5只具有潜力翻倍的氢能源概念股(附名单)
氢能源作为我国新能源产业未来重要的发展方向之一,一直受到各方的高度重视。 早间发改委发布氢能产业发展中长期规划2021~2035年,并召开新闻发布会介绍该规划。该规划主要有三大看点。
一、 探索 氢能应用规模较大的地区设立制氢基地。氢能源是未来新能源的一个重要的形式。在风、光、水电资源丰富的地区开展可再生能源执行示范,逐步扩大示范规模, 探索 季节性储能和电网调峰。制氢成本较高是现在制约氢能源发展的个重要方面。
探索 在氢能应用规模较大的地区设立执行基地。
二、重点推进氢燃料电池中重型车辆应用。氢燃料电池在中长途的卡车运输中占有比较大的优势,成本上比较低,通过重点推进氢燃料电池中重型车辆的应用来提升氢能源的占比。
三、支持符合条件的氢能企业在科创板、创业板等注册上市融资,用资本市场来支持产业发展,促进 科技 成果转化。这是对于氢能源发展的顶层设计,预计今年有望迎来行业的大发展。
那相关的 氢能源概念股有哪些呢 ?
总市值 :93.10亿; 现价 :8.19元; 流通值 :93.10亿; 21三季报收益 :0.14元/股
公司亮点 :从事贵州地区的天然气入户安装、天然气销售业务。
贵州天然气龙头,拥有贵州省25个特定区域及1个省外特定区域取得了管道燃气特许经营权、用户21万户17年销售天然气6.86亿方,取得相关收入26.6亿元,主营占比超95%。公司业务基本覆盖贵州省主要城市、核心经济区和主要工业园区,为未来持续增长奠定了基础。
总市值 :249.9亿; 现价 :9.71元; 流通值 :249.9亿; 21三季报收益 :0.67元/股
公司亮点 :国内产品最齐全、产量最大的改性塑料生产企业之一。
基本面 :该公司运营状况良好,多数机构认为该公司长期投资价值一般。
公司现拥有富氢产能 2.5 万吨,并建设氢气提纯装置,积极拓展工业高纯氢市场,已与园区内外多家企业在高纯氢气项目展开合作。
总市值 :32.20亿; 现价 :5.80元; 流通值 :32.09亿; 21三季报收益 :-0.10元/股
公司亮点 :直流电源、交流电源和集中监控系统等产品可满足多种电源产品需求。
公司在氢能领域一直以来积极布局,致力于氢能产业链中电源产品的开发与运用,在制氢、氢发电、氢燃料电池等领域有核心产品。
总市值 :101.8亿; 现价 :7.78元; 流通值 :81.81亿; 21年报收益 :0.12元/股
公司亮点 :主营高端装备制造及工程总承包,率先实现连续重整技术国产化。
技术面 :近期的平均成本为 7.92元 ,股价在成本下方运行。空头行情中,并且有加速下跌的趋势。
氢能源领域公司围绕电解水制氢关键技术与装备研发、分布式氢储能技术及应用、煤气化制氢技术、大型高压气态储氢容器的研发和制造、高压大流量氢气压缩机的设计及制造等展开技术研究,为后续产业化埋下了伏笔。
总市值 :92.41亿; 现价 :3.63元; 流通值 :89.31亿; 21三季报收益 :-0.04元/股
公司亮点 :国内领先的电站空冷制造商,国内领先的光热发电核心设备制造商。
技术面 :近期的平均成本为 3.61元 ,股价在成本下方运行。空头行情中,并且有加速下跌的趋势。已发现中线卖出信号。
子公司首航氢能 科技 有限公司从事氢能系统研发、生产、销售。公司与大同市人民政府在大同市投资建设氢能产业项目相关事宜达成合作意向,经友好协商,双方签订《氢能产业项目框架合作协议》。该合作的执行有利于推动公司快速切入氢燃料公交车市场,有利于公司拟控股子公司新研氢能源技术有限公司正在建设的年产万套氢燃料电池生产线产能的消化,同时进入运营的氢燃料公交车有望满足公司投资建设的加氢站加氢业务的开展。
可以循环利用,减少环境污染。
回答者:wawncdd - 试用期 一级 4-13 11:31
现在说的绿色能源就是说利用了以后不会给环境造成很大的污染.像氢 太阳能 水能、生物能、太阳能、风能这些能源利用以后所产生的副产物都是一些水等对环境没有污染的东西,所以称为绿色能源.
回答者:zombilangzi - 见习魔法师 二级 4-13 11:34
太阳能
太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当於500万吨煤。 地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源於太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限於太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它的资源丰富,既可免费使用,又无需运输,对环境没有任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。
地热能
地热能是来自地球深处的可再生热能,它起源於地球的熔融岩浆和放射性物质的衰变,其利用可分成地热发电和直接利用两大类。 地热能的储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那麼地热能便是可再生的。地热能在世界很多地区应用相当广泛,据估计,每年从地球内部传到地面的热能相当於100PW·h。 不过,地热能的分布相对来说比较分散,开发难度较大。
风能
风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。
风能是一种有巨大发展潜力的无污染可再生能源,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有著十分重要的意义。即使在已开发国家,高效洁净的风能也日益受到重视。
海洋能
大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏著巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水裏,不像在陆地和空中那样容易散失。
海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在於海洋之中,分述如下:
潮汐与潮流能来源於月球、太阳引力,其他海洋能均来源於太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存著温差热能,其能量与温差的大小和水量成正比。
潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比。
河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。
生物能
生物质是指由光合作用而产生的各种有机体,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源於植物的光合作用。在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当於全世界每年耗能量的10倍。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林?品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。
氢能
氢能是一种二次能源,因为它是通过一定的方法利用其他能源制取的,而不像煤、石油和天然气等可以直接从地下开采,这种能源总有枯竭的一天,而氢能若能从中生产,则可望能抒解能源危机的警戒。
在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。燃料电池即是将氢与氧直接通过电化学反应产生电与水,一个步骤就可发电,发电较传统方式有效率。商品化后,这样的发电系统不但适合一般家庭使用,其副产品所产生的热水,大约在摄氏40到60度间,相当适合家庭洗澡与厨房利用,一举两得。
如果用煤、石油和天然气等燃烧所产生的热或所转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等於把无穷无尽的、分散的太阳能转变成了高度集中的乾净能源了,其意义十分重大。
氢气加氧气一燃烧就变成了水,燃烧的过程是可以释放能量的,跟石油的燃烧差不多,可以用来驱动 汽车 发动机,使用后的产物仍为水,整个过程无其他中间 产物,无浪费,零污染。
作为新能源产业的一个细分领域,氢能被认为是未来能源变革的重要组成部分。
值得一提的是,全球氢能发展势头十分强劲,占全球GDP约52%的27个国家中,16个已经制定全面的国家氢能战略,还有11个国家正在制定国家氢能战略。
据国际氢能委员会发布的《氢能源未来发展趋势调研报告》显示,预计到2030年,全球燃料电池乘用车将达到1000万辆至1500万辆,到2050年,氢能源需求量将是目前的10倍。
山东、浙江、福建等省关于氢能产业园、加氢站建设规划陆续出台。国家能源集团、中石化、中石油等二十余家大型央企纷纷跨界发展氢能产业。
据统计数据显示,A股市场上目前有超百家公司布局了氢能源产业!
从中报预告业绩来看,有24只氢能源概念股中报净利润同比增超100%,其中中报预告净利润增超10倍的有4股,分别是江苏索普、华昌化工、英力特、美锦能源。
梳理绩优低估值的氢能源概念股,最新滚动市盈率低于50倍,并且中报净利润增超100%的公司有13家。
江苏索普:最新滚动市盈率31.39倍,中报净利润预计同比增长17307.67%;
公司生产氢燃料电池的主要材料水合肼,肼是一种比硼氢化钠含氢量更高的化学氢化物,加入肼既能提高硼氢化钠的稳定性,又能提高燃料的能量密度的肼将使产氢更加方便、能量密度更高,提高燃料电池的工作效率。
华昌化工:最新滚动市盈率20.41倍,中报净利润预计同比增长6078.20%;
公司在作为制氢生产企业的基础上,在氢资源能源利用领域进行了 探索 与布局;自主开发60kw氢燃料电池动力系统通过国家强检,19年,与苏州金龙、港城汽运合作的5辆用于示范运行的氢燃料电池公交车交付示范运行;
相关氢燃料电池发电模块、测试设备相关技术已进入中试阶段,正在进行小批量验证及示范应用生产线建设前期准备工作;
英力特:最新滚动市盈率24.10倍,中报净利润预计同比增长1724.97%;
公司此前在互动平台回复:公司水电解制氢项目主体已完工,按照国家相关标准在达到预定可使用状态后,进行验收并投入运行。
美锦能源:最新滚动市盈率33.55倍,中报净利润预计同比增长1617.52%;
在京津冀地区,公司主要围绕氢气的制、储、运、加全产业链为主线展开布局。
如公司参股的北京环宇京辉京城气体有限公司,是华北地区最大的氢气生产厂家之一,是北京市唯一具备合格资质氢能生产厂家,唯一一家集制氢、储氢、运氢、加氢并具备完整安全管理体系的企业。
旗下控股子公司飞驰 汽车 是全国最具规模的氢燃料电池 汽车 生产基地,具备新能源客车5000台/年产能。
兴发集团:最新滚动市盈率18.02倍,中报净利润预计同比增长692%;
兴发集团的中科墨磷 科技 公司研发的黑磷催化剂,可以用作光照水制氢气,是目前全球最节能、零碳排放的绿色制氢方法。已经申请了三个专利。
诚志股份:最新滚动市盈率16.35倍,中报净利润预计同比增长453.92%;
公司与AP合资设立的诚志空气产品氢能源 科技 有限公司(持股60%)已完成设立,氢能源项目在苏州常熟和张家港等地已经启动建设;
公司目前氢气产能约5万吨/年,产出的氢气纯度为99.99%,经过提纯后,纯度可达到99.9999%,可以满足氢能源 汽车 及相关电子产品的电子级使用需求。
三维化学:最新滚动市盈率8.97倍,中报净利润预计同比增长313.31%;
公司在碳四资源综合利用、煤炭高效清洁利用、高压加氢等工程技术领域具有较强的市场竞争力。
卫星石化:最新滚动市盈率21.57倍,中报净利润预计同比增长292.11%;
公司设立浙江卫星氢能 科技 有限公司,更好地发挥丙烷脱氢、乙烷裂解的清洁工艺优势,将生产过程中富余的氢气,开展氢能源业务拓展、参与氢能利用技术开发、寻求加氢站建设
齐翔腾达:最新滚动市盈率16.86倍,中报净利润预计同比增长200%;
公司控股子公司山东齐鲁科力化工研究院专注于石油和化工催化剂的研发、生产和销售,主要产品包括耐硫变换催化剂、制氢催化剂、硫磺回收催化剂和加氢催化剂四大类;
广泛应用于石油炼制、石油化工、煤化工领域的耐硫变换、制氢、硫磺回收、加氢精制等工业装置。
新奥股份:最新滚动市盈率19.68倍,中报净利润预计同比增长170%;
公司控股子公司新能能源 20 万吨/年稳定轻烃项目LNG 装置打通催化气化、加氢气化两项核心煤气化技术工艺流程,并于2018年投料试车并产出合格产品。
河钢股份:最新滚动市盈率14.04倍,中报净利润预计同比增长102.05%;
中国氢能源及燃料电池产业创新战略联盟的副理事长单位,将氢能利用作为重点发展的战略性新兴产业,积极介入制氢、储运、加氢等氢能利用领域,致力于成为推动我国氢能产业发展的先行者;
与中国工程院战略咨询中心、中国钢研、东北大学在北京签订合作协议,联合组建“氢能技术与产业创新中心”,共同推进氢能技术创新与产业高质量发展,打造氢能应用研究和 科技 成果转化平台;
骆驼股份:最新滚动市盈率16.43倍,中报净利润预计同比增长100.85%;
在武汉研发中心建立的燃料电池开发部,2017年与武汉理工大学签订了15KW增程式系统联合开发协议,同时利用美国研发中心的优势发展核心零配件,积极布局燃料电池上游产业;
公司在新能源业务领域已获授权专利多项,涵盖动力电池材料、电芯、PACK、燃料电池结构、部件及电机电控等;
中材 科技 :最新滚动市盈率19.65倍,中报净利润预计同比增长100%;
公司率先研发完成国内最大容积320L燃料电池氢气瓶,并投入市场形成销量;
开发取证燃料电池车用及无人机用35MPa氢气瓶20余种规格;成功掌握70MPa铝内胆碳纤维复合氢气瓶关键技术;公司已启动投资氢气瓶生产线技改项目及站用储氢容器生产线项目;
注意:上述公司根据业绩报表等公开资料整理归纳,仅作为分享以及交流学习,不作为买卖依据;
(上述部分公司近期股价已有较大涨幅,切勿追高,切勿追高,切勿追高!)
可再生,用途广。
氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划。
并且我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一,也被国际公认为最有可能率先实现氢燃料电池和氢能汽车产业化的国家。
当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。
随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。
氢正是这样的二次能源。 氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的含能体能源
以上内容参考:百度百科-氢能源
1清华大学(Tsinghua University):自强不息,厚德载物
(清华学堂)
清华大学是“清华大学—剑桥大学—麻省理工学院低碳能源大学联盟”成员。其核能与新能源技术研究院不仅有核能研究的硬实力,在太阳能、风能、电池、海水淡化和新材料等方面也很强。院内设有20多个实验室,包括生物质能研究室、新材料研究室等。清华材料学院的研究方向也包括新能源材料与器件。
2华北电力大学:电力行业的根正苗红
由教育部与国家电网等七家电力央企和中国电力企业联合会、华北电力大学等九家单位组成的华北电力大学理事会共建的全国重点大学。学校积极响应国家能源发展战略规划,2007年7月成立了国内首家“可再生能源学院”,整合各新能源学科力量,逐步形成并深化了“以优势学科为基础,以新兴能源学科为重点,以文理学科为支撑”的“大电力”学科特色办学体系,其中四个基地被列入教育局和国家外国专家局联合实施的“高等学校学科创新引智计划”(“111计划”)。
3西安交通大学(Xi’an Jiao Tong University):英俊济跄,经营四方
西安交大与香港科技大学共同成立了可持续发展学院,学院里设有可再生能源系,研究涵盖可再生能源生产和转换,混合动力和系统技术。此外,学校设有陕西省重点实验室可再生能源工程技术研究中心。学校材料物理与化学系研究领域涵盖能源材料、纳米功能材料等。
4上海交通大学(Shanghai Jiao Tong University,SJTU):相聚在东海之滨,汲取知识的甘泉
(上海交通大学徐汇校区)
上海交通大学能源研究院包括7个研究所、6个研究中心,研究领域包括太阳能、建筑节能、生物质能、风电及其控制系统、氢能与燃料电池、清洁燃料生产与生物化工转换等。相关研究中心包括与挪威科大联合建立的可持续能源联合研究中心,新能源工程技术研究中心。
5天津大学(Tianjin University,TJU):花堤蔼蔼,北运滔滔,巍巍学府北洋高
(天津大学敬业湖夜景)
天津大学建筑工程学院下设水利与风能工程研究院、道达海上风电研究院。化工学院下设有多晶硅材料制备技术国家工程实验室、绿色合成与转化教育部重点实验室,曾成功举办“太阳能电池材料国际研讨会”。此外,学校还设有可持续能源研究中心。
6浙江大学(Zhejiang University):大不自多,海纳江河,惟学无际,际于天地
(浙江大学紫金港校区)
浙江大学材料科学与工程学院设有硅材料国家重点实验室,研究方向包括半导体硅材料、半导体薄膜材料、复合半导体材料、微纳结构与材料物理,注重硅材料在光伏电池上的应用。能源工程学院设有能源清洁利用国家重点实验室,除化石能源的清洁利用研究,还涵盖废弃物高效清洁能源化利用研究、新能源及先进能源系统、生物质液化研究等。
石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
一下就具体每种能量细说:
太阳能:太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式。
细分就是:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。
3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。
核能:核能是通过转化其质量从原子核释放的能量
具体方式:1.核裂变能:所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
2:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
3:核聚变能:由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
核能的利用存在的主要问题:
1:资源利用率低。
2:反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决。
3:反应堆的安全问题尚需不断监控及改进。
4:核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
5:核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能:
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
风能:
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
生物质能:
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。
地热能:
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。
氢能:
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。
海洋渗透能:
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。
水能:
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。
当然常见的,已经实现的是下面几种:
生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
还有一些不常见,或者很少听见的就是:可燃冰,煤层气,微生物。
可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。
煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
其实很多能源都是来自于太阳能,想海洋能,煤层气,微生物,风能,水能,都是有太阳能而来。只是他们之间转换了一下。
作为一种来源广泛、清洁低碳、应用场景丰富的二次能源,氢能有利于推动传统化石能源清洁高效利用和支撑可再生能源大规模发展。近年来,氢能及氢燃料电池产业逐步成为全球能源技术革命和未来能源绿色转型发展的重要方向。
【拓展资料】
特点:
氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划,并且我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一,也被国际公认为最有可能率先实现氢燃料电池和氢能汽车产业化的国家。
当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是这样的二次能源。氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。作为一种理想的新的含能体能源,它具有以下特点:
1.重量最轻:标准状态下,密度为0.0899g/L,-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢可变为金属氢。
3.导热性最好:比大多数气体的导热系数高出10倍。
4.储量丰富:据估计它构成了宇宙质量的75%,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大9000倍。
5.回收利用:利用氢能源的汽车排出的废物只是水,所以可以再次分解氢,再次回收利用。
6.理想的发热值:除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142351kJ/kg,是汽油发热值的3倍。
7.燃烧性能好:点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
8.环保:与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氨气经过适当处理也不会污染环境,氢取代化石燃料能最大限度地减弱温室效应。
9.利用形式多:既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
10.多种形态:以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
11.耗损少:可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小。
12.利用率高:氢取消了内燃机噪声源和能源污染隐患,利用率高。
13.运输方便:氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。
近日在上海举行的第三届中国国际进口博览会期间,东芝多位高管对澎湃新闻表示,除了已提出“氢能源 社会 ”愿景的日本本土之外,东芝非常看好氢能在中国的发展前景。
放眼全球,日本是近年来最热衷于发展氢能的国家之一。日本“氢能基本战略”提出,到2030年要确立国内可再生能源制氢技术,构建国际氢能供应链,长期目标是利用碳捕获(CCS)技术实现平价化石燃料的脱碳制氢和可再生能源制氢。对于能源自给率低的日本而言,用零碳排的可再生能源来制取清洁高效、较易储运的氢能,无疑是“后福岛时代”得以兼顾能源安全和碳中和目标的理想选择。
日本能源转型历程
“东芝早在50年前就已经开始做氢能方面的技术研发,进行相关技术储备。我们在40年前推向市场的产品,已经有氢能利用的影子。”负责氢能业务的东芝(中国)有限公司营业总监张童对澎湃新闻表示,早年东芝的制氢路线是烃类醇类重整制氢。但在零碳理念下,该公司内部近十年间全面提升氢能体系,东芝燃料电池体系全部是纯氢燃料电池。
据介绍,东芝的纯氢能燃料电池系统H2Rex已累计在日本国内交付100台以上。这种100kW的模块化单元可根据需求灵活组合,启动时间不到5分钟,高效将管道或气罐中的氢气转化为电能和热能。
东芝的纯氢能燃料电池系统H2Rex累计在日本交付100台以上
典型场景如东芝的新氢能综合应用中心,利用太阳能电解水制备氢气,并直接将其应用在东芝的日本府中工厂的燃料电池物流叉车上。这样,不但燃料电池物流叉车在运转时不排放二氧化碳,而且,因为使用了通过可再生能源制取的氢气作为燃料,从制氢到氢利用的全程实现了零碳排。
当突发灾难时,这套小型分布式能源亦可大显身手,作为一条生命线为300名受灾群众提供一周的电力和热水供应。
纯氢固然样样好,但目前在全球范围内仍受居高不下的成本所困。据澎湃新闻了解,上述在日本落地的东芝纯氢燃料电池系统均为有日本政府政策支持的项目。
张童表示,全球可再生能源快速发展,但风电、光伏始终存在间歇性问题。尤其在中国,风电、光伏装机的迅猛增长对电网调峰要求巨大,弃风、弃电的问题屡见不鲜。若将这部分电力转换成氢能储存起来,在需要时再调取,就是一个最理想的结合。“可再生能源与电解质制氢技术结合起来,制出来的氢完全是绿色的。”
他认为,在该领域,东芝的所长是对电力系统、电子设备、控制系统的深入了解和对氢的长期技术积累,目前正在与多家上游制氢企业探讨合作。在氢能起步阶段,东芝呼吁政府对全行业予以政策支持,鼓励更多企业参与氢能产业链的完善,并尽早明确氢使用的法律法规。在这些前提下,氢能成本才能随着规模化效应快速下降。
氢能成本的下降有赖于一个足够大且高速成长的下游市场。东芝正在推动纯氢能燃料电池系统H2Rex尽早应用于中国市场,使其成本上尽早符合中国市场潜在的需求,并联合中国合作伙伴一起开拓市场。
实际上,东芝对于“终极能源解决方案”的认识,在日本福岛核事故之后出现了彻底的转变。东芝曾是全球核能领域的重要参与者,旗下拥有 历史 战绩辉煌的美国西屋电气公司。但由于2011年福岛核事故后全球核电建设放缓、建造成本陡增、西屋电气申请破产保护等原因,东芝最终选择剥离核电资产。
今年10月,日本首相菅义伟在临时国会上发表施政演说时宣布,日本将争取在2050年实现温室气体净零排放。这标志着作为全球第三大经济体和第五大碳排放国的日本在气候议题上的立场发生巨大转变。目前,日本的温室气体排放中有至少80%来自能源领域。
“二氧化碳零排放并不是最近才有的呼声,很早以前大家就在进行与此相关的探讨。”东芝中国总代表宫崎洋一对澎湃新闻说道,福岛核事故改变了全球的碳减排思路。2011年之前,日本、欧洲都将低碳发电目标寄希望于核能,但福岛事故后由于安全标准升级、核能发电成本陡增,欧洲主要国家纷纷选择弃核。
宫崎洋一称,除了重点业务氢能之外,目前东芝还有其他颇具竞争力的能源业务和碳捕捉技术,可以根据不同地区的特征进行灵活组合。具体而言,在水电领域,东芝的实际供货数量和技术实力处于全球第一梯队,已经向44个国家及地区累计供货2300多台水轮机和1800多台发电机;光伏领域,东芝的工业用光伏发电系统在日本有2700处应用,住宅用光伏发电系统在日本为10万户以上客户使用;地热领域,东芝已向全球提供累计达3.7GW的地热发电设备,以设备容量计处于全球第一。
福岛氢能研究基地(FH2R)
在日本国立的新能源产业技术综合开发机构(NEDO)牵头下,东芝与另外两家日本企业合作的福岛氢能研究基地(FH2R)已于今年2月底建成。
FH2R系统概览
该项目建有全球最大的利用可再生能源的10MW级制氢装置,正在验证清洁低成本的制氢技术。这里产生的氢气不仅用来平衡电力系统,还为固定的氢燃料电池系统、移动的氢燃料车等提供动力。
校对:刘威