你对公司抽水蓄能发展最大的期待是什么
对公司抽水蓄能发展最大的期待就是抽水蓄能技术发展到最优,其技术最成熟、容量大、安全可靠、经济性好。抽水蓄能是当前技术最成熟、经济性最优、最具大规模开发条件的电力系统绿色低碳清洁灵活调节电源,与风电、太阳能发电、核电、火电等配合效果较好,加快发展抽水蓄能,是构建新型电力系统的迫切要求,是保障电力系统安全稳定运行的重要支撑,是可再生能源大规模发展的重要保障,“十四五”期间,我国抽水蓄能产业即将全面进入高质量发展新阶段。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。
它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。
像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
水电
一是在做好布局的基础上,落实电力市场水电消纳和输电方案,包括四川、云南水电外送,以及“十三五”投产的重点水电。
二是落实水电与促进地方经济社会发展和扶贫协调机制,研究建立西藏水电的开发协调机制,促进藏东南水电基地的开发。
三是研究制定龙头水库综合效益共享机制与政策,进行抽水蓄能电站作用、效益机制研究,水电电价市场化改革及电价机制研究,探索和制定常规水电和抽水蓄能电站电价机制,促进水电持续健康发展。
四是做好流域综合监测规划,建立监测、监管体系,编制流域梯级水电站联合调度运行规程,优化水电站运行,提高利用效率。
到“十三五”时期,水电投资不足、开发技术难度较大等问题都会基本得以解决,而难点转向消纳、外送、移民、环保等方面。因此要把水电开发好,除了技术研究和积累之外,还应该加强水电开发机制体制等一系列问题研究,促进水电有序有效开发利用。
金寨电站额定水头为330米,属于中低水头,发电机组采用333.3转/分转速。根据以往国内几家采用同类型机组的抽水蓄能电站的运行经验,333.3转/分转速的机组有很高的概率出现振动大的问题。
*机组启动前多方联合检查确认
明知可能出现问题,为什么还要采用这一机型呢?
“机组的选型受水头高度、装机容量、设备生产厂家现有制造水平、工程造价等多重因素影响。综合考虑,金寨电站的最优选择就是333.3转/分机组。”华东勘测设计研究院有限公司金寨项目设计总工程师汪德楼解释道。
据国网新源安徽金寨抽水蓄能公司机电部(运检部、物流中心)主任王少华介绍,机组振动大,带来的是噪音大,机组各连接部件易松动,引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂等。“振动大,机组受不了,人受不了,厂房也受不了。”解决机组振动大的家族性缺陷才能使机组在整个运行期内少生病、不生病。
水头高度和机组转速已不可更改,能否通过转轮开发提升机组稳定性呢?从2018年开始,金寨公司与设备生产厂家联合攻关,历时近2年时间,先后进行数十次的转轮模型试验,最终优选出综合性能最优的13叶片和22导叶组合方案。该方案各项性能指标优良,效率、压力脉动等关键技术指标均优于合同保证值或同类机组。金寨电站1号机组水导摆度和顶盖振动值分别达到5道和1道以内(1道为0.01毫米),比一根头发丝还细。王少华曾做过一个试验,在1号机组运行时,他成功把一枚一元硬币立在了发电机的盖板上。
我个人认为电是不能存储起来的,而且现在的条件来说,储存是不经济的。当然还是有储存的,但是大量储存是没有的。题主所说的“发电机发出的多余电能是如何存储的”,即在对电能需求较小时将其储存起来,待对电能需求较大时再将其送入电网。
目前抽水蓄能电站是电力系统用于快速加荷和卸荷,解决日负荷调度和峰谷差的最佳途径。
1、抽水蓄能电站原理
在抽水蓄能电站中,水泵水轮机在非峰荷时期将水抽到高位储水池,从而在夜晚储存白天所需的载荷。抽水所用的能量来自于核电站、燃气电站和可再生能源电站等其它能源来源,但这些电站其输出功率无法随载荷的波动进行调节。储存的水可用于发电,以满足临时用电高峰的调节负荷需求。
2、主要功能
• 高效储存巨大能量的唯一解决方案
• 对峰值负荷电力供应做出快速反应
• 提供辅助功能(电网调频与调压、储备容量、黑启动能力和无功发电等) 主要优势
• 提高电站所有者在急剧波动的电力现货市场中的盈利性
• 支持电站与电网基础设施全球运营的优化
• 与其它大规模电力存储解决方案相比,具有更高的全球循环效率(约高80%)
• 提高了可再生能源的利用率,对环境有积极影响
3、总结
综合以上,大家对电的存储有新的认识了吧,现代科技发展很快,很多发明都是由人类想出来的,发电厂(站)发出的多余电能也是有办法存储的哦。
随着我国新兴能源的大规模开发利用,抽水蓄能电站的配置由过去单一的侧重于用电负荷中心逐步向用电负荷中心、能源基地、送出端和落地端等多方面发展。
新能源的迅速发展需要加速抽水蓄能电站建设
风电作为清洁的可再生资源是国家鼓励发展的产业,核电是国家大力发展的新型能源,风电和核电的大力发展,对实现我国能源结构优化、可持续发展有着不可替代的作用。
风能是一种随机性、间歇性的能源,风电场不能提供持续稳定的功率,发电稳定性和连续性较差,这就给风电并网后电力系统实时平衡、保持电网安全稳定运行带来巨大挑战,同时风电的运行方式必将受到电力系统负荷需求的诸多限制。抽水蓄能电站具有启动灵活、爬坡速度快等常规水电站所具有的优点和低谷储能的特点,可以很好地缓解风电给电力系统带来的不利影响。
核电机组运行费用低,环境污染小,但核电机组所用燃料具有高危险性,一旦发生核燃料泄漏事故,将对周边地区造成严重的后果;同时,由于核电机组单机容量较大,一旦停机,将对其所在电网造成很大的冲击,严重时可能会造成整个电网的崩溃。在电网中必须要有强大调节能力的电源与之配合,因此建设一定规模的抽水蓄能电站配合核电机组运行,可辅助核电在核燃料使用期内尽可能的用尽燃料,多发电,不但有利于燃料的后期处理,降低了危险性,而且有效降低了核电发电成本。
抽水蓄能电站是电力系统中最可靠、最经济、寿命周期长、容量大、技术最成熟的储能装置,是新能源发展的重要组成部分。通过配套建设抽水蓄能电站,可降低核电机组运行维护费用、延长机组寿命;有效减少风电场并网运行对电网的冲击,提高风电场和电网运行的协调性以及电网运行的安全稳定性。
特高压、智能电网的发展需要加速抽水蓄能电站建设
国家电网公司正在推进“一特四大”的电网发展战略,即以大型能源基地为依托,建设由1000千伏交流和±800千伏直流构成的特高压电网,形成电力“高速公路”,促进大煤电、大水电、大核电、大型可再生能源基地的集约化开发,在全国范围内实现资源优化配置。同时,将以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,发展以信息化、数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网。特高压交流输电系统的无功平衡和电压控制问题比超高压交流输电系统更为突出。利用大型抽水蓄能电站的有功功率、无功功率双向、平稳、快捷的调节特性,承担特高压电力网的无功平衡和改善无功调节特性,对电力系统可起到非常重要的无功/电压动态支撑作用,是一项比较安全又经济的技术措施,建设一定规模的抽水蓄能电站,对电力系统特别是坚强智能电网的稳定安全运行具有重要意义。
储能产业正处起步阶段抽水蓄能建设加速
“储能肯定已到了呼之欲出的时候。保守估计,到2020年,国内整个储能产业的市场规模至少可以达到6000亿元,乐观的话甚至有可能到两万亿。预计未来国家对储能的支持力度会不断加大。”中科院工程热物理研究所所长助理、鄂尔多斯大规模储能技术研究所所长谭春青在上月召开的“储能国际峰会2012”上表示。这昭示着储能的巨大魅力与潜力。
对新能源和可再生能源的研究和开发,寻求提高能源利用率的先进方法,已成为全球共同关注的首要问题。对中国这样一个能源生产和消费大国来说,既有节能减排的需求,也有能源增长以支撑经济发展的需要,这就需要大力发展储能产业。
日益增长的能源消费,特别是煤炭、石油等化石燃料的大量使用对环境和全球气候所带来的影响使得人类可持续发展的目标面临严峻威胁。据预测,如按现有开采不可再生能源的技术和连续不断地日夜消耗这些化石燃料的速率来推算,煤、天然气和石油的可使用有效年限分别为100-120年、30-50年和18-30年。显然,21世纪所面临的最大难题及困境可能不是战争及食品,而是能源。
我国电力系统建设正处于快速发展阶段,用电高峰时的供电紧张、有功无功储备不足、输配电容量利用率不高和输电效率低等问题都有不同程度的存在。同时,越来越多的大型工业企业和涉及信息、安全领域的用户对负荷侧电能质量问题提出更高的要求。这些特点为分散电力储能系统的发展提供了广泛的空间,而储能系统在电力系统中应用可以达到调峰、提高系统运行稳定性及提高电能质量等目的。
抽水蓄能是电力系统最可靠、最经济、寿命周期最长、容量最大的储能装置。为了保障电源端大型火电或核电机组能够长期稳定的在最优状态运行,需要配套建设抽水蓄能电站承担调峰调荷等任务。截至2008年,我国已建成抽水蓄能电站20座,在建的11座,装机容量达到1091万千瓦,占全国总装机容量的1.35%。
而一般工业国家抽水蓄能装机占比约在5%-10%水平,其中日本2006年抽水蓄能装机占比即已经超过10%。我国抽水蓄能电站的占比明显偏低,随着国内核电及大型火电机组的投建,国内抽水蓄能电站建设明显加速。在建规模达到约1400万千瓦,拟建和可行性研究阶段的抽水蓄能电站规划规模分别达到1500万千瓦和2000万千瓦,如果以上项目顺利投产,2020年我国抽水蓄能电站总装机容量将达到约6000万千瓦。
储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。中国没有达到类似美国、日本将储能当作一个独立产业加以看待并出台专门扶持政策的程度,尤其在缺乏为储能付费机制的前提下,储能产业的商业化模式尚未成形。
一、从电网的角度,可以分为电源侧储能、电网侧储能和用户侧储能,不同的类型功能和特点不同,具体为:
电源侧:储能以集中式配套、分布式微网等“可再生能源+储能”发展模式应用,可以平抑可再生能源的波动,增加可再生的消纳能力,有效解决当下弃风弃光和碳减排目标;
电网侧:储能与配电网合作,如建设变电站+储能、电动汽车充电桩一体化建设模式等,储能可参与电网的调峰调频、调频、谐波等等电力辅助服务,能够有效增加配电网的供电可靠性,同时也可以延缓配电网相关投资,暂缓配电网的更新换代;
用户侧:储能的商业模式比较清晰,是三侧储能中最先进入商业化发展的,主要为需求侧响应、需求电价这一商业模式,即大工业+储能的应用场景,实现削峰填谷、降低企业用电成本等,市场化机制情况下,可提高企业(电网)的经济性。
二、从储能的能量形式的角度,可以分为机械储能、化学储能和电磁储能,不同的类型有:
机械储能:
抽水蓄能(水的潜在能量)
压缩空气储存器(气体压力的动能)
飞轮储能(旋转质量的动能)
化学储能:
电力燃气电厂(转换为燃气)
动力液系统(转换为燃料)
电力化工厂(转化为化工产品)
经典电池储能(电极中的电化学能)
氧化还原、混合液流电池储能(电解液中的电化学能)
电磁储能:
超导磁储能(磁场中的电能)
超级电容器(电场中的电能)
也有分为热储能和换相储能等其他形式。
三、从能量形态上分为:气态储能(空气压缩、氢能),液态储能(抽水蓄能、光热液油),固态储能(电池、电容)等。