固体瓦斯——世纪的新能源
陆地的石油和天然气,将在21世纪用完,人类将面临能源危机。
就在科学家们苦苦地寻找新能源毫无结果的时刻,原苏联科学家在西伯利亚油气田中意外地发现了固体瓦斯,这一发现轰动了全世界,使人们惊喜异常,都急切地在自己领土和力所能及的地方寻找这一上帝赐予的宝物。经过14年的努力,于1979年,美国科学家在其东海岸的大西洋海域和东太平洋的中美洲海槽也找着了。尔后法国、德国、加拿大、挪威、日本、俄罗斯、印度等众多国家也争先恐后地开始寻找,进入20世纪90年代末期全世界一共发现了56处固体瓦斯田。
固体瓦斯是可燃气体如甲烷(CH4)、乙烷(C2H6)等和水在低温高压条件下一起结晶而形成的,酷似冰,它是保存在极地冻土带和深海底的固体燃料。每1立方米的固体瓦斯,可气化成180米3的天然气。而且资源量相当大,如大西洋西部布莱克海蕴藏的固体瓦斯,达100亿吨,可供美国用105年;日本海东北部和南海海槽的固体瓦斯,可供日本用100年。全球蕴藏量高达2亿亿米3,为陆地上天然气总储量的4.44倍。所以这一未被开采的能源,被世界各国称为21世纪的新能源。
力世纪新能源汽车公司好。
1、上海联和力世纪新能源汽车有限公司注册于2018年7月27日,是合法注册的正规公司。
2、该公司与员工签订正式合同,购买五险一金。
3、该公司实行八小时工作制,周末双休,工作轻松。
上海联和力世纪新能源汽车有限公司是2018-07-27注册成立的有限责任公司(中外合资),注册地址位于上海市松江区莘砖公路668号244室。
上海联和力世纪新能源汽车有限公司的统一社会信用代码/注册号是91310000MA1J32UA0W,企业法人孙曦东,目前企业处于开业状态。
上海联和力世纪新能源汽车有限公司的经营范围是:新能源汽车领域内的技术开发、技术转让、技术咨询、技术服务,汽车、机电设备、汽车零部件的批发、进出口、佣金代理(拍卖除外)。 【依法须经批准的项目,经相关部门批准后方可开展经营活动】。
通过爱企查查看上海联和力世纪新能源汽车有限公司更多信息和资讯。
锂是一种稀有金属,可它与我们的生活却有着紧密联系。手机中的锂电池就以它为主要原料,电视机的荧光屏使用锂玻璃可以防止爆炸,航空航天工业也离不开锂,在核工业中锂同样扮演着重要角色:1千克锂具有的能量,相当于2万吨优质煤炭,可以发出340万千瓦时的电力,比铀裂变产生的能量还要大8倍。因此,锂又被称为21世纪的能源新星。
最轻的金属
锂是一种银白色的金属,密度为0.534克/立方厘米,跟干燥的木材差不多。作为最轻的金属元素,锂具有独特而优秀的物理化学性质。
在室温条件下,锂能在空气中“燃烧”,和空气中的氮气和氧气发生强烈的化学反应,遇到水也要发生剧烈反应,因此通常只能贮藏于液体石蜡中。发现金属锂的是瑞典化学家贝齐里乌斯的学生阿尔费特森,时间是在1817年,贝齐里乌斯将这一新金属命名为Lithium,元素符号定为Li。该词来自希腊文lithos,意为“石头”。
锂号称“稀有金属”,其实它在地壳中的含量不算稀有,地壳中约有0.0065%的锂,其丰度居第27位。已知含锂的矿物有150多种,其中主要有锂辉石、锂云母石等。海水中锂的含量不算少,总储量达2600亿吨,可惜浓度太小,提炼困难。有些矿泉水和植物机体里也含有锂,可供开发利用。
我国的锂矿资源丰富,以目前我国的锂盐产量计算,仅江西云母锂矿就可供开采上百年。西藏高原锂资源开发前景诱人,在海拔4421米的扎布耶盐湖发现了碳酸锂。目前,碳酸锂全球的年产量为6万多吨,主要生产国是智利。几年后,扎布耶盐湖将成为世界上最大的锂产业基地,它作为全球为数不多的超百万吨级盐湖之一,具有重大的经济意义。
广泛的应用
我们知道,彩色电视机的荧光屏十分重要,荧光屏使用的不是普通玻璃,是加进了锂的锂玻璃。因为在玻璃中加进锂或锂的化合物,可以大大提高玻璃的强度和韧性,而不会影响透明度。
由于锂的性质非常活泼,和氢、氧、氮、碳及氧化物等物质结合能力很强,冶金工业常把锂用作“捕气剂”,可以很好地消除金属铸件中的孔隙气泡、杂质和其他缺陷。
金属锂与铝、镁、铍等“合作”组成的合金,既轻便,又特别坚硬,已被大量用于导弹、火箭、飞机等的制造上。用这种合金来制造飞机,能使飞机重量大大减轻,一架锂合金小飞机几个人就可以抬起来。
把含锂的陶瓷涂到钢铁的表面,形成一层轻薄而耐热的涂层,可用作喷气发动机燃烧室和火箭、导弹外壳的保护层。我们生活中使用的瓷碗,上面那层亮晶晶的釉也含有锂。
润滑剂中加进锂的化合物,可以大大改善润滑效能。这种润滑剂适用的温度非常广,50℃~200℃范围都可以,因此被广泛应用于航空、动力机械装置。如果在汽车的一些零件上加一次锂润滑剂,就足以用到汽车报废为止。
氢化锂遇水发生猛烈的化学反应,产生大量的氢气。2千克氢化锂分解后,可以放出氢气56.6万升,的确是名不虚传的“制造氢气的工厂”。第二次世界大战期间,美国飞行员备有轻便的氢气源——氢化锂丸作为应急之用。飞机失事坠落在水面时,只要一碰到水,氢化锂就立即与水发生反应,释放出大量的氢气,使救生设备充气膨胀起来。
当然,与我们生活关系最密切的金属锂当属锂电池了,其突出优势是能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等。锂电池在手机、笔记本电脑等产品中被广泛使用,并逐步向其他应用领域发展。大到电动车、小到心脏起搏器,都要用到锂电池。但是锂电池也有不安全因素,比如,要注意不要剧烈碰撞,不要在高温下使用,电池出现破损就不要使用,也不要碰触。
核聚变的主角之一
真正使锂成为举世瞩目的“明星”金属的原因,还是它在核聚变反应中的突出作用被发现之后,人们称誉它为“高能金属”。
自然界中实现的聚变反应是氢的同位素——氘与氚的聚变(氘又叫重氢、氚又叫超重氢),可控核聚变俗称“人造太阳”,因为太阳的原理就是核聚变反应(也叫热核反应)。目前,受控核聚变反应已取得突破性进展,世界各国争相建立受控核聚变反应试验装置。核聚变反应将给人类带来源源不断的清洁能源,就像太阳带给我们的一样。
科学家发现,人类现在还无法控制“氘-氘”反应,它太猛烈了,需要的温度极高!除了在实验室条件下一次性的反应外,很难让它持续链式反应下去。而“氘-氚”反应的烈度要小很多,反应速度仅是“氘-氘”反应的百分之一,而点火温度也相对低,比较适合人类现有条件下的利用。但问题是,氚不同于氘,在地球上几乎没有,人工制造极其昂贵。如何大量制造出来氚呢?科学家们想到了锂。果然,锂的同位素被中子轰击之后,就会裂变变成氚和氦。
更令科学家高兴的是:“氘-氚”聚变反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。这样,人们只需要在核聚变的反应体内保持锂核的浓度,那么这个多余的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与“氘-氚”反应,继而产生新的多余中子,链式反应就形成了! 也就是说,人们只需要给反应体提供两种原料——氘和锂,提供足够的点火温度,就能实现“氘-氚”核聚变反应,并且维持它的连续进行。这两种原料还是比较容易取得的,氘在海水中的含量比较高,锂的资源总量虽然不如氘多,但是更容易取得一些。明白了这些,锂被称誉为“高能金属”就不足为奇了。
氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。
在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。
氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。
用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。
氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。
另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。
现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。
随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。
本世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。
科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。前苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。
引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗五毫升的淀粉营养液,就可产生出25毫升的氢气。
美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。
对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。
P太=P0S=1×103W×8=8000W,
转化为太阳能汽车的电功率:
P电=UI=120V×10A=1200W,
太阳能电池将太阳能转化为电能的效率:
η1=
P电 |
P太 |
1200W |
8000W |
(2)汽车的机械功率:
P机=P电×η′=1200W×75%=900W
汽车匀速行驶的速度:
v=
P |
F |
900W |
120N |
因汽车匀速行驶时,受到的力为平衡力,所以合力为0.
故答案为:(1)15%;(2)7.5m/s;0.
①可燃冰一直被认为具有巨大的潜在价值。虽然多个国家努力研究,但是因为各种原因,大规模开采可燃冰尚不可行。2017年5月18日,中国成功试采可燃冰,让世界看到了希望。
②可燃冰是一种由天然气(主要是甲烷)和水组成的外形像冰的白色固体物质。由于它含有大量甲烷气体,可以直接燃烧,因而俗称可燃冰。可燃冰通常存在于岩石的孔隙或裂隙中,呈分散状、结核状、层状或块状产出,其颜色随分子结构的不同而有白色、淡黄色、琥珀色和暗褐色等多种。
2005年4月14日,我国在北京举行中国地质博物馆收藏我国首次发现的天然气水合物碳酸盐岩标本仪式。
宣布我国首次发现世界上规模最大被作为“可燃冰”即天然气水合物存在重要证据的“冷泉”碳酸盐岩分布区,其面积约为430平方公里。
该分布区为中德双方联合在我国南海北部陆坡执行“太阳号”科学考察船合作开展的南中国海天然气水合物调查中首次发现。冷泉碳酸盐岩的形成被认为与海底天然气水合物系统和生活在冷泉喷口附近的化能生物群落的活动有关。此次科考期间,在南海北部陆坡东沙群岛以东海域发现了大量的自生碳酸盐岩,其水深范围分别为550米~650米和750米~800米,海底电视观察和电视抓斗取样发现海底有大量的管状、烟囱状、面包圈状、板状和块状的自生碳酸盐岩产出,它们或孤立地躺在海底上,或从沉积物里突兀地伸出来,来自喷口的双壳类生物壳体呈斑状散布其间,巨大碳酸盐岩建造体在海底屹立,其特征与哥斯达黎加边缘海和美国俄勒岗外海所发现的“化学礁”类似,而规模却更大。
“可燃冰”是由天然气与水分子结合形成的外观似冰的白色或浅灰色固态结晶物质,因其成分的80%~99.9%为甲烷,这些碳酸盐岩的形成和分布记录了富含甲烷流体的类型、性质、来源、强度变化及其与海底可能存在的水合物系统的关系等情况。
中德科学家一致建议,借距工作区最近的中国香港九龙的名谓,将该自生碳酸盐岩区中最典型的一个构造体命名为“九龙甲烷礁”,其中“龙”字代表了中国,“九”代表了多个研究团体的合作。 世界上绝大部分的天然气水合物分布在海洋里,据估算,海洋里天然气水合物的资源量是陆地上的 100 倍以上。据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为 1.8 亿亿立方米(18000 × 10^12m3 ) ,约合 1.1 万亿吨 (11 × 10^12t) ,如此数量巨大的能源是人类未来动力的希望,是 21 世纪具有良好前景的后续能源。
可燃冰被西方学者称为“21世纪能源”或“未来新能源”。迄今为止,在世界各地的海洋及大陆地层中,已探明的“可燃冰”储量已相当于全球传统化石能源(煤、石油、天然气、油页岩等)储量的两倍以上,其中海底可燃冰的储量够人类使用1000年。 中国在南海探测到可燃冰,有望成为我国可燃冰能源。
作为世界上最大的发展中的海洋大国,我国能源短缺十分突出。目前我国的油气资源供需差距很大, 1993 年我国已从油气输出国转变为净进口国, 1999 年进口石油 4000 多万吨, 2000 年进口石油近 7000 万吨,预计 2010 石油缺口可达 2 亿吨。因此急需开发新能源以满足中国经济的高速发展。海底天然气水合物资源丰富,其上游的勘探开采技术可借鉴常规油气,下游的天然气运输、使用等技术都很成熟。因此,加强天然气水合物调查评价是贯彻实施党中央、国务院确定的可持续发展战略的重要措施,也是开发我国二十一世纪新能源、改善能源结构、增强综合国力及国际竞争力、保证经济安全的重要途径。
我国对海底天然气水合物的研究与勘查已取得一定进展,在南海西沙海槽等海区已相继发现存在天然气水合物的地球物理标志 BSR ,这表明中国海域也分布有天然气水合物资源,值得我们开展进一步的工作;同时青岛海洋地质研究所已建立有自主知识产权的天然气水合物实验室并成功点燃天然气水合物。 海底天然气水合物作为 21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。本世纪六十年代开始的深海钻探计划(DSDP) 和随后的大洋钻探计划(ODP) 在世界各大洋与海域有计划地进行了大量的深海钻探和海洋地质地球物理勘查,在多处海底直接或间接地发现了天然气水合物。到目前为止,世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
因此,从20 世纪80 年代开始,美、英、德、加、日等发达国家纷纷投入巨资相继开展了本土和国际海底天然气水合物的调查研究和评价工作,同时美、日、加、印度等国已经制定了勘查和开发天然气水合物的国家计划。特别是日本和印度,在勘查和开发天然气水合物的能力方面已处于领先地位。
2009年9月中国地质部门公布,在青藏高原发现了一种名为可燃冰(又称天然气水合物)的环保新能源,预计十年左右能投入使用。初略的估算,远景资源量至少有350亿吨油当量。
竞相开发
1960年,前苏联在西伯利亚发现了可燃冰,并于1969年投入开发;美国于1969年开始实施可燃冰调查,1998年把可燃冰作为国家发展的战略能源列入国家级长远计划;日本开始关注可燃冰是在1992年,已基本完成周边海域的可燃冰调查与评价。但最先挖出可燃冰的是德国.
2000年开始,可燃冰的研究与勘探进入高峰期,世界上至少有30多个国家和地区参与其中。其中以美国的计划最为完善——总统科学技术委员会建议研究开发可燃冰,参、众两院有许多人提出议案,支持可燃冰开发研究。美国每年用于可燃冰研究的财政拨款达上千万美元。
为开发这种新能源,国际上成立了由19个国家参与的地层深处海洋地质取样研究联合机构,有50个科技人员驾驶着一艘装备有先进实验设施的轮船从美国东海岸出发进行海底可燃冰勘探。这艘可燃冰勘探专用轮船的7层船舱都装备着先进的实验设备,是当今世界上唯一的一艘能从深海下岩石中取样的轮船,船上装备有能用于研究沉积层学、古人种学、岩石学、地球化学、地球物理学等的实验设备。这艘专用轮船由得克萨斯州A·M大学主管,英、德、法、日、澳、美科学基金会及欧洲联合科学基金会为其提供经济援助。