生物质能发展现状与前景
生物质发电作为重要的可再生能源,具有高效、环保、节能、惠农、二氧化碳减排等优点,是全球继石油、煤炭、天然气之后的第四大能源。生物质具有取之不尽、用之不竭的特点。同时生物质能技术成熟、应用广泛、污染小、安全性高,对于应对全球气候变化、能源供需矛盾、保护生态环境、惠及民生等方面发挥重要的作用,是能源转型的重要力量。根据国家能源局数据显示,截至2019年底,我国生物质发电装机容量达到2254万千瓦,同比增长26.6%2019年生物质发电量为1111亿千瓦时,同比增长20.4%。
从各省的生物质发电产业发展情况来看,东部沿海和广东地区装机容量处于领先地位。截至2019年底,山东省生物质发电装机容量达到324.3万千瓦,安徽省和江苏省分别为195.4万千瓦和203.1万千瓦,广东省装机容量达到239.4万千瓦。截至2019年底,全国25个省(区、市)农林生物质发电累计装机容量973万千瓦,较2018年增长21%,2019年新增装机容量170万千瓦。截至2019年底,农林生物质发电累计装机容量排名前五的省份分别是山东省、安徽省、黑龙江省、湖北省和江苏省,五省份合计装机容量占全国累计装机容量的54.3%。
目前我国生物质能源的总体利用局势是多集中在东部沿海地区,中部西部的比例较低目前总装机量较低但环比增长较高。根据最新国家发改委的文件,未来国家会加大对生物质能源发电的补贴力度,进一步落实全面禁煤的政策,生物质能源在未来仍有巨大的市场潜力并会逐渐发展为成熟的产业。
进入21世纪以来,我国面临的能源安全和环境生态保护问题日趋严峻,可再生能源已经成为能源发展战略的重要组成部分以及能源转型的重要发展方向。根据可再生能源应用的不同领域,电力系统建设正在发生结构性转变,可再生能源发电已开始成为电源建设的主流。生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。
装机容量世界第一
生物质能是重要的可再生能源,开发利用生物质能,是能源生产和消费革命的重要内容,是改善环境质量、发展循环经济的重要任务。为推进生物质能分布式开发利用,扩大市场规模,完善产业体系,加快生物质能专业化多元化产业化发展步伐。截至2020年底,全国已经投产生物质发电项目有1353个。
在国家大力鼓励和支持发展可再生能源,以及生物质能发电投资热情高涨,各类生物质发电项目纷纷建设投产等推动下,我国生物质能发电技术产业呈现出全面加速的发展态势。2020年,生物质发电新增装机543万千瓦,累计装机达2952万千瓦。我国生物质发电装机容量已经是连续三年列世界第一。
生物质发电主要包括农林生物质发电、垃圾焚烧发电和沼气发电。2020在,在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大,达到51.9%其次是农林生物质发电,累计装机容量占比为45.1%沼气发展累计装机容量占比仅为3.0%。
生物质能发电量稳定增长
近年来,我国生物质能发电量保持稳步增长态势。2020年,中国生物质年发电量达到1326亿千瓦时,同比增长19.35%。
从发电量结构来看,垃圾焚烧发电量最大,2020年中国垃圾焚烧发电量为778亿千瓦时,占比为58.6%农林生物质发电量为510亿千瓦时,占比为38.5%2020年沼气发电量为37.8亿千瓦时,占比为2.9%。
随着生物质发电快速发展,生物质发电在我国可再生能源发电中的比重呈逐年稳步上升态势。截至2020年底,我国生物质发电累计装机容量占可再生能源发电装机容量的3.2%总发电量占比上升至6.0%。生物质能发电的地位不断上升,反映生物质能发电正逐渐成为我国可再生能源利用中的新生力量。
垃圾焚烧发电量将持续增长
在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大。国内生活垃圾清运量和无害化处理率保持持续增长,对于垃圾焚烧的需求也在日益增加。为满足垃圾焚烧消纳生活垃圾的需求,随着垃圾焚烧发电市场从东部地区向中西部地区和乡镇转移,垃圾焚烧发电量将持续增长。
农林生物质发电项目利用小时数从2018年开始逐年走低,主要原因是可再生能源补贴拖欠对农林生物质发电项目影响较大。根据统计,2019年农林生物质发电利用小时数超过5000h的项目未188个,总装机为526万千瓦。据此判断约50%的项目在承受电价补贴拖欠的压力下,仍坚持项目运营。2020年农林生物质发电新增装机容量也有所下降,为217万千瓦。
山东生物质发电全国领先
总体上来看,生物质发电整体呈现东强西弱的局面。东部和南部沿海地区发展较好。
2020年,全国生物质发电量排名前五位的省份是山东、广东、江苏、浙江和安徽,发电量分别为365.5万千瓦、282.4万千瓦、242.0万千瓦、240.1万千瓦和213.8万千瓦。
2020年,全国生物质发电新增装机容量排名前五位的省份是广东、山东、江苏、浙江和安徽,分别为67.7万千瓦、64.6万千瓦、41.7万千瓦、38.9万千瓦和36.0万千瓦。
—— 更多数据请参考前瞻产业研究院《中国生物质能发电产业市场前瞻与投资战略规划分析报告》
行业主要上市公司:目前国内新能源行业的上市公司主要有隆基绿能(601012)、晶澳科技(002459)、金风科技(002202)、三峡能源(600905)、晶科科技(601778)、长江电力(600900)和中国中车(601766)等。
本文核心内容:新能源行业市场规模、新能源行业发展现状、新能源行业竞争格局、新能源行业发展前景及趋势。
行业概况
1、定义
新能源又称非常规能源,一般指在新技术基础上,可系统地开发利用的可再生能源,包含了传统能源之外的各种能源形式。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源则通常是指尚未大规模利用、正在积极研究开发的能源。新能源主要包括水能、太阳能、风能、生物质能、地热能等。
根据国家统计局制定的《国民经济行业分类(GB/T
4754-2017)》,新能源行业被归入电力、热力生产和供应业(国统局代码D44)中的电力生产(D441),包含的统计4级代码有D4413(水力发电)、D4415(风力发电)、D4416(太阳能发电)、D4417(生物质能发电)、D4418(其他电力生产)。
2、产业链剖析
新能源行业上游产业主要包括太阳能、光伏、水能和风能等新能源及可再生能源发电设备制造商,以及太阳能、光伏、水能和风能等新能源及可再生能源的组件及零部件制造商。其中:新能源发电设备制造主要包括太阳能发电设备和风力发电机组、可再生能源发电设备等,目前这一领域领先的上市企业有特变电工(600089)、迈为股份(300751)和中国中车(601766)等组件及零部件制造主要包括电力和光伏组件、太阳电池芯片、太阳电池组件、太阳能供电电源、光伏设备及元器件制造等。目前这一领域领先的上市企业有晶澳科技(002459)、天合光能(688599)和通威股份(600438)等。
新能源行业中游作为整条产业链的重要环节,主要包含氢能、光伏发电、风电和水电等能源供应商该领域目前的代表上市企业有隆基绿能(601012)、金风科技(002202)、三峡能源(600905)和长江电力(600900)等
新能源行业的下游产业主要包括新能源汽车、加氢站、充电桩和输变电等公共及个人应用领域。目前在新能源汽车行业,主要上市公司有比亚迪(002594)、上汽集团(600104)、广汽集团(601238)、东风汽车(600006)和北汽蓝谷(600773)等加氢站行业上市公司主要有蓝科高新(601798)、上海电气(601727)和美锦能源(000723)等电动汽车充电桩行业主要上市公司有特锐德(300001)、国电南瑞(600406)和万马股份(002276)等输变电行业上市公司主要有长缆科技(002897)、金杯电工(002553)和平高电气(600312)等。
我国新能源行业具体产业链布局如下图:
行业发展历程:行业处在突飞猛进阶段
新能源行业在促进社会经济可持续发展方面发挥了重要作用,根据我国“十五”规划至“十四五”规划期间,国家对新能源行业的支持政策经历了从“加快技术进步和机制创新”到“因地制宜,多元发展”再到“加快壮大新能源产业成为新的发展方向”的变化。
“十五”计划(2001-2005年)时期,国家层面提出加快技术进步和机制创新,推动新能源和可再生能源产业迅速发展从“十一五”规划(2006-2010年)开始,规划提出按照“因地制宜,多元发展”的原则,在继续加快小型水电和农网建设的同时,大力发展适宜村镇、农户使用的风电、生物质能、太阳能等可再生能源“十二五”(2011-2015年)时期,国家层面提出以风能、太阳能、生物质能利用为重点,大力发展可再生能源至“十三五”期间(2016-2020年),合理把握新能源发展节奏,着力消化存量,优化发展增量,新建大型基地或项目应提前落实市场空间到“十四五”时期,根据《关于促进新时代新能源高质量发展的实施方案》,国家在新能源的开发利用模式、加快构建适应新能源占比逐渐提高的新型电力系统、完善新能源项目建设管理、保障新能源发展用地用海需求和财政金融手段支持新能源发展等方面,对我国新能源行业的发展做出了全面指引。
行业政策背景:政策加持,行业发展迅速
近年来,国务院、国家发改委、国家能源局等多部门都陆续印发了支持、规范新能源行业的发展政策,内容涉及新能源行业的发展技术路线、产地建设规范、安全运行规范、能源发展机制和标杆上网电价等内容,2014-2022年6月,我国新能源行业重点政策及政策解读汇总如下:
注:查询时间截至2022年6月20日,下同。
行业发展现状
1、新能源发电装机容量逐年上升
2017-2021年新能源发电装机容量呈逐年上升趋势。2021年,我国新能源发电装机容量达到11.2亿千瓦,占总发电装机容量的47.10%。其中,水电装机3.91亿千瓦(其中抽水蓄能0.36亿千瓦)、风电装机3.28亿千瓦、光伏发电装机3.06亿千瓦、核能发电装机0.55亿千瓦、生物质发电装机0.38亿千瓦。
2、新能源发电量稳步增长
2017-2021年新能源发电量稳步增长,2021年,全国新能源发电量达2.89万亿千瓦时,较2020年增长11.63%,其中,水电13401亿千瓦时,同比下降1.1%风电6526亿千瓦时,同比增长40.5%光伏发电3259亿千瓦时,同比增长25.1%生物质发电1637亿千瓦时,同比增长23.6%。
3、新能源消费量分析
根据《bp世界能源统计年鉴》(2021)数据显示,2016-2020年,中国新能源消费量呈逐年上升的趋势,从2016年的16.2艾焦增长到2020年的23.18艾焦,复合年增长率达到9.37%。前瞻根据中国新能源行业发展态势初步核算得到,2021年中国新能源行业消费量约为25艾焦。
4、新能源行业消纳情况分析
2022年1月,全国新能源消纳监测预警中心发布2021年12月全国新能源并网消纳情况,其中风电利用率达到100%的省市有北京、天津、上海、江苏、浙江、安徽、福建、湖北、重庆、四川、西藏、广东、广西和海南光伏利用率达到100%的省市有北京、上海、江苏、浙江、安徽、福建、湖北、重庆、四川、广东、广西、海南、江西和湖南。
5、新能源发电占总发电比重逐年递增
根据中国电力企业联合会公布的数据显示,2017-2020年中国新能源发电占总发电比重呈逐年上升的趋势。2020年,中国新能源发电占总发电比重为34.9%,比2017年增长了5.3个百分点2021年,中国新能源发电占总发电比重达到35.6%,同比提高0.7个百分点。
行业竞争格局
因目前新能源行业可量化指标较多,故行业竞争格局中的区域竞争部分仅以:各省份可再生能源电力消纳占全社会用电量的比重进行比较企业竞争格局以:2021年各光伏企业光伏组件出货量2021年各风力发电企业新增装机容量和累计装机容量进行对比2020年各水力发电企业水电装机总量及水电发电量进行对比。
1、区域竞争:青海、四川和云南位列新能源行业第一竞争梯队
根据2021年6月国家能源局发布的《2020年度全国可再生能源电力发展监测评价报告》,30个省(区、市)中,可再生能源电力消纳占全社会用电量的比重超过80%以上的3个,分别为青海、四川和云南40-80%的6个,分别为甘肃、重庆、湖南、广西、湖北和贵州20-40%的10个,分别为上海、广东、吉林、宁夏、江西、陕西、黑龙江、新疆、河南和内蒙古小于20%的11个,分别为浙江、福建、山西、安徽、辽宁、江苏、北京、海南、天津、河北和山东。
注:截至2022年6月22日,国家能源局尚未发布2021年全国可再生能源电力发展监测评价报告。
2、企业竞争格局分析
(1)光伏行业竞争格局
根据PV-Tech发布的《2021年全球组件供应商top10》,以光伏组件出货量来看,2021年光伏组件出货量前十名厂商中,中国企业包揽八席,隆基绿能、天合光能、晶澳科技依次位居2021年组件出货量全球排名前三,光伏组件出货量分别为38.52GW、24.80GW和24.069GW。据PV-Tech介绍,2021年全球光伏行业实现跨越式发展,光伏行业整体产能和出货量均超过190GW前十大组件供应商出货量超过160吉瓦,市场份额超过90%。
(2)风力发电行业竞争格局
中国可再生能源学会风能专业委员会发布的《2021年中国风电吊装容量统计简报》数据显示,新增装机容量方面,2021年中国风电市场有新增装机的整机制造企业共17家,新增装机容量5592万千瓦,排名前5家市场份额合计为69.3%,排名前10家市场份额合计为95.1%累计装机容量方面,2021年前5家整机制造企业累计装机市场份额合计达为57.3%,前10家整机制造企业累计装机市场份额合计达到81.8%其中,金风科技累计装机容量超过8000万千瓦,占国内市场的23.4%远景能源和明阳智能累计装机容量均超过3000万千瓦,占比分别为11.1%和9.6%。
(3)水力发电行业竞争格局
因存在严格的行政准入门槛、资金门槛和技术门槛等,目前,我国水电行业运营企业的数量不多,主要大型集团包括:长江电力、华能集团、华电集团、大唐集团、国家电投和国家能源等。根据企业的公开数据以及国家统计局数据计算,2020年按在水电装机总容量分析,长江电力的市场份额达12.32%,其余五大集团的市占率均在5-7.5%之间。按照水电发电量分析,长江电力的市场份额达16.75%,其余五大集团的市占率均在5.5-8.5%之间。
注:截至2022年6月22日,除大唐集团外的其他五大能源集团均为公布2021年社会责任报告,故此处仅以2020年数据为例,对我国水电行业市场竞争格局进行分析。
行业发展前景及趋势预测
1、“十四五”时期保障新能源发展用地用海需求,财政金融手段支持新能源发展
近年来,我国以风电、光伏发电为代表的新能源发展成效显著,装机规模稳居全球首位,发电量占比稳步提升,成本快速下降,已基本进入平价无补贴发展的新阶段。同时,新能源开发利用仍存在电力系统对大规模高比例新能源接网和消纳的适应性不足、土地资源约束明显等制约因素。2022年5月14日,国家发展改革委、国家能源局发布《关于促进新时代新能源高质量发展的实施方案》(以下简称“《实施方案》”)《实施方案》在新能源的开发利用模式、加快构建适应新能源占比逐渐提高的新型电力系统、完善新能源项目建设管理、保障新能源发展用地用海需求和财政金融手段支持新能源发展等方面做出了全面指引:
《实施方案》坚持统筹新能源开发和利用,坚持分布式和集中式并举,突出模式和制度创新,在四个方面提出了新能源开发利用的举措,推动全民参与和共享发展:
传统电力系统是以化石能源为主来打造规划设计理念和调度运行规则等。实现碳达峰碳中和,必须加快构建新型电力系统,适应新能源比例持续提高的要求,在规划理念革新、硬件设施配置、运行方式变革、体制机制创新上做系统性安排:
鉴于新能源项目点多面广、单体规模小、建设周期短等,《实施方案》立足新能源项目建设的规模化、市场化发展需求,继续深化“放管服”改革,重点在简化管理程序、提升服务水平上:
经过多年发展,我国已经形成了较为完善并具有一定优势的新能源产业链体系。新形势下,我国新能源产业必须强化创新驱动,统筹发展与安全,促进形成以国内大循环为主体、国内国际双循环相互促进的新发展格局。为此,《实施方案》从提升技术创新能力、保障产业链供应链安全、提高国际化水平等方面支持引导新能源产业健康有序发展:
与传统能源相比,新能源能量密度较低,占地面积大。随着新能源规模快速扩大,土地资源已经成为影响新能源发展的重要因素。《实施方案》进一步强化新能源发展用地用海保障,通过明确用地管理政策、规范税费征收、提高空间资源利用率、推广生态修复类新能源项目等措施,推动解决制约新能源行业发展的用地困境:
“十四五”风光等主要新能源已实现平价无补贴上网,财政政策支持的方向和模式需要与时俱进,金融支持政策力度需要加大,进一步发挥财政、金融政策的作用。《实施方案》提出三方面政策举措:
2、“十四五”新能源行业发展趋势:基础设施建设能力显著提高,向国际一流水平迈进
作为绿色低碳能源,新能源是我国多轮驱动能源供应体系的重要组成部分,对于改善能源结构、保护生态环境、应对气候变化、实现经济社会可持续发展具有重要意义。
国家能源局新能源和可再生能源司司长李创军表示,在“十三五”的基础上,“十四五”期间可再生能源年均装机规模还将有大幅度的提升,到“十四五”末可再生能源的发电装机占我国电力总装机的比例将超过50%,据此,前瞻初步预测至2025年末,我国新能源装机容量可达到17亿千瓦,至2027年末,我国新能源装机容量或将达到21亿千瓦。
随着新能源装机量的稳步增长,预计至2027年我国光伏、风能、水能、火电等新能源发电量也将随之进一步高增,前瞻根据近年来我国新能源发电量以及新能源行业发展趋势初步预测至2025年末,我国新能源发电量可达到4.28万亿千瓦时,至2027年末,新能源发电量或将突破5.20万亿千瓦时。
更多本行业研究分析详见前瞻产业研究院《中国新能源行业发展前景与投资战略规划分析报告》。
新能源发展趋势:
1、全球新能源汽车发展已进入不可逆的快车道
全球汽车未来发展的方向是新能源化,或者说是电动化,已经成为全球各国和企业的共识。过去,很多国家对这点存在争议和摇摆,而中国的新能源汽车产业一直在增长,不断迈上新台阶。经过这几年的发展,新能源化这个不可逆的态势已基本形成。
2、中国将在较长时间内处于领跑地位
中国电动汽车百人会研究预测,2022年中国新能源汽车年销量将突破500万辆;2025年将达到至少700万辆,乐观估计为900万~1000万辆。从100万辆到1000万辆,也就几年时间,这个发展速度创造了全球新能源汽车行业之最。新能源汽车当前的保有量、增速以及所带动的产业规模,在过去难以想象。以动力电池为例,预计到2025年,中国电池装机量将达到600GWh。
3、中小城市与农村将成为新的市场增长点
过去,中小城市和农村消费者的第一辆车往往选择燃油车。进入电动化高速发展阶段,消费者的第一辆车很有可能是新能源车。因此,未来3~5年,继大型城市之后,中小城市和农村地区将成为中国新能源汽车市场的爆发点,并成为市场增量的重要组成部分,对碳减排、改善三四线城市和农村机动化出行发挥巨大作用。
4、中国电动汽车真正进入市场化竞争阶段
2021年是中国电动汽车产业的分水岭。从市场竞争格局来看,2022年财政补贴将全部退出,所有车企将处于同一政策起跑线,竞争会更加激烈。补贴退出后,新上市的车型也会扎堆出现,特别是外资品牌车型。2022~2025年,中国新能源汽车市场将进入新车型、新品牌扎堆涌现的阶段。
5、汽车电动化和智能化正式合二为一
过去10年,汽车产业变革的主题是电动化。下一阶段,变革的主题将是基于电动化的智能化。电动化的普及要靠智能化来拉动,单纯的电动汽车不会成为市场卖点,只有更加智能的汽车才是竞争焦点。反过来看,只有电动汽车才能更完整地嵌入智能化技术,智能化技术的最佳载体是电动化平台。因此,在电动化基础上会加速智能化,“两化”在汽车上将正式合体。
行业主要企业:东方日升(300118)、隆基股份(601012)、中利集团(002309)、正泰电器(601877)、晶科科技(601778)、拓日新能(002218)、中环股份(002129)、太阳能(000591)
本文核心数据:中国分布式光伏发电累计装机量、中国分布式光伏发电装机占比
我国光伏产业发展较快
光伏发电作为绿色能源的一种,是我国迈向“碳中和”“碳达峰”,进行能源结构转型发展中的重要一环。从累计装机容量方面来看,据国家能源局统计数据显示,2015年以来,我国光伏发电累计装机容量增长迅速。2015年,全国光伏发电累计装机容量为4318万千瓦,到2020年已经增长至25300万千瓦。从一定程度上说,我国的光伏发电正在迅速发展起来。
户用光伏在独立性、稳定性等方面优势较大
户用型光伏是分布式光伏发电的主要形式,户用型光伏并网发电系统的工作原理是太阳能电池板接收太阳能辐射,光伏阵列输出直流电,经逆变转化为与市电电网同频、同相的交流电,实现交流并网同时供本地交流负载使用。一个典型的户用型光伏并网发电系统一般由光伏电池阵列、接线箱、并网逆变装置、电表、电网和负载组成。
户用型光伏并网发电系统的主要优点有:
户用光伏系统已在国外得到成功推广
光伏发电是指利用光伏材料的光电特性,将光的辐照能量转换为电能(直流),再通过逆变器并入三相交流电网的新能源发电。
作为分布式光伏发电的主要形式,户用光伏系统已在国外得到成功推广。从光伏的全球应用来看,分布式光伏发电是主流,分布式的应用占比已经达到79%。在日本和澳大利亚,分布式光伏发电占比超过99%,在应用最成熟的德国,分布式占比也高达86%。
分布式光伏装机量占比逐渐增大
近年来,国家光伏发展政策逐渐向分布式光伏发电倾斜。在太阳能资源优良、电网接入消纳条件好的农村地区和小城镇,推进居民屋顶光伏工程,结合新型城镇化建设、旧城镇改造、新农村建设、易地搬迁等统一规划建设屋顶光伏工程,形成若干光伏小镇、光伏新村。
据国家能源局统计数据显示,2013年以来,我国分布式光伏发电市场份额稳步提升,2013年,分布式光伏发电累计装机容量占总体的16.0%,到2018年,增长至占总体的29%。2019年市场份额进一步提升,分布式光伏发电累计装机容量占总体比重上升至30.7%截至2020年底,全国分布式光伏装机7831万千瓦,占光伏总装机比重30.9%,高于全球均值近10个百分点,且此项占比将继续上升。
分布式光伏发电累计装机容量快速提升
市场份额逐步提升的同时,我国分布式光伏发电累计装机容量也在快速提升,据国家能源局统计数据显示,2013年,全国分布式光伏发电累计装机容量仅为3.1GW,到2019年,我国分布式光伏发电累计装机容量已达到62.63GW,较2013年增长近20倍2020年,我国分布式光伏发电累计装机容量达到78.31GW。
整体来说,由于户用光伏在独立性、稳定性、可移动性等方面较之一体式光伏发电具有较大优势,近年来我国户用型光伏发电的装机量越来越多,分布式光伏装机量占比也随之不断提高。
以上数据参考前瞻产业研究院《中国光伏发电产业市场前瞻与投资战略规划分析报告》。
目前新能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与新能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等。据预测研究,在未来30年能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
世界可再生能源发展的现状
从20世纪70年代开始,尤其是近年来,新能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模,逐渐成为常规能源的一种替代能源,世界上许多国家或地区将可再生能源作为其能源发展战略的重要组成部分。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。国际能源机构(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自新能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的新能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%,在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。2002年全世界消费的可再生能源近30亿吨标准煤,约相当于全球一次能源消费总量的1/3,其中传统可再生能源约占85%,新的可再生能源约占15%。在新的可再生能源中,风力发电是发展最快的。在过去的6年里,风电的年平均增长率达到了22%,2004年新增装机797.6万千瓦,全球累计风电装机达到4731.7万千瓦。欧洲是世界风电发展最快的地区,2004年全球新增风电装机的72.4%在欧洲,15.9%在亚洲,6.4%在北美。2003年,欧洲风力发电量达到600亿千瓦时(相当于欧盟15国2.4%的电力),满足1400万户家庭的电力需求。太阳能发电也发展很快。2004年,全球光伏电池的生产首次超过了100万千瓦,比2003年增长了60%。太阳能热水器是完全商业化了的可再生能源技术,我国是世界上最大的太阳能热水器生产国者和消费国。国际能源机构(IEA)的一项研究提供的2001年统计数据表明,太阳能集热器的全球总计安装面积为1亿平方米,排在前位的国家是中国(3200万平方米)、美国(2340万平方米)、日本(1210万平方米)和欧洲(1120万平方米)。无论是光伏发电还是太阳能热水器产业,未来的主流趋势是发展太阳能一体化建筑技术。
生物质资源是多样化的,在全世界应用广泛。2002年底全球生物质能源发电装机超过5000万千瓦,生物液体燃料超过2000万吨。德国在利用厌氧发酵(沼气工程)处理废弃物发电技术方面走在了世界的前列,目前已建成1900个沼气工程,2004年沼气发电装机27万千瓦。与此同时,地热能和海洋能的开发利用也都取得新的进展,为进一步发展奠定了基础。
世界可再生能源发展的趋势
纵观世界可再生能源发展,有以下几大趋势:
(1)技术水平不断提高,成本持续下降。以风力发电为例,自20世纪80年代初以来,风力发电的单机容量从10千瓦,上升到几千千瓦。2003年世界安装的风机平均单机容量已经达到1300千瓦,风电成本从80年代初的每千瓦时20美分,下降到目前的每千瓦时5美分,其中自20世纪90年代以来,成本就下降了50%。据预测,2000至2010年风电成本还可以下降30%。届时,风电成本基本上可以和常规能源发电相当。
(2)发展速度加快,市场份额增加。进入20世纪90年代,以欧盟为代表的地区集团,大力开发利用可再生能源,取得了积极的成果,连续十多年来,可再生能源的年增长速度在15%以上。近年来,以德国、西班牙等国为代表,一些国家通过立法等方式,进一步加快了可再生能源的发展步伐,1999年以来年均增长速度达到30%以上。发展较快的西班牙,2002年风力发电占到全国电力供应量的4.5%,德国在过去的11年间,风力发电增长了21倍,2003年占全国发电量的4%;瑞典和奥地利的生物质能源在其能源消费结构中的比例高达15%以上;巴西生物液体燃料替代了50%的石油进口。
(3)可再生能源已成为各国实施可持续发展的重要选择。可再生能源,由于其清洁、无污染、可再生,符合可持续发展的要求而受到发达国家的青睐。世界各发达国家都制定并实施了一系列宏大的计划和工程。欧盟是世界可再生能源发展最快的地区,也是受益最多的地区。北欧部分国家甚至提出了利用风力发电和生物质发电逐步替代核电的战略目标。
(4)可再生能源是一种朝阳产业,孕育着巨大的潜在经济利益。当今世界上,新能源作为新兴产业在国民经济中的作用和影响已越来越大。据欧洲风能协会统计,2002年全世界风电市场产值在70亿欧元,开发出的电力可以满足4000万人的需求;预计2020年全世界风机规模将达到12亿千瓦,年营业额在670亿欧元。光伏发电市场发展前景也很广阔,据欧盟估计,全球光伏市场到2020年将增加到7000万千瓦,光伏发电将解决非洲30%、经合组织(OECD)国家10%的电力需求。澳大利亚在新世纪能源规划中,提出2010年前建立年销售额40亿美元的可再生能源市场;美国进一步加强了光伏发电技术开发与制造,估计到2020年美国将占领全球太阳光伏电池的一半。另外,全世界生物质能源的商业化利用将达到1亿吨油当量,并形成千万吨级规模的生物液体燃料的生产能力。根据欧洲太阳能协会的预测,到2020年,全球可能拥有14多亿平方米的宏大市场。欧盟计划到2015年安装大约1.9亿平方米的太阳能热水器,相当于提供3700万千瓦和930亿千瓦时的电力和电量。
可再生能源不仅拥有良好的经济前景,而且,随其产业化的发展,将提供越来越多的就业机会。美国学者认为,投资于能源效率和太阳能等技术所创造的就业机会大约是石油、天然气的2倍。在欧洲已经形成了相当数量的可再生能源方面的就业人口。据欧盟的估计,当2010年欧洲风力发电达到约4000万千瓦、光伏发电300万千瓦、生物质能发电1000万千瓦和太阳能集热器1亿平方米时,总计可提供约150万个就业机会,而且这还不包括每年可能有170亿欧元商业出口所创造的、额外的潜在35万个就业机会。由此可见,可再生能源产业对经济发展的潜在影响和作用是巨大的。
植物
水 + 二氧化碳 ----->有机体 + 氧
太阳能
生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物质所含能量的多少与下列诸因素有密切的关系:品种、生长周期、繁殖与种值方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、雨量、土壤条件等,在太阳能直接转换的各种过程中,光合作用是效率最低的,光合作用的转化率约为0.5%-5%,据估计温带地区植物光合作用的转化率按全年平均计算约为太阳全部辐射能的0.5%-2.5%,整个生物圈的平均转化率可达3%-5%。生物质能潜力很大,世界上约有250000种生物,在提供理想的环境与条件下,光合作用的最高效率可达8~15%,一般情况下平均效率为0.5%左右。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物质遍布世界各地,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。虽然不同国家单位面积生物质的产量差异很大,但地球上每个国家都有某种形式的生物质,生物质能是热能的来源,为人类提供了基本燃料。
生物能具备下列优点:
* 提供低硫燃料;
* 提供廉价能源(於某些条件下);
* 将有机物转化成燃料可减少环境公害(例如,垃圾燃料);
* 与其他非传统性能源相比较,技术上的难题较少。
至於其缺点有:
*小规模利用;
*植物仅能将极少量的太阳能转化成有机物;
*单位土地面的有机物能量偏低;
*缺乏适合栽种植物的土地;
*有机物的水分偏多(50%~95%)。
生物能大致可以分为两类——传统的和现代的。现代生物能是指那些可以大规模用于代替常规能源亦即矿物类固体、液体和气体燃料的各种生物能。巴西、瑞典、美国的生物能计划便是这类生物能的例子。现代生物质包括:1、木质废弃物(工业性的);2、甘蔗渣(工业性的);2、城市废物;3、生物燃料(包括沼气和能源型作物)。传统生物能主要限于发展中国家、广义来说它包括所有小规模使用的生物能,但它们也并不总是置于市场之外。第三世界农村烧饭用的薪柴便是其中的典型例子。传统生物质包括:1、家庭使用的薪柴和木炭;2、稻草,也包括稻壳;3、其他的植物性废弃物;4、动物的粪便。
世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林产品加工的下脚料,城市固体废弃物,生活污水和水生植物等等(中国生物质资源主要是农业废弃物及农林产品加工业废弃物、薪柴、人畜粪便、城镇生活垃圾等四个方面),下面举一些例子说明:
薪柴:至今仍为许多发展中国家的重要能源,仍需依赖柴薪来满足大部分能量需求.不过由于日益增加薪柴的需求,将导致林地日减,需适当规划与植林方可解决这一问题。
农作物残渣:农作物残渣遗留於耕地上也有水土保持与土壤肥力固化的功能,因此,农作物残渣不可毫无限制地供作能源转换。
牲畜粪便:牲畜的粪便,经干燥可直接燃烧供应热能。若将粪便经过厌氧处理,会产生甲烷和可供肥料使用之淤渣。若用小型厌氧消化糟,仅需三至四头牲畜之的粪便即能满足发展中国家中小家庭每天能量的需要。
制糖作物:对具有广大未利用土地的国家而言,如将制糖作物转化成乙醇将可成为一种极富潜力的生物能。制糖作物最大的优点,在於可直接发酵变成乙醇。
水生植物:如一些水生藻类,主要包括海洋生的马尾藻、巨藻、海带等,淡水生的布袋草、浮萍、小球藻等。利用水生植物化成燃料也为增加能源供应方法之一。
光合成微生物:如硫细菌、非硫细菌等等。
城市垃圾:将城市垃圾直接燃烧可产生热能,或是经过热解体处理而制成燃料使用。
城市污水:一般城市污水约含有0.02~0.03%固体与99%以上的水分。下水道污泥有望成为厌氧消化槽的主要原料。
生物质不同的用途使生物质有不同的价值,因此如要统一确定生物质的经济性是十分困难,大规模商业化应用生物质会对其他市场,如食品市场和造纸市场产生重大影响。在评价生物质的经济性时,必须考虑生产生物质的成本和能源投资,所需的水和肥料以及开发利用生物质对土地利用和人口分布形式的总体影响等。生物质常常最适于分散应用,如在人口密度低的地区使用。典型的生物质能开发利用设备均比较小。生物质是到2020年唯一能极大地影响运输行业(不包括电车)燃料利用状况的可再生能源,然而,若大规模开发利用生物质资源,必须注意保护生物多样性,保护自然风景区和环境敏感区,同时还要注意控制废水和废气。
生物能的开发和利用具有巨大的潜力。下面的技术手段目前看来是最有前途:
直接燃烧生物质来产生热能、蒸汽或电能。
利用能源作物生产液体燃料。目前具有发展潜力的能源作物,包括:快速成长作物树木、糖与淀粉作物(供制造乙醇)、含有碳氧化的合作物、草本作物、水生植物。
生产木炭和炭
生物质(热解)气化后用于电力生产,如集成式生物质气化器和喷气式蒸汽燃气轮机(BIG/STIG)联合发电装置。
对农业废弃物、粪便、污水或城市固体废物等进行厌氧消化,以生产沼气和避免用错误的方法处置这些物质,以免引起环境危害。
而根据生物质能的作用和我国的现状,目前重点发展的项目如下:
(1)近期优先发展项目
生物质气化供气
生物质气化发电
大型沼气工程
生物质直接燃烧供热
(2)中长期化发展项目
生物质高度气化发电项目(BIG/CC)
生物质制氢等优质燃气
生物质热解液化制油
2 生物质能资源
一、 森林能源
森林能源是森林生长和林业生产过程提供的生物质能源,主要是薪材,也包括森林工业的一些残留物等。森林能源在我国农村能源中占有重要地位,1980年前后全国农村消费森林能源约1亿吨标煤,占农村能源总消费量的30%以上,而在丘陵、山区、林区,农村生活用能的50%以上靠森林能源。
薪材来源于树木生长过程中修剪的枝杈,木材加工的边角余料,以及专门提供薪材的薪炭林。1979年全国合理提供薪材量8885万吨,实际消耗量18100万吨,薪材过樵1倍以上;1995年合理可提供森林能源14322.9万吨,其中薪炭林可供薪材2000万吨以上,全国农村消耗21339万吨,供需缺口约7000万吨。
二、农作物秸秆
农作物秸秆是农业生产的副产品,也是我国农村的传统燃料。秸秆资源与农业主要是种植业生产关系十分密切。根据1995年的统计数据计算,我国农作物秸秆年产出量为6.04亿吨,其中造肥还田及其收集损失约占15%,剩余5.134亿吨。可获得的农作物秸秆5.134亿吨除了作为饲料、工业原料之外,其余大部分还可作为农户炊事、取暖燃料,目前全国农村作为能源的秸秆消费量约2.862亿吨,但大多处于低效利用方式即直接在柴灶上燃烧,其转换效率仅为10%一20%左右。随着农村经济的发展,农民收入的增加,地区差异正在逐步扩大,农村生活用能中商品能源的比例正以较快的速度增加。事实上,农民收入的增加与商品能源获得的难易程度都能成为他们转向使用商品能源的契机与动力。在较为接近商品能源产区的农村地区或富裕的农村地区,商品能源(如煤、液化石油气等)已成为其主要的炊事用能。以传统方式利用的秸秆首先成为被替代的对象,致使被弃于地头田间直接燃烧的秸秆量逐年增大,许多地区废弃秸秆量已占总秸秆量的60%以上,既危害环境,又浪费资源。因此,加快秸秆的优质化转换利用势在必行。
三、 禽畜粪便
禽畜粪便也是一种重要的生物质能源。除在牧区有少量的直接燃烧外,禽畜粪便主要是作为沼气的发酵原料。中国主要的禽畜是鸡、猪和牛,根据这些禽畜品种、体重、粪便排泄量等因素,可以估算出粪便资源量。根据计算,目前我国禽畜粪便资源总量约8.5亿吨,折合7840多万吨标煤,其中牛粪5.78亿吨,4890万吨标煤,猪粪2.59亿吨,2230万吨标煤,鸡粪0.14亿吨,717万吨标煤。
在粪便资源中,大中型养殖场的粪便是更便于集中开发、规模化利用的。我国目前大中型牛、猪、鸡场约6000多家,每天排出粪尿及冲洗污水80多万吨,全国每年粪便污水资源量1.6亿吨,折合1157.5万吨标煤。
四、 生活垃圾
随着城市规模的扩大和城市化进程的加速,中国城镇垃圾的产生量和堆积量逐年增加。1991和1995年,全国工业固体废物产生量分别为5.88亿吨和6.45亿吨,同期城镇生活垃圾量以每年10%左右的速度递增。1995年中国城市总数达640座,垃圾清运量10750万吨。
城镇生活垃圾主要是由居民生活垃圾,商业、服务业垃圾和少量建筑垃圾等废弃物所构成的混合物,成分比较复杂,其构成主要受居民生活水平、能源结构、城市建设、绿化面积以及季节变化的影响。中国大城市的垃圾构成已呈现向现代化城市过渡的趋势,有以下特点:一是垃圾中有机物含量接近1/3甚至更高;二是食品类废弃物是有机物的主要组成部分;三是易降解有机物含量高。目前中国城镇垃圾热值在4.18兆焦/千克(1000千卡/千克)左右。
3生物质能发展现状
一、沼气
90年代以来,我国沼气建设一直处于稳步发展的态势。到1998年底,全国户用沼气池发展到688万户,比上年增长7.8%,利用率达到91.7%。全国大中型沼气工程累计建成748处,城市污水净化沼气池累计49300处。以沼气及沼气发酵液在农业生产中的直接利用为主的沼气综合利用有了长足发展,达到339万户,其中北方“四位一体”能源生态模式21万户,南方“猪沼果” 能源生态模式81万户。
以沼气利用技术为核心的综合利用技术模式由于其明显的经济和社会效益而得到快速发展,这也成为中国生物质能利用的特色,如“四位一体”模式,“能源环境工程”等。所谓“四位一体”就是一种综合利用太阳能和生物质能发展农村经济的模式,其内容是在温室的一端建地下沼气池,池上建猪舍、厕所。在一个系统内既提供能源,又生产优质农产品。“能源环境工程”技术是在原大中型沼气工程基础上发展起来的多功能、多效益的综合工程技术,既能有效解决规模化养殖场的粪便污染问题,又有良好的能源、经济和社会效益。其特点是粪便经固液分离后液体部分进行厌氧发酵产生沼气,厌氧消化液和渣经处理后成为商品化的肥料和饲料。
二、薪炭林
1981年我国开始有计划的薪炭林建设,至1995年10年间,全国累计营造薪炭林494.8万公顷,其中“六五”完成205万公顷,“七五”186.3万公顷,“八五”103.5万公顷。根据这些年全国造林成效调查,薪炭林成林面积和单位面积年生物量测算,薪炭林年增加薪材量2000-2500万吨,对缓解农村能源短缺起到了重要作用。
三、生物质气化
生物质气化即通过化学方法将固体的生物质能转化为气体燃料。由于气体燃料高效、清洁、方便。因此生物质气化技术的研究和开发得到了国内外广泛重视,并取得了可喜的进展。在我国,将农林固体废弃物转化为可燃气的技术也已初见成效,应用于集中供气、供热、发电方面。中国林科院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/h。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000kJ/Nm3,气化热效率达70%以上。山东省能源研究所研究开发了下吸式气化炉,主要用于秸秆等农业废弃物的气化,在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模,到1998年底,已建成秸秆气化集中供气站164处,供气4572万立方米,用户7700户。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外大连环科院、辽宁能源所、北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。
四、 生物质固化及其它
具有一定粒度的生物质原料,在一定压力作用下(加热或不加热),可以制成棒状、粒状、块状等各种成型燃料。原料经挤压成型后,密度可达1.1、1.4吨/立方米,能量密度与中质煤相当,燃烧特性明显改善,火力持久黑烟小,炉膛温度高,而且便于运输和贮存。
用于生物质成型的设备主要有螺旋挤压式、活塞冲压式和环模滚压式等几种主要类型。目前,国内生产的生物质成型机一般为螺旋挤压式,生产能力多在100-200千克/B寸之间,电机功率7.5一18千瓦,电加热功率2-4千瓦,生产的成型燃料为棒状,直径50-70毫米,单位产品电耗70一120千瓦时/吨。曲柄活塞冲压机通常不用电加热,成型物密度稍低,容易松散。
环模滚压成型方式生产的为颗粒燃料,直径5一12毫米,长度12-30毫米,也不用电加热。物料水分可放宽至22%,产量可达4吨/小时,产品电耗约为40千瓦时/吨,原料粒径要求小于 l毫米;该机型主要用于大型木材加工厂木屑加工或造纸厂秸秆碎屑的加工,粒状成型燃料主要用作锅炉燃料。
利用生物质炭化炉可以将成型生物质块进一步炭化,生产生物炭。由于在隔绝空气条件下,生物质被高温分解,生成燃气、焦油和炭,其中的燃气和焦油又从炭化炉释放出去,所以最后得到的生物炭燃烧效果显著改善,烟气中的污染物含量明显降低,是一种高品位的民用燃料。优质的生物炭还可以用于冶金工业。
辽宁省能源研究所、西北农业大学、中国林科院林产化工研究所、陕西武功轻工机械厂、江苏东海县粮食机械厂等10余家单位研究和开发生物质成型燃料技术和设备。
沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国体科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。
国际分布式能源联盟WADE对 “分布式能源”定义:由下列发电系统组成,这些系统能够在消费地点或很近的地方发电(1)高效的利用发电产生的废能—生产热和电(2)现场端的可再生能源系统(3)包括利用现场废气、废热以及多余压差来发电的能源循环利用系统。这些系统归为分布式能源系统,而不考虑这些项目的规模、燃料或技术,及该系统是否联网等条件。
分布式能源的先进技术包括太阳能利用、风能利用、燃料电池和燃气冷热电三联供等多种形式。
1.2分布式电源的优点以及研究其交易模式的意义
大容量高参数机组的中心电站 、超高压远距离输电、大电网互联集中供 电,这是工业化过程中电力工业发展的必经之路 ,也是 目前电能生产输送和分配的主要方式。但是它在适应负荷变化的灵活性与供电安全性方面都存在一些弊端。在最近的南方冰灾和汶川震灾期间都发生了大面积的停电。近年来屡屡发生的能源危机、电力危机与大面积停电事故中,已暴露 出现有 的庞大电力系统存在“笨拙”而又“脆弱”的缺点。而分布式能源具有能源利用效率高,环境负面影响小,能提高能源供应可靠性和经济效益的特点。制定合理有效的分布式电源交易模式可以促进分布式能源建设的健康快速发展。
全球不同地区的化工产业都在利用自身优势加速发展,未来全球化工产业格局将可能发生较大幅度的转变。
关于全球化工产业的发展趋势,总结如下:
一、“双碳”趋势可能会改变很多石油化工企业的战略定位
全球多个国家陆续公布了“双碳”时间表,中国是2030年碳达峰、2060年碳中和。尽管目前“双碳”受限于局势产生了波折,但整体来看,“双碳”仍然是全球应对气候变暖所必须采取的措施。
石油化工行业因在碳排放中占比较大,是双碳趋势下需要作出巨大调整的行业。石化企业应对双碳趋势做出的战略调整,始终是行业的关注点。
在双碳趋势下,欧洲和美国国际石油巨头的战略调整方向大同小异,其中美国石油巨头将重点放在碳捕捉、碳封存的相关技术开发,另外大力开发生物质能。而欧洲等国际石油巨头,将重点转移在可再生能源、清洁电力等方向。
未来在“双碳”的整体发展趋势下,全球化工产业可能会发生巨大转变,部分国际石油巨头可能从最初的石油服务商,演变为新能源服务商,改变百年来的企业定位。
二、全球化工企业将会继续加快结构性调整
随着全球产业的发展,产业升级和终端市场带来的消费升级,都推动了新型和高端化学品市场,从而驱动了全球化学工业的新一轮产业结构调整和升级。
对于全球产业结构升级的方向,一方面是生物质能、新能源的升级;另一方面是新材料、功能性材料、电子化学品、膜材料、新型催化剂等。这些全球化工产业的升级方向,将会在国际石化巨头的带领下推进,围绕着新材料、生命科学、环境科学展开。
三、化工产业原料轻质化带来全球性化工产品结构转变
随着美国页岩油供应不断增长,美国从最初的原油净进口国,已经变为目前原油净出口国,不仅给美国能源结构带来巨大转变,还在持续深刻影响着全球能源结构。美国页岩油为轻质原油,美国页岩油供应的增长,相应加大了全球轻质原油供应的增加。
不过就中国而言,中国是全球原油消费国,诸多拟在建的炼化一体化项目,都是以全馏程原油加工为主,不仅需要轻质原油,也需要比重较大的重质原油。
从供需角度来看,预期全球轻重原油价差将会逐渐缩窄,给全球化工产业带来以下影响:
第一,轻重原油价差缩窄带来的轻重原油套利萎缩,从而影响到以石油价差套利为主要操作模式的投机行为减少,有利于全球原油市场的稳定运行。
第二,轻质石油供应增长,价位降低,有望加大全球对轻质石油的消费,并加大石脑油的生产规模。但在全球裂解原料轻质化趋势下,石脑油的消费预期降低,这可能会带来石脑油的供给和消费的矛盾升级,从而降低石脑油的价值预期。
第三,轻质石油供应的增长,将降低以全馏程石油为原料的下游重质产品的产出,如芳烃类产品、柴油、石油焦等。而这样的发展趋势,也符合裂解原料轻质化带来芳烃类产品减少的预期,有可能增加相关产品的市场炒作氛围。
第四,轻重原油价差缩窄,有可能会加大炼化一体化企业的原料成本,从而缩小炼化一体化项目的盈利预期。而此类趋势下,也将驱动炼化一体化企业的精细化率发展力度。
四、全球化工产业可能会推动更多的兼并重组
在“双碳”、“能源结构转型”、“逆全球化”的背景下,中小规模化工企业竞争环境将会越发严峻,规模、成本、资金、技术、环保等多方面的劣势,将会严重冲击中小规模企业。
反观国际石化巨头,他们已经在进行全方位的业务整合和优化,一方面逐步将高能耗、低附加值、高污染的传统石化业务淘汰。另一方面,石化巨头为了实现全球业务的聚焦,会越来越重视兼并重组。兼并重组的业绩规模和数量,也是评估当地化工产业所处周期的重要依据。当然就新兴经济体而言,还是以自建为主要发展模式,通过寻找资金实现快速规模化扩张。
预计化工产业的兼并重组,将会主要集中在欧美等发达国家,以中国为代表的新兴经济体,可能会适度参加。
五、化工巨头未来中长期的战略方向可能会更集中
平头哥认为,跟随全球化工巨头的战略发展方向,是一种保守型跟随策略,但有一定的参考意义。
纵观石化巨头的举措,很多是在某一项专精领域起家,之后开始发散扩张。整体发展逻辑具有一定周期性,收敛-发散-收敛-再发散......目前及未来一段时间,巨头们可能处于收敛周期,他们的运作更多是去枝存干,强强联合,战略方向更集中。如巴斯夫在涂料、催化剂、功能性材料等领域将会是重要的战略发展方向,而亨斯迈未来依旧延续自身聚氨酯业务的发展。