推动氢能产业健康有序发展 助力碳达峰碳中和目标实现2035年)》-
中国发展网讯 据国家发改委官网消息,中国国际工程咨询有限公司总工程师、正高级工程师杨上明发文解读《氢能产业发展中长期规划(2021-2035年)》。杨上明表示,氢能来源丰富、应用广泛,具有绿色低碳特点,是业界公认能源转型发展的重要载体之一,对碳达峰碳中和目标实现具有积极支撑作用。此次印发的《氢能产业发展中长期规划(2021-2035年)》(以下简称《规划》),从国家层面为氢能产业打造顶层设计,明确氢能战略定位和发展目标,提出构建创新体系、基础设施建设、多元化示范应用、完善保障体系等重点任务,为加快推动能源革命、 科技 革命和产业变革注入了新动能。
氢能产业发展顶层设计出台正当其时
氢能被国际 社会 誉为21世纪最具发展潜力的清洁能源,氢能 科技 创新和产业发展持续得到各国青睐。美国、日本等发达国家纷纷将氢能上升为国家战略,抢占产业发展先机和制高点。我国地方政府和企业也在积极推动氢能产业的发展,据行业机构统计,我国多地纷纷制定氢能产业相关规划、实施方案等政策文件,布局建设加氢站等基础设施,推动燃料电池车辆等氢能多元化应用。在氢能产业萌动之际,《规划》的出台符合业界期盼,为氢能 科技 创新和产业高质量发展指明了方向,将进一步彰显氢能作为可再生能源高效利用重要载体、抢占未来 科技 发展制高点重要抓手、推动工业低碳转型关键介质,对支撑实现碳达峰碳中和目标的重要意义。
碳达峰碳中和目标下氢能将在能源领域释放潜能
近年来,氢能在交通用能终端等领域热度不断上升,围绕燃料电池关键核心技术加速自主研发,以城市客运、物流等商用车型为先导逐步开展一定规模的示范运行。据有关报道,张家口市以服务绿色低碳冬奥为契机,积极发展以燃料电池 汽车 为代表的氢能交通系统,取得良好示范效果。同时,氢能作为跨能源网络协同优化的理想媒介,通过风-光-氢-储一体化发展,能够加快构建多能互补应用生态,提高可再生能源电力的上网质量和消纳水平,切实推动能源生产体系和消费体系绿色低碳转型。
《规划》提出了系统构建支撑氢能产业高质量发展创新体系、统筹推进氢能基础设施建设、稳步推进氢能多元化示范应用、加快完善氢能发展政策和制度保障体系等四项重点任务。在《规划》有序引导下,氢能正逐步成为储能、交通用能转型、工业化石能源替代等重点领域创新应用的有力抓手,将进一步拓展我国氢能发展的空间。
下一步要以《规划》为指引,科学推动氢能全产业链 健康 有序发展
氢能产业是面向未来的战略性新兴产业,需要充分发挥我国完整的工业体系和能源体系优势,坚持系统思维、久久为功,力争在全球 科技 革命和产业变革浪潮中占据主动、赢得先机。
一是加快构建低碳氢能供应体系。 建议从全生命周期视角评估氢能产业发展的经济与环境效益。近期因地制宜利用工业副产氢,在不额外新增碳排放的前提下,作为培育氢能产业的启动资源,就近供应交通、工业、建筑等领域应用。中远期加快发展规模化风电、光伏、水电等多种低碳能源制氢,提升制氢关键技术能力和装备制造水平,逐步完善分布式制氢管理体制机制, 探索 灵活的价格机制,将清洁低碳氢能打造成氢源的主要构成,从源头上保障氢能绿色低碳属性。
二是持续提升氢能储运设施效率。 我国西部地区可再生能源资源丰富,意味着可再生能源制氢资源也多分布于该区域,但氢能应用市场主要集中在东部沿海地区,长距离输运成本成为影响可再生能源制氢经济性的问题之一。研究制定安全经济的氢能储运管理规定,加速研发低温液氢、固态储氢、化学储氢等新型长距离储运技术和商业化应用,开展管道输氢示范,逐步提升可再生能源制氢规模化发展能力。
三是加快释放氢能多元应用潜力。 充分利用已有技术基础,发挥氢能高品质热源、高效还原剂、低碳化工原料等多重属性,推动氢能在交通、冶金、化工等领域替代化石能源使用,降低二氧化碳排放。同时,加快新型储能、分布式热电联供等核心技术自主研发,积极发挥氢能跨能源网络协同优化作用,稳步有序推进氢能示范应用,促进能源电力领域深度脱碳,实现全面绿色低碳发展。
碳达峰是指我国承诺2030年前,二氧化碳的排放不再增长,达到峰值之后逐步降低。碳中和是指企业、团体或个人测算在一定时间内直接或间接产生的温室气体排放总量,然后通过植物造树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。
碳中和碳达峰的意义:碳达峰碳中和是系统性、战略性和全局性工作,覆盖能源、工业、交通、建筑等高耗能、高排放部门,涉及生产和消费、基础设施建设和社会福利等各方面。
把碳达峰碳中和纳入生态文明建设整体布局,制定科学的行动方案,有助于加快形成节约资源和保护环境的产业结构、生产方式、生活方式、空间格局,坚定不移走生态优先、绿色低碳的高质量发展道路。
实现碳达峰碳中和方法
不能只依靠节能提效带来的能源需求降低,也不能只依靠可再生能源发展带来的能源电力部门脱碳,而必须依靠各经济部门和各能源行业的全面努力。实现碳达峰碳中和目标愿景,呼唤着技术的快速突破和市场的有效激励,需要有突破性技术支撑。
特别是常规减排技术或替代技术难以实现深度减排的领域,技术尚不太成熟、成本较高,必须通过碳定价机制,加快技术研发,推动产业化。有了碳市场的价格机制,企业通过碳交易市场补偿减排成本甚至获取收益,从而促进其参与技术研发的积极性。当然,碳市场不可能“包打天下”,必须多种市场机制协同发力。
我国的双碳目标为在2030年前碳达峰,在2060年前实现碳中和,这个目标相对于目前世界上的几大主要经济体而言,是要求最高,时间最紧迫的。
而目前我国的能源结构中,非化石能源占比仅仅为15.9%,清洁能源(包括水电)发电量占比36%,煤炭占比52%。
为助力实现双碳目标,在能源的供给端,提高可再生能源在电力供应和终端消费中的占比,是实现双碳目标最有效的途径。
但以风电、光伏为代表的电源侧可再生能源波动性强,不能持续稳定提供电能,这就引出了下一个亟待解决的问题——储能。
2.1 储能的必要性
近年来,随着光伏组件的成本进一步下探,无补贴下光伏电站已经可以盈利,大量资本涌入光伏产业,从生产到运营,整个光伏行业规模大幅度增长,但同时也带来了一个问题,那就是光伏只能在白天发电,晚上怎么办?风机只能在有风的情况下转动,没风的时候又怎么办?
每日风速波动较大
随着可再生能源(风电光伏)的用电量占比不断提升,风电和光伏的不稳定性带来的不单单是短时的无电可用,其波动性对于电网的冲击会引起配电网潮流变化,影响电能质量(电压、频率、波形),对电网侧和用户侧都有较大的影响。
在10年前,各地电网尚未像现在这般强大时,对于风电、光伏之类的垃圾电,电网公司向来是拒绝的,这也是为何在用电量较少的省份,弃风弃光限电的情况很多。
而将短时超发(用不完)的电储存起来,在没电的时候(晚上或者无风的时候)将这部分电能持续输出上网,就可以避免出现上述情况。
2.2 储能如何盈利
储能以前一直是政治任务,因为挣不了钱啊,但目前技术已经达到了将要盈利的瓶颈,国家就开始往储能行业里加火了。
随后没过几天,又出台了提高分时电价的政策:
文件的主旨就是继续拉开平峰和高峰时期的电价,条件具备区域,分时电价差距可达到4倍。 这两份文件一明一暗,都是在鼓励发展储能行业,在技术变革的前夕,政策层层加码,相信储能行业实现全面盈利只是时间问题。
目前大型电站并网侧的储能电站,在财务测算上,已经能实现盈利,只是以目前峰谷电的差价,盈利能力大概和存定期差不多。
2.3 电网侧储能
电网侧储能的主要作用就是调峰调频,保证用户用电质量,而最常见的用来调峰调频的手段就是抽水蓄能电站。
8月6日,国家能源局综合司印发关于征求对《抽水蓄能中长期发展规划(2021-2035年)》(征求意见稿)的函,提出到2035年我国抽水蓄能装机规模将增加到3亿千瓦,相对2020年将增长10倍,远超市场预期。此前业内预期2030年我国抽水蓄能总装机达到1.13亿千瓦,到2060年底总装机达到1.8亿千瓦。这意味着,到2030年投产总规划就将远远超过此前2060年的目标。抽水蓄能迎发展窗口期。
大规模的抽水蓄能电站投运,将大大增强现有电网的调峰能力,增加电网对可再生能源的消纳能力,最终提高我国电网用电中的清洁能源占比。
抽水蓄能是当前最成熟、装机最多的主流储能技术,在各种储能技术中度电成本最低,如上图所示,抽水蓄能电站由2个高度不同的水库组成,连接上下两个水库的是输水系统和发电机组。
在电网负荷低谷时段,电站利用廉价的谷电,将下水库里的水抽到上水库中储存起来,也就是将电能转化为重力势能。而等到电网负荷的高峰时段,电站再放出上水库的蓄水发电,这样就能以高价卖电。
抽水蓄能电站的缺点也显而易见,受地形影响较大,在地形复杂的情况下,建设成本会大幅上升,工期大约持续5-8年,而且电站建成后,由于长距离的管道输送和多个水轮机配合,机械能量损失较高,能量储存效率约70%。
目前国内做抽水蓄能电站的主要是各大地方电网公司,电站建设过程中所需的设计、施工或者总包方,几乎由一家央企垄断——中国电建。
中国电建公司囊括了中国几乎所有的头部水电系设计院,其中最为著名的是位于杭州的华东勘测设计研究院,其一年的营收就在百亿往上,超过了大部分上市公司。
其抽水蓄能市场占有率在国内达到了80%,全球达到了50%,可以说是当之无愧的 中国水电建设 第一股。
抽水蓄能电站的主设备为水轮机,在这方面,传统的汽轮机厂都有较为实力沉淀,比如东方电气和哈尔滨电气,但水轮机作为成熟的发电设备,技术已经较为成熟,在价格上少有溢价。
2.3 电源侧储能
2.3.1 其他储能形式
抽水蓄能电站属于机械储能的一种,其他较为成熟的机械储能方式还有:飞轮储能、压缩空气储能等等。
而根据储能介质不同,储能还可以分为电化学储能、化学储能、热储能及电磁储能等,但截至目前,机械储能依旧是其中最成熟,成本最低的储能方式。
电化学储能 的应用目前最为广泛也最有前景,新能源车产业链的核心部件,动力电池就是电化学储能应用的一种,按照介质不同,可分为锂离子电池、铅酸电池、钠离子电池等。
化学储能 概念简单,但操作过程异常复杂。顾名思义就是将电能转换为化学能储存起来,最常见的就是电解水制氢。
热储能 ,典型的应用就是光热电站,将阳光聚集后,把作为介质的熔盐融化,吸收大量热量,熔盐再继续加热水,形成水蒸气,推动汽轮机发电。太阳下山后,电站可以继续利用融化的熔盐所储存的热量来发电, 光热电站是为数不多的可以稳定供能的新能源电站。
某50MW光热电站效果图
电磁储能 ,主要有超导储能、电容储能、超级电容器储能等,其储能效率高,但距离实际应用还相当遥远。
目前电源侧的储能主要以电化学储能和化学储能为主,分别对应了并网型电站和分布式电站两种电站形式。
2.3.2 电化学储能
目前各地新上的集中式(并网型)新能源电站都要求适配储能,这部分储能主要是为在新能源电站波动较大时储能使用,由于集中式电站的上网电价均是固定的,其不存在利用峰谷电价差价盈利的情况,主要是增加电站上网电量,提高电站营收。
同时,在电网侧,也有大量的储能电站上马,其作用和抽水蓄能相同,调峰调频,其盈利模式就是对电能的低买高卖。
图片摘自某券商研报
这部分储能主要以电化学储能为主,而电化学储能中较为有前景的是:锂离子电池和钠离子电池。
以锂离子电池为代表,简单讲一下电化学储能的优劣:
1、成本下降迅速
在政策利好的推动下,这几年锂电的度电成本下降飞快,目前已经有成熟的锂电储能电站应用,在特定电价条件下,储能电站的内部收益率(IRR)可以达到8%,已经够着了大部分国企央企投项目的最低标准。
2、 几乎不受场地条件约束
化学储能需要较大的场地和较高的安全生产标准,而锂电储能因为能量密度相对较低,体积也较小,对场地要求较低,适合在工业园区、充电站、高端仪器设备等场所应用。
3、成本下降恐怕进入瓶颈
锂矿资源有限,可以预见,按照目前的速度发展,不远的将来,锂电将会由于上游材料价格的上涨,而进入瓶颈,锂电的度电成本不可能保持目前的趋势下降。
4、能量密度提升陷入瓶颈
虽然锂电的能量密度在过去的几年已经得到了大幅度提升,但相较于人类对能源的利用量来说,依旧太小,而锂电能量密度提升的速度并不像半导体那样成指数式增长,而是缓慢得正比例提高,锂电能量密度的提升可能跟不上人类对储能容量的需求。
钠离子电池相较于锂离子电池的优势在于成本低,且钠的储量远大于锂(已探明储量约是锂的420倍),未来有大规模应用的可能,但钠离子电池目前的可重复充放电使用的次数仍然偏低,能量密度较小,还不具备经济性。
而锂电池的优势在于,随着新能源车的普及未来电动车所装备的动力电池退役后,可以继续用作储能电池使用。
在电化学储能领域,宁德时代是当之无愧的绝对龙头,其不但在近期发布了钠离子电池,且中报显示宁德时代的储能业务相比2020年,增长超过了7倍。
从宁德时代的身上,我们足以预见,未来的电化学储能市场将极为广阔。
2.3.3 化学储能
化学储能主要以制氢储能为主,对于氢储能,比较直接的盈利模式是由化工企业投资新建分布式光伏电站,利用光伏制氢,而氢气正好是大部分化工企业的制造原材料,比如氢制乙烯。
在光照条件不错又富含水资源的区域,化工企业很容易降低制造成本,从而盈利。
此外,还有海上风电制氢应用于沿海化工厂生产的,电解水制氢制甲醇作为燃料电池燃料的,盈利能力完全取决于自然条件(风/光资源以及运输管道长度)。
关于氢能产业链的分析由于篇幅不再展开,感兴趣的可以看往期文章,在未来新能源+氢储能的分布式电站建设,一定是一个重要的发展方向:
未来尚远——氢能源产业链简析
2.4 用户侧储能
用户侧储能目前以电化学储能为主,随着应用端电动车的普及,用户侧储能的需求缺口会越来越大。
做个简单的计算题:现在很多人都用上了电动车,一台电动车如果使用快充,大概1小时就能达到其电量的75%,而充电桩的功率大约为100-200kw,也就是1小时100度到200度电,在电动车尚没有全面普及前,这点小功率对于电网洒洒水而已。
但要是当一个几十万(百万)人口的十八线小县城全面普及电动车后,几千(万)辆车同时充电的场面,瞬时功率会达到一个恐怖的数值,大部分县一级的电网都承受不住如此高功率的冲击。
因此一些分布式的充电桩运营公司就应运而生,比如宁德时代投资的主打储充检一体化运营的快卜 科技 。
将光伏、电化学储能、充电桩结合在一起,不但可以大幅度降低充电站的运营成本(不需要向电网买电),还可以缩短充电站的建设审批时间(不需要获得电网配电许可),不过新增的光伏组件和电化学储能设备也会大幅度增加充电站的建设成本。
其他用户侧的应用,比如大型设备UPS,工业园区储能电站等,还有很多,就不一一举例了。
储能形式多样,这里主要分析最具前景的电化学储能产业链。
3.1 电化学储能系统原理
其中PCS:储能变流器,连接电池系统与电网,实现直流和交流电的双向转换。
BMS:电池管理系统,用于电池的充放电管理。
BS:电池组,核心部件,主要成本就在电池上。
EMS:能量管理系统。
电化学储能系统的成本如上图所示,其中EPC指的电化学储能电站建造的总承包费用占成本的比重,可以看到整个系统中电池成本占据了一半以上,其次是PCS储能变流器,而这两项也是储能系统中技术含量最高,壁垒最厚的版块。
3.2 各板块龙头
储能电池代表企业:宁德时代 、 派能 科技 、 比亚迪 、 亿纬锂能 。
宁德时代:无可争议的绝对龙头,中报显示储能业务同比增长7倍以上,在电池领域拥有绝对的话语权。
亿纬锂能:在5G和风光电站储能方面发展迅速,但依旧属于二线电池厂中的第一位。
比亚迪:全产业链覆盖,技术沉淀深厚,海外市场亮眼,但主业是整车,储能业务弹性可能一般。
派能 科技 :储能业务纯正,专注用户侧储能,目前业绩释放一般。
PCS(储能逆变器):阳光电源、固德威、锦浪 科技
阳光电源:储能逆变器和储能系统双龙头,在全球逆变器市场都处于龙头地位。
固德威:和派能 科技 类似,专注于用户侧储能逆变器市场。
锦浪 科技 :逆变器领域的新秀,发展没几年就从阳光电源手下抢来不少国内市场,后市可期。
系统集成:盛弘股份。
EPC:永福股份,垃圾,就是个破设计院,要不是宁德时代入股,就是个渣渣。
今天文章写得有点长,产业链部分简单了些,储能截止目前是在政策扶持下,刚刚能够实现国企投资需求的水平(大概就比定期强一点的收益率),离全面爆发尚远。
如果要投资储能领域,最先爆发的必然是价值量最高的电池和逆变器,至于其他,尽量别碰。
双碳,即碳达峰与碳中和的简称。中国力争2030年前实现碳达峰,2060年前实现碳中和。“双碳”战略倡导绿色、环保、低碳的生活方式。加快降低碳排放步伐,有利于引导绿色技术创新,提高产业和经济的全球竞争力。中国持续推进产业结构和能源结构调整,大力发展可再生能源,在沙漠、戈壁、荒漠地区加快规划建设大型风电光伏基地项目,努力兼顾经济发展和绿色转型同步进行。
碳中和(carbonneutrality),节能减排术语,是指企业、团体或个人测算在一定时间内,直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零排放”。
碳达峰指的是碳排放进入平台期后,进入平稳下降阶段。简单地说,也就是让二氧化碳排放量“收支相抵”。
2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。”
2021年3月5日,2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构。“碳中和”入选《咬文嚼字》发布的2021十大流行语。12月13日,“双碳”入选国家语言资源监测与研究中心发布的“2021年度中国媒体十大流行语”
全球变暖
全球变暖是人类的行为造成地球气候变化的后果。“碳”就是石油、煤炭、木材等由碳元素构成的自然资源。“碳”耗用得多,导致地球暖化的元凶“二氧化碳”也制造得多。随着人类的活动,全球变暖也在改变(影响)着人们的生活方式,带来越来越多的问题。
2002年,南极洲一块面积为3250平方公里的冰架脱落,并且在35天内融化消失;并且根据美国宇航局的最新数据显示,格陵兰岛平均每年要融化掉221立方公里的冰原,是1996年融冰量的两倍。