生物质能的主要利用形式包括什么?
生物质能的主要利用形式包括直接燃烧、热化学转换和生物化学转换等3种途径。
1、直接燃烧
当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。生物质的直接燃烧和固化成型技术的研究开发主要着重于专用燃烧设备的设计和生物质成型物的应用。
现已成功开发的成型技术按成型物形状主要分为大三类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制的圆柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。
2、热化学转换
是指在一定的温度和条件下,使生物质气化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。
①生物质气化:生物质气化技术是将固体生物质置于气化炉内加热,同时通入空气、氧气或水蒸气,来产生品位较高的可燃气体。它的特点是气化率可达70%以上,热效率也可达85%。生物质气化生成的可燃气经过处理可用于合成、取暖、发电等不同用途,这对于生物质原料丰富的偏远山区意义十分重大,不仅能改变他们的生活质量,而且也能够提高用能效率,节约能源。
②生物质碳化
生物质颗粒碳化燃料是各种生物质经过干燥、转性、混料、成型、碳化等复杂过程连续生产出来的一种新型燃料,其与煤性质相同,是可供各种燃烧机、生物质锅炉、熔解炉、生物质发电等的高效、可再生、环保生物质燃料,此种燃料在国际认证为零污染燃料。
③生物质热解
通常是指在无氧或低氧环境下,生物质被加热升温引起分子分解产生焦炭、可冷凝液体和气体产物的过程,是生物质能的一种重要利用形式。
3、生物质化学转换
通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,包括有机物质-沼气转换和生物质-乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。生物制氢,生物质通过气化和微生物催化脱氢方法制氢。
生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量.它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源.
生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径.生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式.当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%-30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一.生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术.生物质的生物化学转换包括有生物质-沼气转换和生物质-乙醇转换等.沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气、乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇.
生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。
1、直接燃烧:生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式。当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%至30%的节柴灶这种技术简单、易于推广、效益明显的节能措施,被国家列为农村新能源建设的重点任务之一。
2、热化学转化:生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。
3、生物化学转换:生物质的生物化学转换包括有生物质、沼气转换和生物质、乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气。乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。
生物质能的主要利用形式包括直接燃烧和发电、生物质裂解与干馏、生物质致密成型、生物质气化及发电、生物质热解液化、燃料乙醇、生物柴油 、能源作物。
1、直接燃烧和发电:直接燃烧大致可分炉灶燃烧、锅炉燃烧、垃圾焚烧和致密成型燃料燃烧四种情况。我国小型生物质燃烧发电也已商业化,南方地区的许多糖厂利用甘蔗渣发电。广东、广西两地共有小型发电机组380台,总装机容量达800兆瓦,云南省也有一些此类电厂。
2、生物柴油:目前我国生物柴油研究开发尚处于起步阶段。先后有上海内燃机研究所和贵州山地农机所、中国农业工程研究设计院、辽宁省能源研究所、中国科技大学、河南科学院化学所、华东理工大学、云南师范大学农村能源工程重点实验室等单位都对生物柴油作了不同程度的研究,并取得可喜的成绩。
3、生物质致密成型:致密成型燃料燃烧是把生物质固化成型后再采用传统的燃煤设备燃用,主要优点是将分散和疏松的生物燃料进行集中和加密,以便于储存和运输,使之成为便捷和清洁高效的能源。主要缺点是生产成本偏高。
4、生物质气化及发电:我国已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料生产燃气,热值为4~10兆焦/立方米。
目前用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处。兆瓦级生物质气化发电系统已推广应用20多套。“十五”期间,按照国家高科技发展计划(863计划)已建成4兆瓦规模生物质气化发电的示范工程。
5、能源作物:能源作物种植是近期发展起来的新型产业,是随着生物质能开发与利用的不断深入和扩大逐步形成的。能源作物是指各种用以提供能源的植物,通常包括速生薪炭林、能榨油或产油的植物、可供厌氧发酵用的藻类和其它植物等。
许多能源作物是自然生长的,收集比较困难。现在人们有意识地培育一些能源作物,经过嫁接、驯化、繁殖,不断提高产量,以满足对能源不断增长的需要。甜高粱就是一种很好的能源作物。
依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
1、林业资源
林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。
2、农业资源
农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。
能源植物泛指各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。
3、污水废水
生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。
4、固体废物
城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。
5、畜禽粪便
畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。
6、沼气
沼气是由生物质能转换的一种可燃气体。沼气是一种混合物,主要成分是甲烷(CH4)。沼气是有机物质在厌氧条件下,经过微生物的发酵作用而生成的一种混合气体。由于这种气体最先是在沼泽中发现的,所以称为沼气。
人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下发酵,类繁多的沼气发酵微生物分解转化,从而产生沼气。沼气是一种混合气体,可以燃烧。通常可以供农家用来烧饭、照明。
生物质能源特点:
1、可再生性
生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2、低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3、广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4、总量十分丰富
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。
随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
5、广泛应用性
生物质能源可以以沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、热裂解生产生物柴油等形式存在,应用在国民经济的各个领域。
以上内容参考:百度百科-生物质能