可再生能源的主要问题在于
可再生能源发展面临的主要问题仍然是成本较高、市场竞争力弱。降低可再生能源产品成本、改善其经济性的根本途径就是大力推进并改善可再生能源的产业化、规模化发展。但是,我国可再生能源的产业化、规模化发展仍面临如下问题。
1.市场成熟度低,保障能力不足
尽管我国在建立可再生能源市场方面做了许多工作,但也还存在很多问题,主要表现在:对建立完善可再生能源市场的战略性、长期性和艰巨性的认识不足;由于成本相对过高以及产品自身特点原因,目前可再生能源还缺乏广泛的社会认同和完善的市场环境。
2.政策体系不完善,措施不配套
虽然我国颁布了可再生能源法,其制度建设要求也比较全面,但是政策措施和制度建设不配套,尚未完全适应可再生能源发展的要求。
主要是:
(1)各种可再生能源发展的专项规划或发展路线图未能及时出台,尚未形成明确的规划目标引导机制;
(2)缺乏市场监管机制,对于能源垄断企业的责任、权力和义务,没有明确的规定;也缺乏产品质量检测认证体系;
(3)可再生能源的规划、项目审批、专项资金安排、价格机制等缺乏统一的协调机制;
(4)规划、政策制定和项目决策缺乏公开透明度;
(5)缺乏法律实施的报告、监督和自我完善体系。
(6)缺乏可再生能源与社会和自然生态环境保护的协调发展保障机制和政策,特别是水电、生物质能还需要完善移民安置、土地利用和生态保护配套政策。
3.技术研发投入不足,自主创新能力较弱
为了尽快降低成本、克服电网等外部支撑条件的限制,必须依赖持续不断的技术创新和产业化应用。虽然我国在可再生能源利用关键技术研发水平和创新能力方面有所提高,但总体上和国外发达国家相比仍然明显落后,主要表现在:
(1)基础研究薄弱,创新性、基础性研究工作开展较少、起步较晚、水平较低,如光伏发电技术、纤维素制乙醇等技术,缺乏大规模发展所需的技术基础;
(2)缺乏强有力的技术研究支撑平台,难以支持科技基础研究和提供公共技术服务;
(3)缺乏清晰系统的技术发展路线和长期的发展思路,没有制定连续、滚动的研发投入计划;
(4)用于研发的资金支持明显不足
可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。
随着能源危机的出现,人们开始发现可再生能源的重要性。
·太阳能
·地热能
·水能
·风能
·生物质能
·潮汐能
所有人类活动的基本能源都来自太阳,透过植物的光合作用而被吸收。
木材
柴是最早使用的能源,透过燃烧成为加热的能源。烧柴在煮食和提供热力很重要,它让人们在寒冷的环境下仍可生存。
动物牵动
传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。
生物质燃料
此种燃料原为可再生能源,如能产出与消耗平衡则不会增加二氧化碳。但如消耗过量而毁林与耗竭可返还土壤的有机物,就会破坏产耗平衡。用生物质在沼气池中产生沼气供炊事照明用,残渣还是良好的有机肥。用生物质制造乙醇甲醇可用作汽车燃料。
水力
磨坊就是采用水力的好例子。而水力发电更是现代的重要能源,尤其是中国这样满是河流的国家。此外,中国有很长的海岸线,也很适合用来作潮汐发电。
风力
人类已经使用了风力几百年了。
太阳能
太阳直接提供了能源给人类已经很久了,但使用机械来将太阳能转成其他能量形式还是近代的事。
潮汐能
潮汐发电利用潮水涨落,世界已有电站容量16GW。
从地球蕴藏的能源数量来看,自然界存在有无限的能源资源。仅就太阳能而言,太阳每秒钟通过电磁波传至地球的能量达到相当于500多吨煤燃烧放出的热量。这相当于一年中仅太阳能就有130万亿吨煤的热量,大约为全世界目前一年耗能的一万多倍。不过,由于人类开发与利用地球能源尚受到社会生产力,科学技术、地理原因及世界经济、政治等多方面因素的影响与制约。包括太阳能、风能、水能在内的巨大数量的能源,可以利用的仅占微乎其微的比例,因而,继续发展的潜力巨大。人类能源消费的剧增、化石燃料的匮乏至枯竭以及生态环境的日趋恶化,逼迫使人们不得不思考人类社会的能源问题。国民经济的可持续发展,依仗能源的可持续供给,这就必须研究开发新能源和可再生能源。
太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时(3.78×1024J),相当于1.3×106亿吨标准煤。按目前太阳的质量消耗速率计,可维持6×1010年。所以可以说它是“取之不尽,用之不竭”的能源。但如何合理利用太阳能,降低开发和转化的成本,是新能源开发中面临的重要问题。
风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、制冷和致热等。风力发电是主要的风能开发利用方式。中国的风能总储量估计为1.6×109千瓦,列世界第三位,有广阔的开发前景。风能是一种自然能源,由于风的方向及大小都变幻不定,因此其经济性和实用性由风车的安装地点、方向、风速等多种因素综合决定。
对于核电站,人们有许多误解,其实核能发电是一种清洁、高效的能源获取方式。对于核裂变,核燃料是铀、钚等元素,核聚变的燃料则是氘、氚等物质。有些物质,例如钍,本身并非核燃料,但经过核反应可以转化为核燃料。我们把核燃料和可以转化为核燃料的物质总称为核资源。
近年来,许多发展中国家虽然都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,尤其是近年来,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。2005年,根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。
氢是一种二次能源,一种理想的新的含能体能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质加工后方能得到氢气。最丰富的含氢物质是水,其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。
地热是指来自地下的热能资源。我们生活的地球是一个巨大的地热库,仅地下10千米厚的一层,储热量就达1.05×1026焦耳,相当于9.95×1015标准煤所释放的热量。地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。
海洋能通常指蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能等。海洋能蕴藏丰富,分布广,清洁无污染,但能量密度低,地域性强,因而开发困难并有一定的局限。开发利用的方式主要是发电,其中潮汐发电和小型波浪发电技术已经实用化。波浪能发电利用的是海面波浪上下运动的动能。1910年,法国的普莱西克发明了利用海水波浪的垂直运动压缩空气,推动风力发动机组发电的装置,把1千瓦的电力送到岸上,开创了人类把海洋能转变为电能的先河。目前已开发出60-450千瓦的多种类型波浪发动装置。
此外,还有生物质能,是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。
我非常认可国家进行可再生能源的替代行动,但要想大规模普及,不仅要考虑到清洁能源大规模项目所铺设的人力技术和资源成本。相关的法律规定和政策扶持也必须要尽快跟上。
对于清洁能源的替代和可再生能源的使用,不仅可以促进民生生活的秩序和空气的良好,也能够保障我国的现有生活和未来发展。但在现阶段还有更多的技术难关仍需解决和突破,这也是值得注意和考虑的。
可清洁能源的使用将会造福人民群众,并减少环境污染。
我们本身和自身的环境存在着相互影响的情况,通过可清洁能源不仅可以替代燃料燃烧可能产生的有害废物,也可以更好的保护家园,从而避免未来产生极端的频繁灾害天气对生活和出行造成影响。因此清洁环保能源的存在是非常重要的,对于未来国家之间的能源使用甚至外太空的能源使用技术而言都有着非常重要的前景方向。
许多可再生发电项目会受到地理环境以及天气周期的影响,影响了发电技术的运行和改进。
但不可忽视的是,相关的阻力和问题比如说水能,风能太阳能等,这些清洁项目虽然不会产生污染,但其发电规模和其发电设备会受到地理环境以及天气周期的影响,对于维持地区的长久和稳定发电而言,其实只能起到辅助作用。目前类似诸如核能以及其他的清洁煤发电项目,也受到了国家的关注和行业的研究。
针对可清洁能源的市场推进和研发,相关政策和扶持规定也有待完善。
要想真正的促进替代行动的落实和到位,相关法律法规的政策和扶持规定也是有待完善的。针对于某些企业的研发和分析给予一定的支持,并派遣相应的科研人员进行辅助帮助,可以更好的推进这类可再生能源替代项目的落地。
因为在一定的时间跟空间尺度内,可再生资源的数量也是有限的。
可再生自然资源在现阶段自然界的特定时空条件下,能够持续再生更新、繁衍增长,保持或扩大其储量,依靠种源而再生。可再生能源泛指多种循环使用的能源,严谨来说,是人类有生之年都不会耗尽的能源。
可再生能源不包含现时有限的能源,如化石燃料和核能。不仅非可再生资源的数量是有限的,在一定的时间跟空间尺度内,可再生资源的数量也是有限的。也就是说,可再生资源也并不是「取之不尽,用之不竭」的资源,它是一个动态的概念。
扩展资料:
1、可再生能源还无法得到广泛利用可再生能源通常是指对环境友好、可以反复使用、不会枯竭的能源或能源利用技术,包括太阳能热利用、太阳电池、生物质能、风能、小水能、潮汐能、海浪能、地热能、氢能、燃料电池等。
2、可再生资源只有在我们控制了量的情况下,权衡了开采量及该资源的再形成速率的条件下,使我们的开发利用速率小于其才是“取之不尽,用之不竭”的。
能源资源枯竭;环境污染严重。
开发新能源和可再生能源是能源可持续发展的应有之义。在我国的能源供应结构里,煤炭、石油与天然气等不可再生能源占绝大部分,新能源和可再生能源开发不足,这不仅造成环境污染等一系列问题,也严重制约能源发展,必须下大力气加快发展新能源和可再生能源,优化能源结构,增强能源供给能力,缓解压力。
我国的核电装机容量不到发电装机容量的2%,远低于世界17%的平均水平,应当采取有效的措施,解决技术路线、投资体制、燃料保障等问题,使我国核电发展的步子迈得更大一些。同时,我国的风电资源量在10亿千瓦左右,仅开发几百万千瓦,应当对风电发展进行正确引导,促进用电健康可持续发展。
走能源可持续发展之路,从大的能源结构来讲,还是要加快发展核电。最近一两年,从中央到国务院,都坚定了加快发展核电的信心,核电的工作力度也在加大。在今后一个时期,在优化能源结构方面,核电的比重、速度要保持相对快速的增长,规模要在短期内有比较大的提升。不光是沿海,还要逐步向中部地区发展。
节能减排是能源可持续发展的必由之路。侯云春表示,我国能源需求结构不合理突出表现为能源利用消耗高、浪费大、污染严重,缓解能源供需矛盾问题,从根本上就是大力节约和合理使用,提高其利用效率。
严格控制钢铁、有色、化工、电力等高耗能产业发展,进一步淘汰落后的生产能力。同时,还要大力发展循环经济、积极开展清洁生产,全面推进管理节能,大力推广节能市场机制,促进节能发展,广泛开展全民节能活动。
扩展资料
中国能源科技取得显著成就,以“陆相成油理论与应用”为标志的基础研究成果,极大地促进了石油地质科技理论的发展。石油天然气工业已经形成了比较完整的勘探开发技术体系,特别是复杂区块勘探开发、提高油田采收率等技术在国际上处于领先地位。
煤炭工业建成一批具有国际先进水平的大型矿井,重点煤矿采煤综合机械化程度显著提高。在电力工业方面,先进发电技术和大容量高参数机组得到普遍应用,水电站设计、工程技术和设备制造等技术达到世界先进水平,核电初步具备百万千瓦级压水堆自主设计和工程建设能力,高温气冷堆、快中子增殖堆技术研发取得重大突破。
烟气脱硫等污染治理、可再生能源开发利用技术迅速提高。正负500千伏直流和750千伏交流输电示范工程相继建成投运,正负800千伏直流、1000千伏交流特高压输电试验示范工程开始启动。
参考资料来源:百度百科-能源资源
参考资料来源:百度百科-能源
大力推行可替代能源,也就是说传统的资源将逐渐被替代,能源的结构将逐渐被改变,这是未来发展的最理想的状态,只是说现在是作为一个未来的趋势去推行,不代表现在立马就会推行,前景肯定是有,但难度肯定也不低。
有前景是说传统的资源就是被誉为现代工业发展的三大支柱,石油,天然气,煤炭,这都是不可再生资源。虽然按照现在地球的储量,你现在人类工业发展的速度以及生活的使用强度上来看,再用个两三百年应该是不成太大的问题,但是人们不能真的等到那时候才考虑去更改能源结构啊,那时候黄花菜都凉了。所以现在世界上主要的大国以及发达国家肯定会考虑去降低对传统能源的依赖。逐渐更新自己的能源结构,大的趋势在这肯定有前景。
有困难并且难度相当不小,是因为传统的煤炭石油天然气成为工业发展的三大支柱,并不是说别的能源就不能用。比如说氢气人们电解水就可以制造氢气,它就可以作为一种燃料,那为什么没有把它作为主要燃料呢?因为煤炭石油天然气这三种能源是保存最为实用环境,几乎没有什么限制的。就不说什么其他的新能源,现有的能源体系里面也存在一些可以作为燃料的能源,只不过它在制备保存安全性,使用条件要求等方面存在着较高的要求,不利于低成本的大范围的推广,自然就没有把它作为主要的燃料了。
那人们想真正实现能源结构的更替,去推行更多可替代的可再生能源,这是必然要涉及到一个能源使用模式的问题。现有的能源里面也存在一些可以作为燃料的东西,要让他们的成本更低,安全性更好,使用范围更加广泛,这个需要技术上的突破,不计代价的去推这个东西,结果肯定是失败的。因为要顺应经济发展的趋势,经济发展的需要就是低成本的可控性比较高的能源。
首先纠正一下,可再生能源企业与收废品是风牛马不相及的两码事,目前我国主要的可再生能源企业主要集中在光伏发电、风力发电、水电、生物质发电,他们的主营业务都不收废品。
目前部分可再生能源企业遇到经营困难,主要有两个方面的原因,一是前期投入大,资本回收周期长,贷款偿还有压力。二是新能源补贴没有及时到位,部分企业如果没有补贴,还不能达到盈亏平衡点。往往经营困难的企业,都存在以上一种或两种原因。
可再生能源企业一般都具有前期投入大,财务成本高(贷款利息),回收周期长的特点,同时,受自然条件约束。从成本端来看,主要是财务成本、运营维护成本;从收入端来看,主要是产品(电)销售收入,补贴(未来是碳交易收入)。
在影响成本与收入的诸多因素中,关键因素是自然条件、财务成本、补贴。自然条件的影响,如常年下雨,光伏发电量就会减少,维修成本也会加大,企业的收入减少,也会造成经营困难。财务成本的影响,如每年要付出的利息过高,也可能造成企业经营困难。补贴不到位,造成企业缺少现金流,无法及时偿还银行贷款,造成经营困难。
针对以上存在的实际情况,3月12日,国务院联合五部委下发《关于引导加大金融支持力度促进风电和光伏发电等行业健康有序发展的通知》,重点解决企业在融资、补贴不到位方面的困难,有望促进行业长期的良性发展。关于自然条件的影响,需要企业靠自身积累去应对,随着碳交易市场的形成,有望通过市场化手段解决补贴不到位的难题。而融资难、财务成本高的问题,应更多引入长期股权资本解决。
废品回收不属于可再生能源行业,属于可再生资源行业,也属于高污染行业,目前也遇到很大的难题,没有补贴的情况下,很多企业也经营困难,现状是有钱赚的有人做,没钱赚的都不愿意做的局面,废品回收根本不属于暴利行业。
二是加大科技含量.发展低碳经济是新的经济增长点.在发展低碳经济的过程中不能走传统的老路,不能再靠引进来后低水平建设,而应大力发展自主知识产权技术,加大科技投入,占领制高点,从而缩小和先进国家的差距,使我国的新能源产业在国际上也能占有一席之地.
专家认为,电网建设已成为推进新能源发展的关键环节.国家电网公司副总经理舒印彪表示,由于风电、太阳能等可再生能源发电具有间歇性、随机性、可调度性低的特点,大规模接入后对电网运行会产生较大的影响.我国相对集中的资源分布条件、相对薄弱的电网发展基础以及新能源迅猛发展势头,对电网的适应性和安全稳定控制水平提出了更高要求.
1、无法解决的里程焦虑
电池的上限决定了电动汽车的上限,无论把能耗管理系统和风阻做的多么出色,都只能锦上添花,而一味地增大电池也并不一定能带来良性循环,电池越大、重量越大、安全隐患也越大,同时,电动汽车的最佳续航表现是城市而非高速,一辆续航500km的电动汽车上了高速往往只能跑300多km,相比之下,燃油车要稳定且出色的多。
2、缺乏充电站
即使每300km只有1个加油站,对燃油车来说也不是大问题,而电动汽车则不然,以加油站和充电桩数量最多的美国为例,其加油站和充电桩的比例为1000:1,也就是说充电桩的数量需要提升1000倍才能达到现有加油站的数量,但这远远不够,如果电动汽车和充电桩的比例无法做到1:1甚至更多,充电将会是一件很麻烦的事。
3、时间就是金钱
只需要3分钟的加油时间,就可以为燃油车恢复100%的续航里程,而电动汽车根据快充、慢充的不同则需要2-9个小时不等,即使通过快充并只冲到80%,也需要长达45-60分钟,电动汽车不是手机,充电的时候没有任何作用。
4、很少有人提到电池组维护和更换的费用
确实,电动汽车帮你省下了很多油费,但这并不意味着节省的资金可以去做其他的事情,因为无论一辆电动汽车提供什么样的质保,电池的自然损耗都不在质保范围,那么当意外事故或完成1200次左右的循环时(锂电池的理论寿命),就必须要更换电池组,以特斯拉Model 3为例,不含税的价格为1315元/kWh,那么假如电池组为70kWh,总共需要花费9.2万元。
5、电动汽车也需要化石燃料
不可否认,电动汽车自身属于“0排放”,但这只是一种“污染转移”的手段,真正的电力产生仍然需要化石燃料,尽管水电、可再生能源发电、核电已经存在,但是只占了极小的一部分,煤炭、石油、天然气仍然是电力产生的必要资源,以美国等发达国家为例,大约70%的电力来源于化石燃料,这个比例在发展中国家会更高。
6、强悍的加速很有趣,但持续的高速才是实力
由于电机本身的优势,能够几乎0延迟地爆发最大扭矩,所以电动汽车拥有无与伦比的“零百”加速能力,但是这会消耗巨大的电能,而持续的高速行驶也会消耗更多的电能,这就使得高速工况下电动汽车的续航里程大打折扣,所以电动汽车并不适合持续的高速行驶,但这根本不是燃油车需要考虑的事情。
不得不说,第4、5两个理由最令人无奈,燃油车经过100年不间断的发展和技术革新,才有了今天这样的规模,而电动汽车想要在短短的10年、20年内取代,几乎是不可能的,除非电池技术有了突飞猛进的发展,否则这个瓶颈永远存在。