组件电池的封装材料和组件上表面层及下表面层的材料中出现的离子迁移现象;电池中出现的热载流子现象;电荷的载分配削减了电池的活性层;相关的电路被腐蚀等等。这些引起衰减的机理被称之为电位诱发衰减(PotentialInducedDegradation,PID)、极性化、电解腐蚀和电化学腐蚀。
上述现象大多数最容易在潮湿的条件下发生,且其活跃程度与潮湿程度相关;同时组件表面被导电性、酸性、碱性以及带有离子的物体的污染程度,也与上述衰减现象发生有关。在实际的应用场合,晶体硅光伏组件的PID现象已经被观察到,基于其电池结构和其他构成组件的材料以及设计形式的不同,PID现象可能是在其电路与金属接地边框成正向电压偏置的条件下发生,也可能是成反向偏置的条件下发生。
光伏组件ff衰减与电压的关系如下
光伏组件是太阳能发电的关键元件,光伏组件功率衰减是指随着光照时间的增加,组件输出功率不断呈下降趋势的现象。
组件功率衰减直接关系到组件的发电效率。因此研究组件功率衰减非常有必要。组件功率衰减包括组件初始光致衰减、组件材料老化衰减及外界环境或破坏性因素导致的组件功率衰减。
您说的“光伏发电的衰减力”可能是“光伏组件的衰减”。
那“光伏组件的衰减”是指光伏组件运行一段时间后,在标准测试条件下 (AM1.5、组件温度25℃,辐照度1000W/m2)的输出功率与标称功率的比值。 衰减一般分为初始光致衰减、老化衰减和PID电势能诱导衰减。
为了消除光伏组件衰减造成的发电损失。相关技术中提供了一种组件修复法,该方法主要针对电视诱导衰减,具体修复法。事项光伏组件的边框与电池串的。正电极(或负电极)施加电压,使边框和电池。串的负电极之间形成负偏压,为已经迁移到电池串内部的碱金属离子提供能量,使碱金属离子重新回到电池串外,从而实现电视诱导衰减的修复,该方法虽然能够对电视诱导衰减进行一定程度的修复,但是对于组件初始光致衰减、组件材料老化衰减等光伏组件衰减,该方法无法进行修复,造成光伏组件衰减造成的发电损失依然很大。
光伏组件衰减修复方法,第一方面,提供了一种光伏电站中的光伏组件衰减修复法,方法包括,控制光伏电站中待修复的光伏组件停止输出,待修复的光伏组件包括一个光伏组件或者至少两个串联的光伏组件,向所述带修复的光伏组件的正负极注入修复电流。
使得修复电流通过光伏组件内的电池串正负电极输入到电池中,从而实现光伏组件
的初始光致衰减,组件材料老化衰减以及电势诱导衰减修复。(1)通过修复电流的注入,使得光伏组件内导致光伏衰减的活性中心与注入的非平衡态电子和空穴发生反应,转化为一种不会产生衰减的状态,从而使原先在光照发生的衰减得到复原,实现对组件初始光致衰减的修复,(2)而通过修复电流注入,光伏组件内的温度会大幅度的升高,可以将光伏组件内的水分排除,避免水分对电子串的电极和互联部分的的腐蚀,同时避免电池串的电极和互联部分存在水分产生的漏电流导致功率下降,另外,由于修复电流的注入还能使钝化层的空间结构在温度和电流的共同作用下恢复到原有状态,钝化层的钝化效果得到恢复,实现对组件材料老化衰减的修复。(3)通过修复电流的注入,会在光伏组件的正负极电极之间产生较大的电视差,从而使原本进入电池串的碱金属离子从电池串脱离,从而在在一定程度上实现电势诱导衰减的修复。(4)通过修复电流的注入,使的封装在光伏组件的电池也已经形成的部分缺陷(如硼-氧复合体、铁-硼对等)被电流打散,使原本具有复合活性的缺陷不再存在,从而使已经衰减的性能得到部分恢复,完成其他原因造成的光伏组件衰减的修复。也就是说。通过采用该方法对光伏组件进行修复,能够同时对组件初始光致衰减,组件材料老化衰减,电势诱导衰减以及其他原因(如外界环境或破坏性因素)造成的光伏组件衰减进行修复。
光伏组件常见的问题有:热斑、隐裂和功率衰减。
由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。
热斑形成原因及检测方法
光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。
光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。
热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。
热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。
隐裂形成原因及检测方法
隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。
光伏组件在出厂前会进行 EL 成像检测,所使用的仪器为 EL 检测仪。
该仪器利用晶体硅的电致发光原理,利用高分辨率的 CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。
EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。
功率衰减分类及检测方法
光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:
第一类,由于破坏性因素导致的组件功率衰减;
第二类,组件初始的光致衰减;
第三类,组件的老化衰减。
其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。
第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。光伏组件功率衰减测试可通过光伏组件 I-V 特性曲线测试仪完成。
20年内不能超过20%。光伏组件衰减率是指光伏组件运行一段时间后,在标准测试条件下(AM1.5、组件温度25°C,辐照度1000W/m2)最大输出功率与投产运行初始最大输出功率的比值。
伏组件衰减率的确定可采用加速老化测试方法、实地比对验证方法或其他有效方法。加速老化测试方法是利用环境试验箱模拟户外实际运行时的辐照度、温度、湿度等环境条件,并对相关参数进行加倍或加严等控制,以实现较短时间内加速组件老化衰减的目的。
实地比对方法
自组件投产运行之日起,根据项目装机容量抽取足够数量的组件样品,由国家资质认定(CMA)的第三方检测实验室,按照GB/T6495.1标准规定的方法,测试其初始最大输出功率后。
与同批次生产的其他组件安装在同一环境下正常运行发电,运行之日起一年后再次测量其最大输出功率。将前后两次最大输出功率进行对比,依据衰减率计算公式,判定得出光伏组件发电性能的衰减率。
初始光致衰减
初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。
老化衰减
老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。其中紫外光的照射时导致组件主材性能退化的主要原因。紫外线的长期照射,使得EVA及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。