2022年风电度电成本
2022年上半年新建陆上风电的成本同比上涨7%,固定支架太阳能光伏的成本上涨14%。风电、光伏基准水平化电力成本(LCOE)已回到2019年的水平,成本上涨与材料、运费、能源和劳动力成本的上涨有关。
在2022年上半年,公用事业规模光伏和陆上风电的全球LCOE分别上升至每兆瓦时45美元和46美元。尽管回到2019年的水平,相比2010年,光伏、风电成本分别下降了86%和46%。
根据各国市场成熟度、资源可用性、项目特征、当地融资条件和劳动力成本,各国风电光伏LCOE有所不同。2022年上半年,巴西最便宜的风电项目LCOE能够达到19美元/兆瓦时,智利的跟踪式光伏发电项目的LCOE为21美元/兆瓦时,丹麦海上风电场的LCOE则为57美元/兆瓦时。如果不包括海上输电成本,丹麦海上风电的LCOE降至43美元/兆瓦时。
尽管可再生能源的成本暂时上升,但由于化石能源和碳价上涨更快,与化石能源发电相比竞争性继续扩大。新建陆上风电和太阳能项目现在比新建燃煤和燃气发电LCOE低40%左右,后者的成本分别为每兆瓦时74美元和81美元。
储能电池行业对大宗商品价格波动特别敏感。2022年上半年储能电池LCOE基准为153美元/兆瓦时,比2021上半年上涨8.4%。碳酸锂是磷酸铁锂(LFP)电池系统的关键投入之一,其价格在过去一年上涨了379%。
风力发电机组主要部件包括叶片、变频器、齿轮箱、电气控制系统、发电机、主轴、轮毂等。因驱动方式的不同,双馈式和直驱式风机零部件有所差异,主要涉及到有无齿轮箱。本篇报告我们主要讨论的广义范围的风电结构件,即对风电机组起到支撑、保护和传动的零部件,并且这些零部件以钢材为主要原材料,生产工艺包括锻造、铸造和板材加工、焊接等。这些零部件主要包括铸件、主轴、塔筒、法兰、机舱罩、定子和转子。
一、风电进入新一轮抢装潮
补贴政策调整是短期内我国风电新增装机容量变动的主要驱动因素。2009年首次实施风电上网标杆电价政策、2015年风电上网标杆电价首次下调,两次调整后风电新增装机容量均创历史新高。我们判断19年5月补贴下调的政策仍会引领新一轮风电抢装潮,预计仅存量项目在19-21年完成并网的情况下每年新增装机容量分别为26GW、30GW和32GW,年均复合增长率达到15%。其中,陆上风电2019-2021年预计增速会逐步下滑,海上风电由于补贴退坡力度相对较小,加上风电机组及产业链技术更加成熟,未来三年的新增装机容量有望维持高速增长。2016年11月能源局在印发的《风电发展“十三五”规划》中提出积极稳妥推进海上风电建设,到2020年全国海上风电开工建设规模达到1000万千瓦,力争累计并网容量达到500万千瓦以上。截至2018年底我国海上风电累计装机规模为444.5万千瓦,已核准的海上风电项目达2300万千瓦。我们预计2019-2020年我国海上风电新增装机容量分别为2.2GW、3GW、4GW。
二、行业长期驱动将由政策转为成本下降
初始投资成本和年上网电量是影响风电度电成本的两大内生变量。 1、技术进步促使风电机组招标价格下降、机组大型化而成本并没有成比例上升,二者为初始投资成本下降提供空间;2、发电利用小时数上升和弃风率下降使得年上网电量逐年上升。大唐电科院预测我国陆上风电度电成本将从2018 年0.41元/度下降至2023年0.33元/度,下降幅度为19.51%,海上风电度电成本将从2018年0.5元/度下降至 2023年0.41元/度,下降幅度为18%。?
受益于技术进步带来总安装成本(设备购置费用+建安工程费)的下降,全球陆上和海上风电度电成本也进入下降通道。根据国际可再生能源署发布的《2018年可再生能源发电成本报告》中指出,2018年全球投产的陆上风电加权平均LCOE为0.056美元/千瓦时,比2017年低13%,比2010年低35%;2018年海上风电全球加权平均LCOE为0.127美元/千瓦时,比2017年低1%,比2010年低20%。1、风机设计和制造的持续改进、更具竞争力的全球供应链、风机系列的增加是导致陆上风电度电成本下降的主要动力。2、技术进步、规模化效应是海上风电成本下降的主要驱动。大型风力发电机扩大了风电场的容量并减少风机数量,降低了安装成本和项目开发成本,运营和维护成本因风机技术的优化也有所降低。
三、毛利率有望得到恢复
供给侧改革带来钢材价格高峰已出现于2018年,在宏观经济承压情况下主要钢材价格已经在2019年出现趋势性回落,以钢材为主要原材料的钢结构件公司的毛利率有望得到修复。截至2019年8月除受铁矿石价格上涨影响废钢价格继续上涨8.54%以外,其他生铁、钢坯和钢板的价格分别下降了4.39%、3.52%和6.33%。目前铁矿石价格从7月份高点已经下跌,预计后续废钢的价格也会相对回落。预计在2019年二季报就可以看到部分钢结构公司因为原材料价格下降而导致毛利率有所修复。
四、细分行业龙头公司全面占优
市场空间看塔筒(352亿/年)最大,铸件(165亿/年)次之,法兰、机舱罩和转子房在20-30亿之间,定子最小;竞争格局看铸件、主轴和法兰行业集中度高,塔筒、机舱罩和转子房、定子段较为分散;经营质量上细分行业龙头公司全面占优。在风电抢装潮确定和原材料价格趋势性回落的前提下,我们看好未来三年风电结构件细分行业龙头公司,推荐关注风电铸件龙头日月股份,风电塔筒龙头天顺风能、天能重工,风电主轴龙头金雷股份,风电机舱罩龙头双一科技。
五、个股分析
日月股份(603218)
逆势扩产能
公司通过IPO募投产能、扩产项目、技改以及本次可转债募投项目,将于未来三年逐步形成年产40万吨风电铸件和22万吨精加工产能,成为全球最大风电铸件生产和精加工企业,全球风电铸件的市占率将达到24%。
双海战略逐步落地,公司盈利能力有望得到进一步提升。海外市场,公司与Vestas不断深入合作,订单量不断提升,与GE、西门子歌美飒等国际客户均实现了批量化供货;同时公司重点开发生产了大兆瓦机型和海上风机产品,研发费用同比增长37.1%,预计19年三季度10万吨海上风电项目将投产。未来三年高毛利的海外收入和海上风电收入占比将会继续提升。公司毛利率有望进一步改善。
天顺风能(002531)
技改扩建增加产能迎接抢装潮
2018年公司全年出货量38万吨,基本与17年持平。2019年太仓、包头、珠海已完成技改扩建,叠加外协产能,预计2019年出货量可达48-50万吨。钢价预期下跌,公司单吨毛利有望触底回升。2018年上半年钢价上升影响,塔筒单吨毛利降至1623元/吨,四季度钢价明显回落,2018全年单吨毛利回升至1737元/吨。预期19年钢价趋稳或略有下跌,风塔单吨毛利将重回上升通道。
风电场运营提升盈利能力,叶片有望贡献逐渐显现。预计公司2019年全年有效发电规模550MW以上;2018年常熟叶片厂一期已基本完成产能爬坡,贡献收入2.51亿元,同比增长52.64%。公司在叶片及模具方面已具备研发和生产能力,未来有望增加利润贡献。
(文章来源:投资快报) 郑重声明:发布此信息的目的在于传播更多信息,与本站立场无关。
第二:每个风杆都有一台发电机,发电机费用贵。
第三:设备安装的环境一般在野外和海面,施工费用高。
第四:运营成本高,因为风力机组全部都是小型机组5MW左右,发电成本高。
第五:受自然环境的影响等等
风力建起来。国家补贴后,才能活下来
以1.5MW风力发电机组为例。
1、塔筒的重量为130T到150T,价格多少可以算算,大约在150万左右。
2、控制系统是被国外厂家控制,大约为50万
3、轮毂和机架是铸件,大约20T
4、风力发电机组发的电不是标准的50Hz的电,需要变频。变频成本大约60万。
5、变桨机构的成本大约50万。
6、发电机功率为1500KW ,大约为60万。
7、如果需要齿轮箱,齿轮箱的价格大约是150万。
8、最主要的是桨叶,3个桨叶为180万元人民币。目前国内可以生产,但是设计基本上在国外。
9、变桨轴承和偏航轴承也要50万。
这还不包括一些零零散散的小部件。风力发电机组的报价一般是不包括塔筒。以上的价格还是国内产品,进口产品基本上贵30%。
在当今的世界能源结构中,人类所利用的能源主要是石油、天然气和煤炭等化石能源。1997年世界一次能源消费总量为121.56亿,随着经济的发展、人口的增加、社会生活的提高,预计未来世界能源消费量将以每年2.7%的速度增长,到2020年世界的能源消费总量将达到195亿tce。截至1996年末,世界石油、天然气和煤炭的可采储量为1.3万亿tce,尽管今后还可能有新的储量被发现,但按目前的世界能源探明储量和消费量计,这些能源资源仅可供全世界大约消费172年。根据目前国际上通行的能源预测,石油资源将在40年内枯竭,天然气资源将在60年内用光,煤炭资源也只能使用220年。
由此可见,在人类开发利用能源的历史长河中,以石油、天然气和煤炭等化石能源为主的时期,仅是一个不太长的阶段,它们终将走向枯竭,而被新能源所取代。人类必须未雨绸缪,及早寻求新的替代能源。研究和实践表明,新能源,资源丰富、分布广泛、可以再生、不污染环境,是国际社会公认的理想替代能源。根据国际权威单位的预测,到21世纪60年代,即2060年,全球新能源的比例,将会发展到占世界能源构成的50%以上,成为人类社会未来能源的基石,世界能源舞台的主角,目前大量燃用的化石能源的替代能源。
2、新能源清洁干净、污染物排放很少,是与人类赖以生存的地球生态环境相协调的清洁能源。
化石能源的大量开发和利用,是造成大气和其他类型环境污染与生态破坏的主要原因之一。如何在开发和使用能源的同时,保护好人类赖以生存的地球生态环境,已经成为一个全球性的重大问题。全球气候变化是当前国际社会普遍关注的重大全球环境问题,它主要是发达国家在其工业化过程中 燃烧大量化石燃料产生的CO2等温室气体的排放所造成的。因此,限制和减少化石燃料燃烧产生的CO2等温室气体的排放,已成为国际社会减缓全球气候变化的重要组成部分。
自从工业革命以来,约80%温室气体造成的附加气候强迫是由人类活动引起的,其中CO2的作用约占60%,而化石燃料的燃烧是能源活动中CO2的主要排放源。据估算,我国能源活动引起的CO2排放量约5.8亿吨碳,约占全球化石燃料CO2排放量的9.76%。
观测资料表明,在过去100年中,全球平均气温上升了0.3—0.6摄氏度,全球海平面平均上升了10—25cm。如对温室气体不采取减排措施,在未来几十年内,全球平均气温每10年将可升高0.2摄氏度,到2100年球平均气温将升高1—3.5摄氏度。近年来,由于城市汽车大幅度增加,燃用汽油产生的汽车尾气已成为城市环境的重要污染源。
而新能源污染物排放很少。目前各种发电方式的碳排放率, g碳(/kwh) :常规燃煤电为304,煤气化联合循环发电为270,燃气联合循环发电为118,带烧天然气备用机组的太阳能热发电为47,地热发电为2.5,光伏发电和风力发电则为0。由此可见,新能源是保护生态环境的清洁能源,采用新能源以逐渐减少和替代化石能源的使用,是保护生态环境、走经济社会可持续发展之路的重大措施。
3、新能源是世界不发达国家的20多亿无电人口和特殊用途解决供电问题的现实能源。
迄今,世界上不发达国家还有20多亿人口尚未用上电,其中我国约占6000多万人。由于无电,这些人大多仍然过着贫困落后、日出而作、日落而息、远离现代文明的生活。这些地方,缺乏常规能源资源,但自然能源资源丰富,人口稀少,并且用电负荷不大,因而发展新能源是解决其供电问题的重要途径。
另外,有些领域,如海上航标、高山气象站、地震测报台、森林火警监视站、光缆通信中继站、微波通信中继站、边防哨所、输油输气管道阴极保护站等在无常规电源等特殊条件下,其供电电源由新能源和可再生能源提供,不消耗燃料,无人值守,最为先进、安全、可靠和经济。
一、你的命题中包括两个主题:1.可再生能源建设成本过高;2.风电相较于其他可再生能源具备更加接近商业化的优势。
二、针对所包含的两个主题,思路分析如下:
(一)可再生能源中确实有很多成本较高,较广泛的如光伏发电,目前西部发电成本为2.0元/WP以上,风电略低于光伏发电,这是事实;但同时也有部分可再生能源发电成本低于常规能源,如沼气能等;发电成本的因素很多,包括国内技术瓶颈导致的进口设备价格较高、建设地点一般地处偏远交通人力费用等;国内既然成本较高,就务必需要国家相关政策扶持(例如电价补贴),以此促进可再生能源的大力建设。目前风电电价在0.49-0.69元/W(各地区会有不同),对于太阳能电价,去年上半年国家发改委出台基本定在1.15元/WP(详细发布等记不太清了,你可以上网查一下)。
报告中一定要全面覆盖,为增加报告的完整及时效性,建议可以插入更新的概念(例如2010年在青海省海西地区发现的可燃冰,这也是一种新能源,储藏量可保证中国使用90年!当然它和可再生能源概念并不同,但是国家非常重视,同时单说可燃冰的开采成本,要远远高于光伏发电的发电成本),可以酌情阐述。
至于关键词,个人建议:发电成本、技术制约、政策扶持等。
(二)风电相较于其他可再生能源具备更加接近商业化的优势。这个命题必须结合(一)所说的国家政策扶持这点,之所以风电有优势,原因包括:1.国内沿海(如烟台的风电厂,电价0.69元/W)地区相较于西部地区本身经济、信息发展较发达,且早已具备风电发展的相关配套产业,而我国风能资源较好的地带主要地处经济相对较落后的西南、西北两块;2.前国内风电大部分仍是示范项目,并非商业化,只是接近商业化;
阐述过程中最好结合市场化(即商业化)这一主题,从其他产品商业化模式中求同取异,最好有自己的观点,同时需要提出制约风电市场化、商业化的关键问题以及解决办法,观点有偏颇没事,但一定要符合实际和逻辑;
至于关键词,个人建议:风力发电、发展障碍、大规模应用等。
另:很高兴可以与你交流分享关于可再生能源的问题,面对能源逐渐枯竭、环境日益恶化,积极参与到可再生能源建设队伍中,这不仅是利于社会的行为,也是个人实现社会责任感这一重大生活意义的高端表现,所以:努力,加油,成功!
光伏发电设备占用空间较小,在城市里也适用。 而风力发电设备需要有较大风力的地方才能有用武之地,这些地方必定要远离大城市。
扩展资料:
光伏发电的优缺点:
1、光伏发电的优点
与常用的火力发电系统相比,光伏发电的优点主要体现在:
①无枯竭危险;
②安全可靠,无噪声,无污染排放外,绝对干净(无公害);
③不受资源分布地域的限制,可利用建筑屋面的优势;例如,无电地区,以及地形复杂地区;
④无需消耗燃料和架设输电线路即可就地发电供电;
⑤能源质量高;
⑥使用者从感情上容易接受;
⑦建设周期短,获取能源花费的时间短。
2、光伏发电的缺点
①照射的能量分布密度小,即要占用巨大面积;
②获得的能源同四季、昼夜及阴晴等气象条件有关。
③目前相对于火力发电,发电成本高。
④光伏板制造过程中不环保。
从去年开始,全球能源行业已经发生大逆转。 全球最大的可再生能源供应商美国NextEra能源公司市值飙升至1500亿美元,一度超越埃克森美孚公司和雪佛龙,成为全球价值最高的能源企业。 到了年底,随着油价有所回升,埃克森美孚才勉强挽回了些许尊严。
在与气候变化的对抗中,2020年是有史以来最关键的一年。 这一年,世界开始行动起来,努力修复几个世纪以来对气候的破坏。 全球最大的几个经济体都做出了净零排放、碳中和的承诺。
这一年,传统能源巨头在对新能源的态度上发生了翻天覆地的转变。
01
传统能源巨头蜂拥进新能源领域
2020年,全球化石能源巨头经历了有史以来最为痛苦的一年。
油价暴跌,巨额亏损。以往,他们总能在低谷后再次攫取复苏后的暴利。与往年不同,这次不再是简单的周期性经营亏损。他们 必须面对一个新的残酷现实—— 承诺大幅甚至全部减 少温室气体排放。
在这种要求下,未来石油需求和煤电需求都将大幅下降。 大力发展可再生能源,成为传统化石能源巨头转型最为清晰的发展路径。
我们看到,过去一年,全球化石能源巨头不约而同的疯狂涌入新能源领域,并斥以数以万亿的资金。这几乎颠覆了想象。
美国能源巨头杜克能源欲斥资4000亿砸向风电、光伏等领域。 杜克能源去年宣布,未来5年计划斥资560亿美元(折合3920亿元人民币)的资本投资计划, 希望到2025年将可再生能源发电指标翻一番,设定的目标是自行投资或购买16000MW可再生能源装机量 。 并计划到 2050年,新增40000MW太阳能和风电装机量,这将占到杜克能源公司2050年夏季总装机 量的40%。
西班牙石油巨头雷普索尔计划将可再生能源产能扩大五倍。 去年底,雷普索尔宣布,在未来十年内将可再生能源产能扩大五倍,并从石油业务中筹集资金,将可再生能源发电能力从目前的2.95吉瓦扩大到15吉瓦,包括风能和太阳能。
法国石油巨头道达尔计划未来十年内,每年在可再生能源上投入30亿美元。 道达尔未来10年能源产量将增长三分之一,其中大约一半将来自液化天然气,另一半来自电力——主要来自太阳能和风能的增长。
英国石油巨头BP将可再生能源产能从2019年的2.5GW拉升至50GW。 BP打算在2030年底前,将在低碳能源的投资总额拉升10倍达到50亿美元,并将可再生能源产能从2019年的2.5吉瓦拉高至50吉瓦。
葡萄牙石油巨头GalpEnergía计划到2030年,将其可再生能源的规模扩大到10吉瓦 ,计划将集团10%至15%的投资用于可再生能源发电。
欧洲最大电力公司之一Enel拟投资700亿欧元扩大太阳能、风能业务。 去年底,Enel宣布2021-2030年的战略重点是加速能源转型。其中,约700亿欧元用于扩大其风能和太阳能业务,可再生能源发电规模将从目前的45GW增至120GW。
西班牙最大电力公司Endesa拟在未来三年将太阳能等发电总容量增加50%。 Endesa表示将在2021-2023年期间筹措79亿欧元投资用于脱碳,新可再生能源产能等。其中,可再生能源将获得33亿欧元,用于投资约3000MW的太阳能和900MW的风电。
西班牙电力巨头Iberdrola计划5年投入760亿欧元,将可再生能源装机增至60GW。 去年底Iberdrola公 布了调整后的新5年投资计划,将在2021-2025年间,投资750亿欧元大力发展可再生能源,到2025年将可再生能源装机从去年的32吉瓦增至60吉瓦。
以上只是我们列举的部分化石能源巨头在可再生能源领域的投资计划,更多的案例不胜枚举。
颇具前景的可再生能源,吸引的不只是能源巨头。 越来越多非能源企业也开始蜂拥而入。
比如澳大利亚铁矿石巨头FMG,去年底就宣布2022年或2023年开始生产风能、太阳能、氢气和氨水等可再生能源,最终目标是达到236吉瓦的清洁能源产能。又比如 日本电信巨头NTT宣布,到 2030年将可再生能源发电能力从现在的300兆瓦提高 到7.5吉瓦。
02
技术创新的力量
从目前公开资料统计,未来5年时间,全球至少有万亿美元以上资金将进入可再生能源领域。
相对于未来更为庞大的体量,目前投入的资金还只是冰山一角。国际可再生能源署预计到2050年,为了实现碳中和,全球需要在清洁能源领域累计投资130万亿美元。
这些资金大部分将投向风电和光伏相关 领域 。
十年前,这简直无法想象。
越来越多的企业将宝押向新能源,除了情怀,更多的因素是源于以风电、光伏为首的新能源竞争力越来越强。
在技术进步和规模效应推动下,风电和光伏已经成为全球最具竞争力的能源。
以风电为例,十几年前,陆上风电单位千瓦造价高达12000元,如今已经下降到7000多元。国内上网电价已经下降至0.29元/千瓦时(I类区域),部分地区成本已经下探至0.15元/千瓦时。
十几年来,风电技术不断推陈出新,目前已经进化到第四代风机——人工智能风机,这种风机为全球新能源加速开发创造了契机。
有兴趣的同学,可以观看B站上一条爆红的 讲述风机进化史的科普视频,为了方便大家观看,我们将视频上传至此。
远景能源工程师告诉我们,他们推出的伽利略超感知风机就是人工智能风机。 在前三代增加偏航、变桨、独立变桨基础 上,工程师们在风机中创造性融入了人工智能元素。
这种风机能够利用传感数据,结合人工智能模型,实时还原所在机位的风信息,并对比实际运行情况与设计的差异,进行不断的精细调整。 这样一来,风机不再是按照预设好的场景程式化的变桨,而是依据实际的气流特性求真务实的变桨。 就和伽利略一样,能够用实例来验证固有理论。
当成千上万台伽利略超感知风机遍布群山、平原、海洋,大量的实例验证信息将在云端刻画出风机该有的样子,然后传回每一台风机,进而使风机不断进化,将潜力发挥到极致,再次提升发电能力。 而且,这种进化不仅可以体现在某一台风机上,也体现在整个风电场上。 依托边缘计算技术,风电场集群的人工智能,可以回顾和预测数十台风机已经和将要经历的风况,协调各个风机的运行,实现风场整体发电能力的最大化。
除此之外,伽利略超感知风机还有很多进步,比如可以借助先进的趋势感知能力,在线规划风机的寿命策略,找到最优的运行模式,从而降低运维成本。可以通过大量结构受力样本,知道风机哪一部位需要进一步加强,哪一个部位可以优化减少材料,再运用到新风机的制造上,从而降低建设成本和度电成本。
风电如此,光伏创新更是层出不穷。
光伏转化率已经从十几年前的14%左右,上升到了目前的23%以上。晶硅组件价格从十几年前接近40元/瓦下降到目前1.4元/瓦左右。
技术创新和成本下降,让光伏成为近十年内降本速度最快的能源之一。 根据 国际可再生能源署 数据,全球光伏LCOE (平准化发电成本)由2010 年的0.378$/kWh快速下降至2020年的0.048$/kWh,降幅高达87%。
今年开始,不仅是风电, 国内大部分地区光伏项目都可以实现平价上网。在海外一些国家,由于非技术成本占比较低,一些光伏项目度电成本已经低至0.1元人民币以下。
虽然没有人能准确预测未来,但是新能源未来却是确定的。
在风电和光伏等可再生能源的驱动下,一个全新的时代序幕已经徐徐拉开。
/ END /
2010-2018年,2018年全球光伏度电成本(LCOE,加权平均)为0.085美元/度(按汇率为7折算,折合人民币0.595元/度),同比2010年下降了77%。
90%的光伏发电规模的成本区间为0.058-0.219美元/度,逐步接近化石燃料发电成本。