干热岩是什么能源
干热岩是一种新兴的地热能源。
干热岩也称增强型地热系统,或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。
干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。中国首次发现大规模可利用干热岩资源于青海省共和盆地,青藏高原南部约占我国大陆地区干热岩总资源量的1/5。
干热岩的用途
1、发电
目前,人们对干热岩的开发利用,主要是发电。利用干热岩发电技术可大幅降低温室效应和酸雨对环境的影响,且不受季节、气候制约。而且将来利用干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一。
2、供暖
干热岩因其得天独厚的较高温度,一旦成功开采出来,是冬季供暖的良好热源。但因其造价较高,对于面积较小的建筑供暖,高昂的成本是一般人难以承受的。因此,用干热岩技术来进行集中供暖是比较合适的选择。
以上内容参考:百度百科—干热岩
干热岩是地热能源,它一般在地下数千米的地方,可以用来发电。
干热岩发电的技术可以有效降低温室效应、酸雨对环境造成的影响,而且它的含量较大。除了可以用干热岩发电之外,风力、水里、火力都可发电。干热岩是一种新兴的地热能源,它一般都在地下数千米的地方,且温度都高于两百摄氏度,我国第一次发现大规模的可以利用的干热岩在青海。
干热岩可用于发电,这项技术的推广能有效的降低温室效应、酸雨对环境造成的影响,而且干热岩的含量较大,2019年时在日照、威海发现的干热岩富存区的资源量就等于数百亿吨的标准煤。目前除了可以用干热岩发电之外,我们还可以用风力、水里、火力、核能等自然资源进行发电。
干热岩
干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大, 绝大部分为中生代以来的中酸性侵入岩, 但也可以是中新生代的变质岩, 甚至是厚度巨大的块状沉积岩。
干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩体内部的温度。青藏高原在隆升过程中形成了一系列地热资源。从2014年时了解的干热岩地热资源区域分布看,青藏高原南部占中国大陆地区干热岩总资源量的20.5%,资源量巨大且温度最高。
青海地勘人员在共和盆地成功钻获温度高达153℃的干热岩。这是我国首次发现大规模可利用干热岩资源。该资源属清洁能源,可用于地热发电。
无污染能源主要是太阳辐射能、风力、水力、地热、氢燃料、生物能以及海洋波浪、海流、海水温差、潮汐等能源。这些能源都蕴藏着巨大的能量,并逐步被开发利用。太阳每年辐射到地球上的总能量达6.0×1017千瓦小时。太阳能可以转换成热能、电能和化学能。马里共和国于1979年建成迪雷太阳能热电站,装机容量75千瓦。美国、日本、苏联、希腊等国也建有不同类型的太阳能电站。太阳能转化为热能使用较常见,利比亚约有三分之一居民用太阳灶,中国许多地方已采用太阳能供热。
在风力和水力方面,中国在2~3千年前就开始用风力和水力进行粮食加工,现在主要是把它们转换成电力使用。如1979年在浙江省泗礁岛上安装了容量18千瓦的风力发电装置;内蒙古草原上已先后装置了200多台100~250瓦的小型风力发电机组。苏联在1931年就建成了装机容量 100千瓦的风力发电装置。80年代初世界能源结构中,水力占 6%。中国水力资源蕴藏量居世界第一位。据1979年统计,中国已建成大型和小型水电站九万多座,装机容量634万千瓦。
地热利用方面,自意大利于1904年首先利用地热发电以来,中国、美国、菲律宾、苏联、日本、新西兰、墨西哥等国都建造了地热电站。1980年,各国地热电站总功率已达 380万千瓦,美国地热电站总装机容量达86万千瓦,单机容量达11万千瓦。中国至1979年先后建成7 座地热电站,西藏羊八井地热电站单机容量约7000千瓦。干热岩能源是地热能源的一部分,目前正在研究它的利用问题。有的地下热水和蒸汽含有硫化氢等有害物质,但和矿物燃料相比,有害物质较少。
在海洋能源利用方面,海洋蕴藏着巨大的能量,据估计,中国沿海年潮汐能有1.1亿千瓦,可利用的有3100~3500万千瓦。截至1979年底,中国建成 4座较大的潮汐电站,其中浙江省江厦电站装机容量3000千瓦。法国1966年建成一座功率为24万千瓦的潮汐电站。波浪发电装置,目前世界各国已有400多种。海水温差发电装置的容量已达到10万千瓦。
此外,氢是含能量很高的无污染燃料,是由其他能源制造的二次能源。它燃烧时和氧化合成水,不产生污染物。生物能是绿色植物通过光合作用固定的太阳能,可转化为气体或液体燃料,如用甘蔗、木薯、甜高粱生产酒精。
海底天然气水合物作为 21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。本世纪六十年代开始的深海钻探计划 (DSDP) 和随后的大洋钻探计划 (ODP) 在世界各大洋与海域有计划地进行了大量的深海钻探和海洋地质地球物理勘查,在多处海底直接或间接地发现了天然气水合物。到目前为止,世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
无污染能源中,除水力的利用技术较为成熟外,其他几种能源在开发和利用上还存在着技术上的困难。矿物燃料贮量有限,而且在燃烧时排出大量污染物质,所以,无污染和少污染能源在能源总结构中将占越来越重要的地位。
什么是可再生能源?
自然界存在的、可以循环再生的能源。例如太阳能和由太阳能转换而成的水能、风能、海洋波浪能、生物质能等称作可再生能源。
可再生能源是能够转换成人们所需要的电能、热能、机械能等形式的能的资源。可再生能源能源按其来源与生成,分成五大类: 直接或间接来自太阳的能量;以热能形式储藏在地球内部的地热能;各种生物质能;风能;月亮、太阳等天体与地球的相互吸引所引起的潮汐能等。
可再生能源有哪些?
下面列举几种新能源和可再生能源的特点:
太阳能是以电磁辐射形式从太阳向外传播的一种能量。
风能是流动空气具有的一种动能。在地球表面一定的范围(全球,全国或某一地区)内,经过长期测量调查与统计得出的平均风能密度的概况。它是该范围内风能利用的依据。
地热能是一种由地球内部蕴藏的热,通常指地下热水或地下蒸汽以及用人工方法从干热岩体中获得的热水与蒸汽所携带的能量。
生物质能是生物质通过生物转化法、热分解法和气化法转化而成的气态、液态和固态燃料所具有的能量。
潮汐能是一种从海水面昼夜间上涨和降落中获得的能量;波浪能又称海浪能,海水在波动中,水质点以一定的速度运动,故具有动能。水质点的垂直位置相对于它的轨迹中心不断地发生变化,故具有势能。
我们居住的地球,很像一个大热水瓶,外凉内热,而且越往里面温度越高。因此,人们把来自地球内部的热能,叫地热能。地热能地球通过火山爆发和温泉等途径,将它内部的热能源源不断地输送到地面。人们所热衷的温泉,就是人类很早开始利用的一种地热能。然而,目前对地热能大规模的开发利用还处于初始阶段,所以说地热还属于一种新能源。
在距地面25~50千米的地球深处,温度为200℃~1000℃;若深度达到距地面6370千米即地心深处时,温度可高达4500℃。
据估算,如果按照当今世界动力消耗的速度,完全只消耗地下热能,那么即使使用4100万年后,地球的温度也只降低1℃。由此可见,在地球内部蕴藏着多么丰富的热能。地球温度分布是很规律的,通常,在地壳最上部的十几千米范围内,地层的深度每增加30米,地层的温度便升高约1℃;在地下15~25千米之间,深度每增加100米,温度上升1.5℃;25千米以下的区域,深度每增加100米,温度只上升0.8℃;以后再深入到一定深度,温度就保持不变了。
地球深层为什么储存着如此多的热能呢?它们是从哪里来的?对于这个问题,目前还处于探索阶段。不过,大多数学者认为,这是由于地球内部放射性物质自然发生蜕变的结果。在核反应的过程中,放出了大量的热能,再加上处于封闭、隔断的地层中,天长日久,经过逐渐的积聚,就形成了现在的地热能。值得指出的是,地热资源是一种可再生的能源,只要不超过地热资源的开发强度,它是能够补充而再生的。
通常,人们将地热资源分为4类:
(一)水热资源。这是储存在地下蓄水层的大量地热资源,包括地热蒸汽和地热水。地热蒸汽容易开发利用,但储量很少,仅占已探明的地热资源总量的0.5%。而地热水的储量较大,约占已探明的地热资源的10%,其温度范围从接近室温到高达390℃。
(二)地压资源。这是处于地层深处沉积岩中的含有甲烷的高盐分热水。由于上部的岩石覆盖层把热能封闭起来,使热水的压力超过水的静压力,温度约为150℃~260℃之间,其储量约是已探明的地热资源总量的20%。
(三)干热岩。这是地层深处温度为150℃~650℃左右的热岩层,它所储存的热能约为已探明的地热资源总量的30%。
(四)熔岩。这是埋藏部位最深的一种完全熔化的热熔岩,其温度高达650℃~1200℃。熔岩储藏的热能比其他几种都多,约占已探明地热资源总量的40%。
到目前为止,对于地热资源的利用主要是水热资源的开发。近年来,一些国家开始进行干热岩的开发研究和试验,开凿人造热泉就是干热岩的具体应用之一。而地压资源和熔岩资源的利用尚处于探索阶段。
我国是世界上开发利用地热资源较早的国家,发展也很快。北京就是当今世界上6个开发利用地热较好的首都之一(其他5个是法国的巴黎、匈牙利的布达佩斯、保加利亚的索菲亚、冰岛的雷克亚未克和埃塞俄比亚的亚的斯亚贝巴)。
北京地热水温大都在25℃~70℃。由于地热水中含有氟、氢、镉、可溶性二氧化硅等特殊矿物成分,经过加工可制成饮用的矿泉水。有些地区的地热水中还含有硫化氢等,因而很适于浴疗和理疗。
目前,北京的地热资源已得到广泛利用。例如,用于采暖的面积已达32万多平方米,可节省建造锅炉房投资300余万元,年节约煤1.8万吨,而且每年还可减少烧煤取暖带来的粉尘污染7.6吨。现有地热泉洗浴50多处,日洗浴60000多人次;利用地热水养的非洲鲫鱼,生长快,肉味鲜美。北京一些印染厂还利用地热水进行印染和退浆,每年可节约煤几千吨。
除北京外,我国许多地区也拥有地热资源,仅温度在100℃以下的天然出露的地热泉就有3500多处。在西藏、云南和台湾等地,还有很多温度超过150℃以上的高温地热田。台湾省屏东县的一处热泉,温度曾达到140℃;在西藏的羊八井建有我国最大的地热电站,这个电站的地热井口温度平均为140℃,发电装机容量为10000千瓦,今后在这里还将建设更大的地热电站。
从温泉分布来看,我国地热资源主要集中在东南沿海诸省和西藏、云南、四川西部等地,这里形成了两个温泉数量多、温度高、埋藏浅的地热带,分别称为滨太平洋地热带和藏滇地热带。前一个地热带共有温泉600多处,约占全国热水泉总数的1/3,其中温泉水超过90℃的有几十处,有的还超过100℃;后一个地热带是我国大陆上水热活动最活跃的一个地区,有大量的喷泉和汽泉。这一地带共有温泉700多处,其中高于当地沸点的水热活动区有近百处,是一个高温水汽分布带。此外,在我国东部的一些盆地内,也蕴藏着较丰富的地下热水,这一地区的范围很广,北起松辽平原、华北平原,南到江汉平原、北部湾海域。例如,天津市区及郊区附近有总面积近700平方千米的地热带,其中深度超过500米、温度在30℃以上的热水井达380多口,最高水温为94℃,年总开采量近5000万吨,可利用的热量相当于30多万吨标准煤。
地热在世界各地的分布也是很广泛的。美国阿拉斯加的“万烟谷”是世界上闻名的地热集中地,在24平方千米的范围内,有数万个天然蒸汽和热水的喷孔,喷出的热水和蒸汽最低温度为97℃,高温蒸汽达645℃,每秒喷出2300万公升的热水和蒸汽,每年从地球内部带往地面的热能相当于600万吨标准煤。新西兰有近70个地热田和1000多个温泉。温泉的类型很多,有温度可达200℃~300℃的高温热泉;有时断时续的间歇喷泉;还有沸腾翻腾的泥浆地。横跨欧亚大陆的地中海—喜马拉雅地热带,从地中海北岸的意大利、匈牙利经过土耳其、俄罗斯的高加索、伊朗、巴基斯坦和印度的北部、中国的西藏、缅甸、马来西亚,最后在印度尼西亚与环太平洋地热带相接。
有人做过计算,如果把全世界的火山爆发和地震释放的能量,以及热岩层所储存的能量除外,仅地下热水和地热蒸汽储存的热能总量,就为地球上全部煤储藏量的1.7亿倍。在地下3千米以内目前可供开采的地热,相当于29000亿吨煤燃烧时释放的全部热量。可以看出。地热能的开发与利用有着广阔的前景。
对于地热能的开发与利用,如果从1904年意大利建成世界第一座地热发电站算起,已有近100年的历史了。但是,只有近二三十年来地热能的开发利用才逐渐引起世界各国的普遍注意和重视。
据统计,目前世界上已有120多个国家和地区发现或打出地热泉与地热井7500多处,使地热能的利用得到不断地扩大。地热能的利用,当前主要是在采暖、发电、育种、温室栽培、洗浴等方面。美国一所大学有3口深600米的地热水井,水温为89℃,可为总面积达46000多平方米的校舍供暖,每年节约暖气费25万美元。冰岛虽然处在寒冷地带,但有着丰富的地热资源,目前全国人口的70%以上已采用地热供暖。
利用地热能发电,具有许多独特的优点:建造电站的投资少,通常低于水电站;发电成本比水电、火电和核电站都低;发电设备的利用时数较长;地热能干净,不污染环境;发电用过的蒸汽和热水,还可以用于取暖或其他方面。
现在,美国、日本、俄罗斯、意大利、冰岛等许多国家都建成了不同规模的热电站,总计约有150座,装机总容量达320万千瓦。
地热发电地热发电的原理与一般火力发电相似,即利用地热能产生蒸汽,推动汽轮发电机组发出电来。目前,全世界约有3/4的地热电站是利用高温水蒸气为能源来发电的。这种电站是将地热蒸汽引出地面后,先进行净化,除掉所含的各种杂质,然后就可以推动汽轮发电机发电。以高温蒸汽为能源的地热电站,大多采用汽水分离的方法发电;对于以地下热水为能源的电站,一般通过一定的途径用地下热水为热源产生蒸汽,然后用蒸汽来推动汽轮发电机组发电。
另外,地热能在工业上可用于加热、干燥、制冷与冷藏、脱水加工、淡化海水和提取化学元素等;在医疗卫生方面,温泉水可以医治皮肤和关节等的疾病,许多国家都有供沐浴医疗用的温泉。
由于天然热泉较少,而且不是各地都有,因而在一些没有天然热泉的地区,人们就利用广泛分布的干热岩型地热能人工造出地下热泉来。人造热泉是在干热岩型的热岩层上开凿而成的,世界上最早的人造热泉是在美国新墨西哥州北部开凿的,井深达3000米,热岩层的温度为200℃。
美国已建造了人造热泉热电厂,发电量为5万千瓦。另外,还在洛斯阿拉莫斯国立实验所钻了2眼深4389米的地热井,先把水泵入井内,12小时后再抽上来,这时水温已高达375℃。法国先后开凿了6眼人造热泉,其中每眼井深6000米,每小时可获得温度达200℃热水100吨。
目前,美国的地热发电站的装机容量已达930万千瓦,到2020年将增加到3180万千瓦。
现在,随着科学技术的发展,人们开始在岩浆体导热源周围建立人工热能存积层,以便开发利用热源蒸汽的高温岩体来发电。人们预计,到21世纪末,全世界地热发电的总能力可达1亿千瓦。
地热能(geothermal energy)是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是导致火山爆发及地震的能量。火山、喷泉(geyser)、温泉(hot spring)和沸泥塘(boiling mud pots)都有力说明壳层及其下部存在着较大的热能储藏。这种热量渗出地表,于是就有了地热。地热能是一种清洁、是可再生能源,其开发前景十分广阔。著名地质学家李四光(1973)曾指出:“地球是一个大热库,地下热能的开发与利用,是件大事情,就像人类发现煤炭、石油可以燃烧一样,这是人类历史上开辟的一个新能源,也是地质工作的一个新领域。”
地热资源(geothermal resource),指能够经济地为人类所利用的地球内部的热资源,它来源于地球的熔融岩浆和放射性元素衰变时发出的热量。地热资源是一种十分宝贵的综合性矿产资源,其功能多,用途广,不仅是一种洁净的能源资源,可供发电、采暖等利用,而且是一种可供提取溴、碘、硼砂、钾盐、铵盐等工业原料的热卤水资源和天然肥水资源,同时还是宝贵的医疗热矿水和饮用矿泉水资源以及生活供水水源。
一、地热能来源和分布
(一)地热能的来源
地热能主要由地球内部的放射性物质衰变产生。地球中央是熔融的地核,其温度可达4000℃(7200℉),周围被半液态物质构成的地幔所包围(图4-52)。地幔上面覆盖的是地壳,平均约17km厚。地壳的温度随着深度增加而增加,深度每增加1km,温度约上升30℃。地壳底部(地幔上部)的温度较稳定,约为1000℃,地核内部温度增高迟缓。如果只考虑平均地温梯度,则可被充分利用的热能都储藏于地壳深部以下。然而,一些地带内的地幔熔岩(岩浆)沿着断层或裂缝运移到地表附近,在地表2~3km处形成“热点”,使得局部区域的地表附近富集大量的地热资源,如地球构造板块衔接处的地震、火山爆发地带。地球有六大构造板块:太平洋板块、欧亚板块、印度洋板块、非洲板块、美洲板块和南极洲板块。这些板块沿着扩张中心(即洋脊)向两边分离、生长,并向外移动,同时,板块之间沿着水平方向彼此相对移动、相互滑过或错动(图4-53)。在这些板块相互碰撞挤压的地方,巨大的力量可产生地震或隆升成山脉。在板块衔接处,热能通过地下岩浆迅速从地球内部向地表火山输送。因此,板块边缘成为高温地热田的主要分布地带。
图4-52 地球的层次结构
图4-53 地球六大板块及一些小的板块处相对运动状态(箭头指示板块运动方向)
(据意大利比萨地质及地球研究所,2004)
1—地热田分布;2—横切洋中脊的转换断层;3—俯冲带
(二)地热的类型及分布
世界范围内地热资源的分布具有明显的规律性。高温地热资源集中分布在相对狭窄的地壳活动地带,即全球板块的边界;而低温地热资源则广泛分布于板块内部,但在板块内部一些存在热点、热柱的地方也可能分布高温地热资源。
地热带划分为板缘(或板间)地热带和板内地热带两大类。板缘地热带是指沿板块边界展布的相对比较狭窄但延伸可达数千千米的高温地热带。板缘地热带因具有全球规模,而且首尾相接,故常常又被称为环球地热带,它的特点是:
(1)具明显的带状分布;
(2)地理位置上与环球地震活动带和活火山带重叠,或者位于年轻造山带的后缘;
(3)带内火山多喷出酸性或中酸性岩浆,这种岩浆来源较浅,且与壳内局部重熔活动有关,因而构成浅部水热活动的直接热源;
(4)水热活动的显示强度很高,水热爆炸、间歇喷泉以及绝大多数沸泉都出现在板缘地热活动带;
(5)热泉常常排出氯化钠型水,并常含有某些岩浆挥发组分;
(6)常出现经济价值很高的大型高温地热田。
板内地热带一般是指广泛分布于板块内部地带隆起区(褶皱山系、山间盆地)及地壳沉降区(主要是大型中新生代沉积盆地)规模相对较小的低温带。板内地热带属非火山型、无火山或岩浆热源。在板内无论是隆起区或沉降区,在构造破碎带或一些自流盆地内,都储存有丰富的中、低温地热能资源(150℃以下),地热田温度一般都低于当地沸点,多介于60~90℃之间。
二、地热系统
(一)地热系统的概念
地热系统是指高于或略高于正常地温梯度的区域,尤其是在板块边缘,地温梯度明显高于平均地温梯度。第一种地热系统,温度较低,经济深度内不超过100℃;第二种地热系统,温度跨度大,可超过400℃。
什么是地热系统?在这个系统中会发生什么?它可以被描述为“地壳中的流体,以整个地壳为散热器,利用地壳自身的蓄热和热量向上辐射的规律由下至上进行传导热量”。地热系统是由热源、热储和流体三个元素构成的,它们是传递热量的载体。热源是一个高温(600℃)的岩浆侵入体到达地表5~10km处,或者说到达低温系统。热储是指能存储循环流体中热量的热渗透性岩层。热储上覆非渗透性盖层,通过大气降水补给连接到表层的补给区,通过温泉或钻孔排泄流体。地热流体来源于大气降水,由于温度和压力的不同而呈现液态相或气态相。这种水常常伴有CO2、H2S等化学气体。图4-54简化地描述了理想的地热系统。
图4-54 理想的地热系统示意图(据意大利比萨地质及地球研究所,2004)
(二)地热系统的机制
地热系统的机制为热体的对流,图4-55描述了中温地热系统的机制。对流运动是由重力场中的流体加热和加热后的热膨胀产生的;流体对流中的热量是地热系统的驱动力。热的低密度流体上升,被来自系统边界的冷的高密度流体取代。在正常情况下,对流往往会增加系统上部的温度,降低下部的温度。这里所描述的现象似乎很简单,但是一个真实地热系统的模型重建是很难实现的。它需要许多学科的知识和丰富的经验,特别是高温系统的重建模型。地热系统发生在自然界中,由于地质、物理和化学性质的不同而产生不同类型的地热系统。
图4-55 地热系统模型(据意大利比萨地质及地球研究所,2004)
1—纯净水沸点的参考曲线;2—从补给点A到排泄点E的典型循环路线图
(三)人工地热系统
在所有要素中,热源是唯一的自然资源。其他两个要素可以人为提供有利的条件。例如,热储中提取的地热流体,被用于推动地热发电站涡轮机运行后,通过注水井重新回灌到热储中。这样的自然热储由人工回灌补给。多年来,回灌已经成为减少地热开发对环境影响的手段,应用于世界各地。
通过注入井进行人工回灌,还可以帮助补充和保持旧的或枯竭的地热田。例如,在美国加利福尼亚州的间歇泉,是世界上最大的地热田之一,20世纪80年代末由于流体减少导致产能急剧下降。第一个项目是1997年推出的东南间歇泉污水回收利用项目,将经过处理的废水输入到地下48km深的地热田中。该项目已使之前因缺少流体而废弃的发电厂重新被使用。第二个项目是圣罗莎的间歇泉补给项目,每天用热泵将4150×104L的三级废水通过一个66km的管道从圣罗莎和其他城市的污水处理厂运输到间歇泉,通过专门的钻孔注入热储中。干热岩(HDR)项目,1970年首次在美国新墨西哥州洛斯阿拉莫斯国家实验室进行。实验的流体和热储都是人工的。从钻井中抽出的高压水注入深部热的坚硬岩石中,引起沟通裂隙产生。流体渗入人工裂隙中并吸取围岩中的热量,这称作天然热储。然后,热储被第二个钻孔钻入,被用来提取热水。因此,该系统由以下部分组成:(1)水力压裂井;(2)人工热储层;(3)注水井—生产井系统。整个系统与地面工厂形成一个封闭的系统(Garnish, 1987)(图4-56)。
图4-56 干热岩的商业模式示意图(据辛力,2014)
三、地热资源的勘察
(一)地热资源勘查的内容
地热资源蕴藏于地下深处,地热资源的勘查内容主要包括以下五个方面:
(1)查明热储层岩性、空间分布、孔隙度、渗透性及其与常温含水岩层的水力联系。
(2)查明热储盖层的岩性、厚度变化情况以及区域地热增温率和地温场的平面分布特征。
(3)查明地热流体的温度、状态、物理性质及化学组分,并对其利用的可行性做出评价。
(4)查明地热流体动力场特征、补径排条件。
(5)在查明地热地质背景的前提下,确定温泉地热资源的形成条件和地热资源可开发利用的区域及合理开发利用深度;计算评价地热资源或储量,提出地热资源可持续开发利用的建议。
(二)地热资源勘查技术
从地热勘探技术来看,目前主要有:
(1)以地表浅孔测温、电法、重力勘探和微地震观测为代表的地球物理勘探法;(2)测定土壤中氡、汞、砷、硼、氦和二氧化碳含量异常的地球化学勘探法;(3)以断裂构造遥感解译和地热异常信息提取为主的遥感方法。
目前,地热资源勘探主要通过对地热生成的大地构造、水文地质等地质背景的研究,采用综合地球物理、地球化学和遥感等勘探方法圈定靶区,开展地热勘探工作。
1.地球物理勘探
地球物理勘探的作用是圈定地热田和确定开采地热流体的钻孔位置。目前,几乎所有的地球物理方法都被应用于地热勘探,着重点从探查含地热流体的地质和构造环境转移到探查流体本身。
电法勘探是一种较为简捷的方法,其目的是探测与地下水有成因关系的断裂构造的位置分布,圈定地下热水的分布范围,确定盖层厚度、热源位置及基岩岩性。电法勘探包括频率域探测法(如MT和CSAMT法等)、时间域法(如LOTEM法、TEM法及时间域IP法等)、直流电测深法和激发极化法等。
磁法勘探可分为航空磁测、地面高精度磁测等。它主要通过测量不同磁化强度的各种岩(矿)石在地磁场中所引起的磁异常,并研究这些磁异常的空间分布特征、规律及与地质体间的关系,从而做出地质解释。在沉积岩地区,磁异常一般是侵入岩体存在的反映,而侵入岩的存在又是地热形成的决定因素,是热能之源。
除电法和磁法外,其他地球物理方法还有如重力勘探、地震勘探和地热测井等。重力勘探是通过测量不同岩(矿)密度差异所引起的重力异常来达到寻找深大构造断裂、基岩坳陷中的凸起构造等地下热水存在的有利部位的目的。地震勘探是通过研究人工激发地震波的运动学和动力学特征来解决地质问题,这种方法弥补了时间域电法勘探在高阻屏蔽和深度上的限制。地热测井包括电阻率、自然电位、天然放射性等方法。地热测井从手段上还分为随钻测井、高深度数字测井等,该方法目前已跨出了纯地球物理勘探行列。
2.地球化学勘探
目前,地球化学研究形成了一套地热地球化学勘探的技术系列:在区域范围内,利用水系沉积物和土壤测量,可以快速发现和圈定地热远景区;在普查区内,在覆盖区用土壤测量,在露头良好(高温热水)区用岩石测量及水热蚀变研究,可以圈定热田范围;在热田范围内外,构造地球化学测量(包括Rn、Hg、210Po等)可以指示控制热水分布的浅部或深部构造,地层、岩体中含有的由铀(235U)经一系列衰变产生的氡(222Rn)可以沿着构造带、裂隙和地下水垂向运移并在地表富集形成氡异常,土壤汞量测量对浅部地下热水有很好的地面异常反映;在详查区内,通过土壤地球化学详查及测温测量能查明热水赋存的最有利地段;在热区内,利用地球化学温标,可以估算深部热水的温度,预测热储的可能温度,利用氢、氧同位素研究,可查明热水的补给来源、判断热源性质等。
3.遥感勘察
斯—玻定律表明:地表温度的微小变化可引起其对半球空间能量辐射出现明显变化。因此,地球深部热源以传导和对流方式传递到地球表面后形成的地表温度异常,可以很容易地被热红外探测器检测出来。基于多波段遥感数据的遥感地学解译和基于热红外遥感数据的地热异常信息提取是遥感技术勘探地热资源的基本研究思路与方法。
从区域角度来讲,喷气孔和热泉点所表现出来的地热异常,一般反映了浅部地热的存在和控热构造。埋藏较深的地下热水,通常是通过垂直裂隙系统以渗透或对流的方式传递到地表,形成比背景温度高的地热异常,这些地热资源受地质构造控制和地层岩石的物理性质影响。而通过对多波段遥感数据的地学解译,可获取研究区内断裂(包括隐伏断裂)、岩性、地貌等众多的构造、岩性及地理信息,这无疑为圈定地热资源勘探的有利区提供了技术参考。
然而,遥感技术在地热资源勘探中的成功应用应有以下前提条件:首先,地表必须有热异常存在,这种异常可以是直接出露于地表的温泉点或热喷气孔,也可以是通过热对流或热扩散方式在地表形成的高温热异常;其次,受地热影响引起的地面物体热变化在遥感图像上有显示,如泥火山、泥喷泉的出现,植被生态发生变化,耐高温植物的出现,受地热影响冰雪的局部融化等;最后,要具有较高温度分辨率的热红外探测器和较容易出现地热异常的成像季节、时间及良好的天气条件等。
(三)地热资源勘查技术综合应用
在地热资源勘查过程中,只有针对不同地热环境、不同勘查阶段,采用不同的勘探方法和不同方法的有效组合,才能达到合理投入、降低风险、提高经济效益的目的。例如,在高温地热区带和干热岩地区,要充分利用已有的航磁、航电、区域重力或水系沉积物测量资料,并同时适量投入重力、磁法等大比例尺精测剖面,开展面积性的浅层测温法、测氡法和磁法工作,适时投入钻探工程。而在中低温盆地地区,应加强研究储热盆地的构造特征、发展演化历史及其与储热性的关系,充分解译遥感、航磁、重力资料,可为评价优选储热靶区提供依据,该地热类型适合投入重磁精测剖面、电法及人工地震工作。
四、地热资源的利用
地热资源的利用包括发电和非发电利用两个方面。世界各国利用地热的经验表明,高温地热资源(在150℃以上)主要用于发电,地热发电后排出的热水可供直接利用;中低温地热资源(在150℃以下)则以直接利用为主。经典的Lindal图(Lindal, 1973)显示了不同温度的地热流体可能的用途(图4-57)。温度低于20°C的流体在非常特别的条件下或在热泵的应用程序中则很少使用。Lindal图强调地热资源利用的两个重要方面:(1)通过级联或结合使用可以提高地热项目的可行性;(2)资源的温度会限制可能的用途。现有的热加工工艺在某些情况下可以被改良,从而拓宽地热流体的应用领域。
(一)高温地热资源
根据地热资源的特点,高温地热资源主要用于发电。目前国内外对地热资源的利用技术主要有干蒸汽发电技术、地下热水发电技术、联合循环发电技术、干热岩地热发电技术等。
图4-57 地热流体利用图示(据Lindal, 1973)
1.干蒸汽发电技术
干蒸汽发电系统工艺简单,技术成熟,安全可靠,是高温地热田发电的主要形式。干蒸汽发电技术主要分为背压式汽轮机发电技术和凝汽式汽轮机发电技术。
背压式汽轮机发电技术是把干蒸汽从蒸汽井中引出,先加以净化,经过分离器分离出所含的固体杂质,然后使蒸汽推动汽轮发电机组发电,排汽放空或者送热给用户。大多用于地热蒸汽中不凝结气体含量很高的场合,或者综合利用于工农业生产和生活用水。
凝汽式汽轮机发电技术为了提高地热电站的机组输出功率和发电效率,做功后的蒸汽通常排入混合式凝汽器,冷却后再排出。在该系统中,蒸汽在汽轮机中能膨胀到很低的压力,所以能做出更多的功,该系统结构简单,适用于高温(160℃以上)地热田的发电。
2.地下热水发电技术
闪蒸蒸汽发电是将地热井口引来的地热水先送到闪蒸器中进行降压闪蒸,使其产生部分蒸汽,再引到常规汽轮机做功发电。汽轮机排出的蒸汽在混合式凝汽器内冷凝成水,送往冷却塔。分离器中剩下的含盐水排入环境或打入地下,或引入作为第二级低压闪蒸分离器中,分离出低压蒸汽引入汽轮机的中部某一级膨胀做功。这种电站设备简单,易于制造,可以采用混合式热交换器。缺点是设备尺寸大,容易腐蚀结垢,热效率较低。由于是直接以地下热蒸汽为工质,因而对于地下热水的温度、矿化度以及不凝气体含量等有较高的要求。
中间介质法地热发电是通过热交换器,利用地下热水来加热某种低沸点的工质,使之变为蒸汽,然后以此蒸汽推动汽轮机并带动发电机发电。在这种发电系统中采用两种流体,一种是以地热流体作热源,它在蒸汽发生器中被冷却后排入环境或打入地下;另一种是以低沸点工质流体作为工作介质(如氟利昂、异戊烷、异丁烷、正丁烷、氯丁烷等)。这种工质在蒸汽发生器内由于吸收了地热水放出的热量而汽化,产生的低沸点工质蒸汽送入汽轮机发电机组发电。做完功后的蒸汽由汽轮机排出,并在冷凝器中冷凝成液体,然后经循环泵打回蒸汽发生器再循环工作。
3.联合循环发电技术
联合循环发电技术就是将蒸汽发电和地热水发电两种系统合二为一,它最大的优点就是适用于高于150℃的高温地热流体发电,经过一次发电后的流体,在不低于120℃的工况下,再进入双工质发电系统,进行二次做功,充分利用了地热流体的热能,既提高了发电效率,又将经过一次发电后的排放尾水进行再利用,大大节约了资源。该系统从生产井到发电,再到最后回灌到热储,整个过程都是在全封闭系统中运行的,因此,即使是矿化程度很高的热卤水也可以用来发电,且不存在对环境的污染。同时,由于系统是全封闭的,即使在地热电站中也没有刺鼻的硫化氢味道,因而是100%的环保型地热系统。这种地热发电系统采用100%的地热水回灌,从而延长了地热田的使用寿命。
4.干热岩地热发电技术
干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。
开发干热岩资源的原理是从地表往干热岩中打一眼井(注入井),封闭井孔后向井中高压注入温度较低的水,产生了非常高的压力。在岩体致密无裂隙的情况下,高压水会使岩体大致垂直最小地应力的方向产生许多裂缝。若岩体中本来就有少量天然节理,这些高压水使之扩充成更大的裂缝。当然,这些裂缝的方向要受地应力系统的影响。随着低温水的不断注入,裂缝不断增加、扩大,并相互连通,最终形成一个大致呈面状的人工干热岩热储构造。在距注入井合理的位置处钻几口井并贯通人工热储构造,这些井用来回收高温水、汽,称之为生产井。注入的水沿着裂隙运动并与周边的岩石发生热交换,产生了温度高达200~300℃的高温高压水或水汽混合物。从贯通人工热储构造的生产井中提取高温蒸汽,用于地热发电和综合利用。利用之后的温水又通过注入井回灌到干热岩中,从而达到循环利用的目的。
(二)中低温地热资源
中低温地热资源可用于居民与工厂直接供热。这些热储通常含承压的地下热水。这些热水被带到地面,那里有一个热交换器将地热能转换成另外一种液体。接着冷却的地热能液体通过回注井被泵入回地下。被加热的液体主要是用于循环供暖、温室和水产养殖业。
地下热水用来采暖,不仅节约燃料,还可避免环境污染。地下热水可用于轻纺工业,不仅可以满足特殊工艺的需要,还可以提高产品的质量,节约大量煤炭、电力和软化水用食盐。地下热水有时还含有某些特殊的微量组分或气体成分以及少量的放射性物质,在一些热矿泉附近还常常积有矿泉泥,它们对人体的生理机能有益或有一定医疗作用。因地制宜地将地下热水用于建设温室繁育良种、养鱼、灌溉农田、繁殖饲料和绿肥,发展农村生产和经济,为农林牧副渔业服务,有十分重要的意义(图4-58)。
(三)地热资源梯度利用
地热资源开发存在热能利用率较低、资源浪费大等问题,直接利用方式具有50%~70%的热利用效率,而地热发电仅为5%~20%,剩余的热能则伴随地热水回灌到地下或者直接排放到自然环境中,不但浪费资源而且造成热污染,如何高效综合利用地热资源已成为国内外关注的热点。
图4-58 地热在室内供暖中的应用
(据意大利比萨地质及地球研究所,2004)
地热资源梯度利用是指结合地区需求,根据地热流体不同温度进行地热逐级利用。高温地热水首先用来发电,之后被用作工业烘干、农业育秧养殖、建筑供暖等,最后较低温度地热水用来洗浴。经过一系列的利用,尾水达到20℃左右,这样就最大程度地利用了地热资源,因此梯度利用技术拥有广阔的前景(图4-60)。
五、地热资源的发展
(一)地热资源发展存在的问题
1.可持续发展问题
随着地热资源利用领域的拓宽和社会需求的增加,地热资源给人们的生活带来越来越多的好处,但是人们对地热资源的综合利用价值和产业化开发利用的意义认识不足,将地热混同于一般的矿产资源或水资源。一些地热资源丰富的地区未能建立有自己特点的地热产业,使宝贵的地热资源开发停留在低层次、低效益的水平上,且资源浪费现象严重,相当一部分地区天然的温泉没有充分利用,被白白浪费;一些开发商对地热资源的特点认识不清,造成地热资源得不到合理开发和有效保护。
地热资源是在特定的地质、构造、水文地质条件和水文地球化学环境条件下形成的,由于埋藏深,补给途径远,再生能力弱,其资源量是有限的,并非取之不竭。要保持其资源的长期连续稳定开采,应做到有计划合理开发利用,并防止盲目无序随意开采造成资源浪费和环境地质问题的发生,否则就会造成资源的快速枯竭。
为实现可持续开发利用的目的,在开发中,要采取行之有效的措施,建立资源利用中心的高教低耗体系,要积极推广应用高新技术与设施,提高地热开发的科技含量,发展节约型、效益型的开发利用模式,努力提高地热利用率,减少资源浪费,使地热创造更高的社会、环境、经济效益。
图4-59 地热资源的梯度利用(据意大利比萨地质及地球研究所,2004)
2.环境保护问题
地热资源的开发利用可能产生的环境问题是多方面的,主要有水污染、热污染、空气污染、土壤污染、地面沉降等。
(1)地热开发利用过程中,必然向大气和水体排放大量的热量,造成周围的空气或水体温度上升,影响了周围环境和生物的存活生长,破坏了水体的生态平衡。
(2)地热资源的开发利用过程中,热流体中所含的各种有害气体和悬浮物将排入大气中,造成空气污染。
(3)含盐量较高的地热水排入农田将侵蚀土地、破坏植被,会造成严重的土壤板结和盐碱化,同时地热水中不同程度地含有氧、铀及钍等放射性元素,对人体健康有不同程度的危害。
(4)长期地热流体开采而不回灌,将导致地面的沉降和水平位移。
所以,地热开发利用过程中引起的环境问题是不容忽视的,只要正确认识这些问题,给予必要的重视,且积极、认真地研究,采取各种有效的技术措施,严格监测和防治,是可以解决和控制的。
(二)地热资源发展前景
随着传统不可再生能源应用危机显现,寻求新的能源成为缓解能源危机的重要措施。地下储藏的地热能是巨大的(表4-8)。
表4-8 全球范围内的地热潜力表(据国际地热协会,2001)
随着地热资源应用,地热产业规模化发展与地热能源的梯级应用成为其发展的主要趋势。推动地热产业规模化,有助于提高地热能源应用效率;通过梯度应用形式,可以实现最大限度的地热能源应用,减少环境污染问题。
在2010年世界地热大会中,提出了增强型地热系统,推动增强型地热系统。实现地热资源循环应用成为地热资源发展的重要趋势。增强型地热系统又被称为干热岩地热,其原理为:由地表面向干热岩打井眼,封闭井孔后向井内注入温度较低的水,高压水让岩体产生较多裂缝,随着低温水增加,裂缝逐渐发展并扩大,最终形成一个大型人工干热储结构,采取这种方式实现热循环应用。此外,浅层地热能的存在较为普遍,加强浅层地热能开发,实现规模化浅层地热能应用,具有广阔的发展前景,如我国北方大部分城镇在冬季需要供暖,供暖天数在120天以上,煤炭消耗量巨大,通过开发浅层地热能,可以有效降低煤炭应用量,实现综合效益。