光伏安装规范
你好,一般安装光伏电站会有专门的厂家进行上门勘测,出方案,然后再进行设计上门安装的。最好自己不要操作,电站安装不规范会有很多安全隐患的。
而且,电站安装完成后,需要到当地的电力局备案,进行并网申请,会有专业人员上门进行工程安装验收,包括逆变器、组件、支架的安装是否规范,有无安全隐患等等,验收合格之后,才能进行并网准入,并网通过后,就可以正常发电使用了。
白天家里可以使用电站发的电,用不完的电并入国家电网进行出售,每个月会有一定的卖电收益,是比较划算的。
如果你想了解更多光伏电站的知识,可以登录碳盈协同APP了解一下,希望能够帮到你!
光伏电站,是指一种利用太阳光能、采用特殊材料诸如晶硅板、逆变器等电子元件组成的发电体系,与电网相连并向电网输送电力的光伏发电系统。光伏电站是属于国家鼓励力度最大的绿色电力开发能源项目。可以分为带蓄电池的独立发电系统和不带蓄电池的并网发电系统。太阳能发电分为光热发电和光伏发电。现时期进入商业化的太阳能电能,指的就是太阳能光伏发电。光伏发电产品主要用于三大方面:一是为无电场合提供电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草地各种灯具等;三是并网发电,这在发达国家已经大面积推广实施。到2009年,中国并网发电还未开始全面推广,不过,2008年北京奥运会部分用电是由太阳能发电和风力发电提供的。
法律依据:
《中华人民共和国行业标准管理办法》
第一条为加强行业标准的管理,确保行业标准的协调、统一,根据《中华人民共和国标准化法》和《中华人民共和国标准化法实施条例》的规定,制定本办法。
第二条行业标准是对没有国家标准而又需要在全国某个行业范围内统一的技术要求所制定的标准。行业标准不得与有关国家标准相抵触。有关行业标准之间应保持协调、统一,不得重复。行业标准在相应的国家标准实施后,即行废止。
第三条需要在行业范围内统一的下列技术要求,可以制定行业标准(含标准样品的制作):
(一)技术术语、符号、代号(含代码)、文件格式、制图方法等通用技术语言;
(二)工、农业产品的品种、规格、性能参数、质量指标、试验方法以及安全、卫生要求;
(三)工、农业产品的设计、生产、检验、包装、储存、运输、使用、维修方法以及生产、储存、运输过程中的安全、卫生要求;
(四)通用零部件的技术要求;
(五)产品结构要素和互换配合要求;
(六)工程建设的勘察、规划、设计、施工及验收的技术要求和方法;
(七)信息、能源、资源、交通运输的技术要求及其管理技术等要求
1.1项目简介及选址
本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。
本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。
图1-1 选址地卫星图
图1-2 选址平面图
1.2 项目位置及气象情况
经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的41.8度,最低气温为冬季的-12.1度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。
图1-3湘潭市地理位置
图1-4年均总辐射值
1.3项目设计依据
本项目设计依据如下:
《光伏发电站设计规范》GB50794-2012
《电力工程电缆设计规范》GB50217-1994
《光伏系统并网技术要求》GB/T19939-2005
《建筑太阳能光伏系统设计与安装》10J908-5
《光伏发电站接入电力系统技术规范》GB/T19964-2012
《光伏发电站接入电力系统设计规范》GB/T5086-2013
《光伏(PV)系统电网接口特性》GB/T20046-2006
《电能质量公用电网谐波》GB/T14549-19933
《电能质量三相电压允许不平衡度》GB/T15543-1995
《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000
二、电站系统设计
2.1组件选型
组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。
组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。
单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。
表2-1伏组件对比表
组件品牌及型号
晶科
Swan Bifacial 400 72H
晶科
Swan Bifacial 405 72H
晶澳
JAM72S10 400MR
最大功率(Pmax)
400Wp
405Wp
400Wp
最佳工作电压(Vmp)
41V
41.2V
41.33V
组件转换效率(%)
19.54%
19.78%
19.9%
最佳工作电流(Imp)
9.76A
9.83A
9.68A
开路电压(Voc)
48.8V
49V
49.58V
短路电流(Isc)
10.24A
10.3A
10.33A
工作温度范围(℃)
-40℃~+85℃
-40℃~+85℃
-40℃~+85℃
最大系统电压
1000/1500V DC(IEC/UL)
1000/1500VDC(IEC/UL)
1000/1500VDC (IEC)
最大额定熔丝电流
20A
20A
20A
输出功率公差
0~+5W
0~+5W
0~+3%
最大功率(Pmax)的温度系数
-0.350%/℃
-0.35%/℃
-0.35%/℃
开路电压(Voc)的温度系数
-0.290%/℃
-0.29%/℃
-0.272%/℃
短路电流(Isc)的温度系数
0.048%/℃
0.048%/℃
0.044%/℃
名义电池工作温度(NOCT)
45±2℃
45±2℃
45±2℃
组件尺寸:长*宽*厚(mm)
2031*1008*30mm
2031*1008*30mm
2015*996*40mm
电池片数
72
72
72
第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。
第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。
综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。
图2-1 组件图
2.2最佳倾斜角和方位角设计
本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。
对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。
图2-2 PVsyst最佳方位角、倾斜角模拟图
2.3组件排布方式
本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。
图2-3 组件排列方式
2.4组件间距设计
太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。
图2-4间距图
在公式2-1中:
L是阵列倾斜面长度(4050mm)
D是阵列之间间距
β是阵列倾斜角(18°)
为当地纬度(27.96°)
把以上数值代入公式后计算得:
2-5组件计算图
根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。
图2-6方阵间距图
2.5逆变器选型
逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。
表2-2 逆变器参数对比表
逆变器品牌及型号
华为
SUN2000-100KTL-C1
华为
SUN2000-110KTL-C1
固德威
HT 100K
最大输入功率
100Kw
110Kw
150Kw
中国效率
98.1%
98.1%
98.1%
最大直流输入电压(V)
1100V
1100V
1100V
各MPPT最大输入电流(A)
26A
26A
28.5A
MPPT电压范围(V)
200 V ~ 1000 V
200 V ~ 1000 V
200V ~ 1000V
额定输入电压(V)
600V
600V
600V
MPPT数量/输入路数
10/20
10/20
10/2
额定输出功率(KW)
100K W
110K W
100K W
最大视在功率
110000 VA
121000 VA
110000 VA
最大有功功率 (cosφ=1)
110KW
121K W
110KW
额定输出电压
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
380, 3L/N/PE 或 3L/PE
输出电压频率
50 Hz,60Hz
50 Hz,60Hz
50 Hz
最大输出电流(A)
168.8A
185.7 A
167A
功率因数
0.8 超前—0.8 滞后
0.8超前—0.8滞后
0.99 (0.8超前—0.8滞后)
最大总谐波失真
<3%
<3%
<3%
输入直流开关
支持
支持
支持
防孤岛保护
支持
支持
支持
输出过流保护
支持
支持
支持
输入反接保护
支持
支持
支持
组串故障检测
支持
支持
支持
直流浪涌保护
Type II
Class II
具备
交流浪涌保护
Type II
Class II
具备
绝缘阻抗检测
支持
支持
支持
残余电流监测
支持
支持
支持
尺寸(宽 x 高 x 厚)
1,035 x 700 x 365 mm
1,035 x 700 x 365 mm
1005*676*340
重量(kg)
85kg
85kg
93.5kg
工作温度(°C)
-25°C~60°C
-25°C~60°C
-25~60℃
3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。
第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。
第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。
本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。
2.6光伏阵列布置设计
2.6.1串并联设计
图2-7串并联计算
公式2-3、2-4中:
Kv——光伏组件的开路电压温度系数-0.00272
K——光伏组件的工作电压系数-0.0035
t/——光伏组件工作环境极限高温(℃)60
Vpm——光伏组件的工作电压(V)41.33
VMPPTmax——逆变器MPPT电压最大值(V)1000
VMPPTmin——逆变器MPPT电压最小值(V)200
Voc——光伏组件开路电压(V)49.58
N——光伏组件串联数(取整)
t——光伏组件工作环境极端低温(℃)-12.7
——逆变器允许的最大直流输入电压(V)1100
把以上数值代入公式中计算可得:
5.5≤N≤21
经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。
图2-8组件串并联设计图
2.6.2项目方阵排布
据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。
图2-9项目方阵排布图
2.7基础与支架设计
2.7.1水泥墩设计
本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。
考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。
图2-10水泥墩设计
图2-11电站整体水泥墩设计图
2.7.2支架设计
都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。
图2-12支架设计图
2.8配电箱选型
配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。
配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。
表2-3配电箱参数
项目名称
昌松100kw光伏交流配电箱
项目型号
100kw交流配电箱
额定功率
100KW
额定电流
780A
额定频率
50Hz
海拔高度
2500m
环境温度
-25~55℃
环境湿度
2%~95%,无凝霜
2.9电缆选配
电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。
直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆
交流电缆:
P:逆变器功率100KW
U:交流电电压380V
COSΦ:功率因数0.8
=
=190A
=0.035Ω
=976W
线损率:976/100000=0.9%<2%,符合光伏电缆设计要求。
据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。
图2-13 电缆参数图
2.10防雷接地设计
防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。
本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。
图2-14防雷接地设计图
2.11电气系统设计及图纸
本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。
图2-15电气系统设计图
三、电站成本与收益
3.1电站项目设备清单
根据当地市场的物价,预估出了一个本电站预计投资表。
表3-1设备清单表
序号
设备
型号
单位
数量
单价
(元)
价格
(万元)
1
组件
晶澳JAM72S10 400MR
块
260
1.77
18.4
2
逆变器
固德威HT 100K
台
1
3.3w
3.3
3
直流电缆
PV1-F-1*4mm²
米
1500
5.2
0.78
4
交流电缆
ZRC-YJV22 70mm2
米
100
72
0.72
5
支架
\
套
39
556
2.17
6
水泥墩
500*500*500mm
个
78
250
1.95
7
配电箱
昌松100kw光伏交流配电箱
台
1
1.3w
1.3
8
运输费
\
总
18
1000
1.8
9
其他
\
\
\
\
4.15
10
人工费
\
\
\
\
7
合计:41.57万元
3.2电站年发电量计算
本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。
(式3-1)
Q=100*1116.6*0.8=89328度
Q——电站首年发电量
W——本项目电站总容量(85KW)
T——许昌市年日照小时数(1258.2H)
——系统综合效率(0.8)
任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。
表3-2电站发电量
发电年数
功率衰减
年末功率
年发电量(kWh)
累计发电量(kWh)
第1年
2.5%
97.50%
89328.000
89328.000
第2年
0.7%
96.80%
87094.800
176422.800
第3年
0.7%
96.10%
86469.504
262892.304
第4年
0.7%
95.40%
85844.208
348736.512
第5年
0.7%
94.70%
85218.912
433955.424
第6年
0.7%
94.00%
84593.616
518549.040
第7年
0.7%
93.30%
83968.320
602517.360
第8年
0.7%
92.60%
83343.024
685860.384
第9年
0.7%
91.90%
82717.728
768578.112
第10年
0.7%
91.20%
82092.432
850670.544
第11年
0.7%
90.50%
81467.136
932137.680
第12年
0.7%
89.80%
80841.840
1012979.520
第13年
0.7%
89.10%
80216.544
1093196.064
第14年
0.7%
88.40%
79591.248
1172787.312
第15年
0.7%
87.70%
78965.952
1251753.264
第16年
0.7%
87.00%
78340.656
1330093.920
第17年
0.7%
86.30%
77715.360
1407809.280
第18年
0.7%
85.60%
77090.064
1484899.344
第19年
0.7%
84.90%
76464.768
1561364.112
第20年
0.7%
84.20%
75839.472
1637203.584
第21年
0.7%
83.50%
75214.176
1712417.760
第22年
0.7%
82.80%
74588.880
1787006.640
第23年
0.7%
82.10%
73963.584
1860970.224
第24年
0.7%
81.40%
73338.288
1934308.512
第25年
0.7%
80.70%
72712.992
2007021.504
3.3电站预估收益计算
根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入
参考文献
[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.
[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.
[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.
[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.
[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.
[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.
[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.
[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.
[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.
[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
下载地址:http://wenku.baidu.com/link?url=8RD_3J8ua3v4qaQ1Sx1iOrcL7-c5immxuamajShs4Ow2bztWc4cmyKaSLn7-_MNL7vOa8-XuwD7YS5-iL0WS9j2K1at9Xe-N9pn56fGZgsy
2、光伏发电工程施工组织设计规范 GB/T 50795-2012
下载地址:http://www.pv265.com/gjbz/201305/158243.html
1、光伏电池片、组件技术标准;
2、控制器标准;
3、逆变器标准;
4、系统设计标准;
5、交、直流配电箱标准;
等等,您可以去CQC官网,TUV官网下载!
光伏发电安装的距离是:跟踪系统内组件最低点离地不宜低于0.3米。
固定式支架没有明确的规定,一般为了方便安装施,会取组件最低点离地0.5米,理论上可以更低。GB50797-2012光伏发电站设计规范内6.7.3点有提到跟踪系统内组件最低点离地不宜低于0.3米。
光纤建筑
在“分布式能源”概念的驱使下,建筑物屋顶一时间已成为太阳能光伏业热捧的稀缺资源。“抢屋顶之战”的背后,是绿色能源支持政策不足和全民意识的严重缺失。光伏建筑一体化仍“钱”景不明、进退两难。
大庆光伏户外实验平台
2021年11月19日,位于黑龙江大庆的全国首个光伏、储能户外实证实验平台首期任务建成,正式开始为新能源行业提供实证、实验、检测等服务。
光伏电站火灾危险性较大的设备有汇流箱、逆变器、蓄电池、连接器、配电柜及变压器,易发生电气火灾。光伏电站内的主要建筑为综合控制室、变配电站,对于电压为35kV以上,单台变压器容量为5000kV˙A及以上的变电站,变压器规模属于GB50229-2006《火力发电厂与变电站设计防火规范》[1](以下简称《火力发电规范》)的适用范围,其消防设计可参照该规范执行,其他变电站的消防设计应当执行GB50016-2006《建筑设计防火规范》[2](以下简称《建规》)。
结合光伏发电站内建筑物的特性,参照《火力发电规范》,光伏电站的建(构)筑物火灾危险性分类及耐火等级如表1[1]。当电缆夹层电缆采用A类阻燃电缆时,其火灾危险性可为丁类;当综合控制室未采取防止电缆着火后延伸的措施时,火灾危险性应为丙类;配电装置楼和屋外配电装置根据设备含油量确定火灾危险性。
2、防火措施
根据《火力发电规范》,结合光伏电站的电气设备特性,光伏电站应采取以下防火措施:
2.1 总平面布置
光伏发电站的站址选择应根据国家可再生能源中长期发展规划、太阳能资源、接入电网、环境保护等因素全面考虑,电站内的建(构)筑物与电站外的建(构)筑物、堆场、储罐之间的防火间距应符合《建规》的规定。大、中型光伏发电站内的消防车道宜布置成环形,当为尽端式车道时,应设回车场地或回车道。
2.2 变压器及其他带油电气设备防火措施
(1)由于带油电气设备在使用过程中容易引发火灾,为了防止火势蔓延到贴邻建(构)筑物,在与其他建(构)筑物贴邻侧应设置防火墙[1]。
(2)屋内单台总油量为100kg以上的电气设备,屋外单台油量为1000kg以上的电气设备,应设置贮油或挡油设施,贮油设施内应铺设卵石层[1]。
2.3 电缆防火措施
由于光伏电站占地面积大,电缆分布广,无法针对电缆设置固定的灭火装置,在电缆沟道内应采用防火分隔和阻燃电缆作为应对电缆火灾的主要措施,集中敷设于沟道、槽盒中的电缆宜选用C类或C类以上的阻燃电缆。
2.4 光伏电站运行和维护安全
(1)运行和维护人员应具备相应的专业技能。维护前必须做好安全准备,断开所有应断开开关,确保电容、电感放电完全,必要时应穿绝缘鞋,带低压绝缘手套,使用绝缘工具,工作完毕后应排除系统可能存在的事故隐患。
(2)由于组件的特殊性,在接收辐射时,就会产生电压。光伏阵列串联后形成高压直流电,如不慎与人体形成环路,将会造成重大安全事故。一般在将光伏阵列接入系统前应保持组串处于断路状态,接入系统后在汇流箱(盒)开关关断的情况下进行连接。在施工过程中,应用遮挡物将光伏组件进行遮挡,遮挡有困难时,施工人员应配备好安全防护用品,确保安全。
(3)为防止设备过热、短路等事故,光伏电站主要部件周围不得堆积易燃易爆物品。
2.5 消防设施
2.5.1 消防给水电站的规划和设计,应同时设计消防给水系统,消防水源应有可靠的保证,消防给水量应按火灾时一次最大消防用水量的室内和室外消防用水量之和计算。以下情况可不设置:
(1)光伏方阵区(含逆变器升压室)宜不设置消防水系统。光伏阵列区主要由电气设备构成,白天直流侧始终带电,不适合用水灭火。
(2)参照《火力发电规范》,变电站户外配电装置区域(采用水喷雾的主变压器消火栓除外)可不设消火栓[1]。
(3)根据《建规》的规定,电站内建筑物满足耐火等级不低于二级,体积不超过3000m3,且火灾危险性为戊类时,可不设室内外消防结水[2]。
地面光伏电站的单体建筑物体积一般都小于3000m3,监控系统功能完备,值班人员少,建筑物分散。大型地面光伏电站一般多建于西北荒漠地区,干旱缺水,生活用水多采用汽车运输方式,水的使用成本髙,难以设置水消防系统。
2.5.2 自动灭火设施
参照《火力发电规范》,单台容量为125MV˙A及以上的主变压器应设置水喷雾灭火系统、合成型泡沫喷雾系统或其他固定式灭火装置。其他带油电气设备,宜采用于粉灭火器[1]。
油浸变压器的油具有良好的绝缘性和导热性,变压器油的闪点一般为130℃,是可燃液体,当变压器内部故障发生电弧闪络,油受热分解产生蒸气形成火灾,需设置水喷雾等自动灭火系统,在缺水、寒冷、风沙大、运行条件恶劣的地区,可以选用排油注氮灭火装置和合成泡沫喷淋灭火系统,对于户内封闭空间内的变压器也可采用气体灭火系统。对于中、小型变电站,自动灭火系统费用相对较高,可选用灭火器。
2.5.3 火灾自动报警系统
光伏发电站火灾危险源主要是电缆及电气类设备,因光伏电站发电量由太阳辐射大小决定,其电气设备负荷及电缆载流量也随太阳辐射量的变化而变化,早晚为零,中午接近设计值,因此光伏发电站火灾发生概率较常规火电厂小许多。参照《火力发电规范》,结合光伏发电站特性,可在大型光伏发电站或无人值守电站设置火灾报警系统。主控室、继电器设备室、无功补偿室、配电装置室可选用感烟火灾探测器,主变压器(室内)、电缆层和电缆竖井可选用线型感温火灾探测器。
2.5.4 消防供电、应急照明及灭火器
为保证消防供电的安全性和消防系统的正常运行,消防水泵、火灾报警、火灾应急照明应按Ⅱ类负荷供电,电站主控室、配电装置室应设置火灾应急照明和疏散标志,电站应按GB50140-2005《建筑灭火器配置设计规范》的要求设置灭火器。
固定式支架没有明确的规定,一般为了方便安装施,会取组件最低点离地0.5米,理论上可以更低。GB50797-2012光伏发电站设计规范内6.7.3点有提到跟踪系统内组件最低点离地不宜低于0.3米。
更多关于光伏安装的距离是多少,进入:https://m.abcgonglue.com/ask/7e955b1615830839.html?zd查看更多内容
一般3.5—4.5米高.另外太阳板是朝南的,有一个倾斜角度,一般40°左右就可以了。
固定式支架没有明确的规定,一般为了方便安装施工,会取组件最低点离地0.5米,理论上可以更低。
GB 50797-2012 光伏发电站设计规范内6.7.3点有提到跟踪系统内组件最低点离地不宜低于0.3米。
光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。