为什么可再生能源先制氢再制电
因为直接用可再生能源发电导致电网的调峰压力非常大,巨大。弃风弃光弃水问题很严重。储能是提高电网调节能力的最佳手段之一。目前应用最多的是抽水蓄能,其次也有储热、电化学电池、压缩空气的各种技术路线。
本质上电制氢也是储能的一种。在电网下调峰能力不足的时候(即出现弃电的时候),将弃电部分用来制氢,或者在夜间负荷低的时候,用低价电制氢,在需要的时候,不管是发电还是直接燃烧,取用储存的能量。
用氢作为能源发电,两步过程中能量难免会有损失,但是其实仔细琢磨一下,还是可行的,主要是得采用廉价易得的电能来电解之制氢,像大规模的太阳能、风能都是很好的清洁能源。
提高电解制氢的效率后,能量从太阳能转移到氢能源里。由于氢气能量密度大,移动性好,不受天气影响,所以用氢气作为汽车的驱动能源还是很不错的选择,清洁环保。这其中最主要的还是得提高制氢的效率和氢转化为电和动力的效率。
可再生能源制氢的用处
可再生能源制氢有它的优势,采用了可再生能源,以风光水等等可再生能源为载体,以氢气作为一个二次能源的载体,在能源转型中可以和电力互为补充,以实现工业、建筑、电力、交通运输等产业互联。
目前广泛使用的氢源主来自化石燃料、电解水和化工副产氢。此外,生物质制氢、核能制氢和光催化制氢正在研究,还没达到工业化应用的水平。可再生能源制氢只能选择电解水制氢,化石燃料制氢和化工副产氢都是有碳排放的。
我们来看看目前我国氢气生产的来源:
我国制氢原料中以碳排放最高的煤制氢为主,占比高达62%,其次为天然气重整制氢占比为19%,电解水制氢占比最少,仅为1%。
绿氢”的生产途径有哪些
我国目前氢能产业仍处于初期阶段,氢气主要以“灰氢”为主,在生产过程中会有大量的CO2排放,并不能算是清洁能源。最终阶段的氢气是“绿氢”,这类氢气是通过使用可再生能源(例如太阳能、风能、核能等)制造的氢气。
目前较为成熟的生产方式是:可再生能源发电进行电解水制氢:主要是利用风光发电制氢,在生产“绿氢”的过程中,能够实现完全的无碳化。水电解制氢主要原理为水分子在直流电的作用下被解离生成氧气和氢气,分别从电解槽阳极和阴极析出。根据电解槽隔膜材料不同,可以分为碱性水电解(AE)、质子交换膜(PEM)水电解以及高温固体氧化物水电解(SOEC)。
正在开展研究的未来可能的氢能生产方式有: 1,液氨制氢, 主要原理是利用液氨和钠单质反应生成氨基化钠,然后氨基化钠将分解成为氮气、氢气以及钠单质。2,生物制氢,生物法制氢是把自然界储存于有机化合物中的能量通过产氢细菌等生物的作用转化为氢气。生物制氢是微生物自身新陈代谢的结果。具体包括:光解水制氢,暗发酵制氢,光发酵制氢几种方式3,太阳能制氢,目前太阳能制氢技术实现的主要途径有光化学制氢、光催化法制氢、人工光合作用制氢等。4,核能制氢,核能制氢就是利用核反应堆产生的热作为制氢的能源,通过选择合适的工艺,实现高效、大规模的制氢;同时减少甚至消除温室气体的排放。
1、污染小:
与传统燃油发动机不同的是,以氢燃料电池作为供能系统的汽车在行驶中不会释放像COx、NOx、SOx气体和粉尘等污染物,所以其污染更低,几乎没有什么污染。
2、噪声低:
氢燃料电池汽车在行驶时产生的噪音比较低,所以可以在一定程度上提升驾乘人员的舒适性。
3、效率高:
氢燃料电池的发电效率可以达到50%以上,它可以直接将化学能转化为电能,所以动力传递效率比较高,使汽车的动力更加突出。
化石能源制氢技术比较成熟,可以满足规模用氢需求;制氢技术正向可再生能源制氢转变。
一、工业制氢技术主要有以煤、天然气、石油等为原料的催化重整制氢,氯碱、钢铁、焦化等工业副产物制氢,生物质气化或垃圾填埋气生物制氢,采用网电或未来直接利用可再生能源电力电解水制氢;处于实验室阶段但潜力大的有光催化分解水、高温热化学裂解水和微生物催化等先进制氢技术。
二、氢气发生器电解槽 电解槽类型一般有:碱性电解槽、基于离子交换技术的聚合物薄膜电解槽和固体氧化物电解槽。
1、实验室中使用的碱性电解槽制氢和聚合物薄膜电解槽制氢。
2、碱性电解槽是最常用、技术最成熟、也最经济的电解槽,并且易于操作,在目前广泛使用,但缺点是其效率最低。
3、碱性电解槽制氢的特点是:氢氧根离子(OH-)在阴、阳极之间的电场力作用下穿过多孔的横隔膜。
4、碱液电解制氢工作原理是传统隔膜碱液电解法。电解槽内的导电介质为氢氧化钾水溶液,两极室的分隔物为航天电解设备用优质隔膜,与端板合为一体的耐蚀、传质良好的格栅电极等组成电解槽。
三、聚合物薄膜电解槽制氢 聚合物薄膜电解槽制氢(PEM),一些地方也称之为固体聚合物电解质(SPE)水电解制氢。该种原理不需电解液,只需纯水,比碱性电解槽安全,电解槽的效率可以达到85%或以上,但由于在电极处使用铂等贵重金属,薄膜材料也是昂贵的材料,故PEM电解槽目前还难以投人大规模的使用。 聚合物薄膜电解槽制氢的特点是:氢离子(H+)在阴、阳极之间的电场力作用下穿过离子交换膜。
四、1、目前氢氧呼吸机的功效主要用于肿瘤等疾病的辅助治疗;
2、氢氧呼吸机的原理与构造主要有两种,传统碱性AEC制氢和质子膜SPE制氢,对应的是吸氢机制氢结果。
首先能源的获得过程可分为,一次,二次,最终和使用能源.一次能源就是直接从自然界中能获得,并使用的,如原油,天然气,而现在用的氢气绝大部分是工厂制备的,因此不能说是一次能源,而我们普通人使用的能源都叫使用能源,要对一次能源进行加工和运输.
能源可分为可再生和不可再生的能源,制氢的方法有两类,
1.利用不可再生资源制氢和利用可再生资源制氢.前者是利用石油、天然气、煤炭等资源的方法,由此生产出的氢气约占目前世界氢气生产总量的96%.这种氢气就是不可再生的.
2.剩余4%的氢气生产量,则基本由电解水来完成,而水是一种可再生资源.这种氢是可再生的.
我国可再生能源制氢将会在2030年实现平价,相信大家对于氢能还没有一个具体的了解。随着我国的发展和经济实力的不断提高,科学技术也是变得越来越高级,对于很多资源也是实现了可以再生,因为现在很多资源在使用的过程中会对我们的环境产生破坏,比如煤炭。所以说我们也是在不断的开发出新的洁净能源。氢能就是这些能源当中的一种,在未来,它具有非常好的发展前景,所以在未来的生活当中,氢能可能会作为我们最主要的使用能源出现。
首先我们要对氢能源有一定的了解,氢能源就是可再生的二次能源,它能够通过一些可再生的方式从其他反应那里制出来氢能源,这也是它之所以是清洁能源的主要原因,因为我们知道,很多能源是不可再生的,就比如说煤炭,如果说我们对于煤炭过度开采的话,那么肯定会出现匮乏的现象,因为煤炭作为自然资源,它是长期储藏在地下的并且不会再生。如果我们对它过度使用的话,肯定有一天会出现灭绝的现象,氢能并不会,它属于可再生能源,我们使用完以后可以从其他的反应当中来制取这样就能够达到一个循环的作用,也是出于这个角度亲能才会被作为是清洁能源被开发。
当氢能实现平价以后将会有非同凡响的意义,首先对于我们国家来说就会实现一更高级的能源使用形式。因为氢能是可再生的清洁能源。所以说在未来将会让我们的科学研究变得更加高效,且清洁将不会再对我们的生活环境产生破坏。在近几年因为过于注重国家的发展,而忽略了能源对于环境的破坏,导致我们现在的生态环境已经发生了质的改变,温室效应的影响也是越来越严重。所以氢能能的出现将会在很大程度上改变这样的局面,并且也会被其他国家所效仿,这就是氢能最大的用处。
其次就是在它实现平价之后,将会有更多的人能够使用的起亲能,在之前我们仅有煤炭的时候,很多人就因为经济实力的原因,没有使用煤炭的经济条件。再到现在大家都普遍使用天然气,也仍然有一些贫困地区依然无法享受到这一待遇。那么在未来,如果说氢能能够实现平价的话,我国的大部分居民都会有生活条件来使用如此清洁的可再生能源,这将会对大家的生活和各方面带来很多的便利,并且还会节省大家的金钱,对于提高我们国家的居民水平有很大的帮助。
氢燃料电池是将氢气和氧气的化学能直接转换成电能的发电装置。其基本原理是电解水的逆反应,把氢和氧分别供给阳极和阴极,氢通过阳极向外扩散和电解质发生反应后,放出电子通过外部的负载到达阴极。
中文名
氢燃料电池
外文名
Hydrogen Fuel Cell
使用元素
氢
原理
电解水的逆反应
适用领域
汽车能源,航天能源等
特点
无污染
燃料电池对环境无污染。它是通过电化学反应,而不是采用燃烧(汽、柴油)或储能(蓄电池)方式--最典型的传统后备电源方案。燃烧会释放像COx、NOx、SOx气体和粉尘等污染物。如上所述,燃料电池只会产生水和热。如果氢是通过可再生能源产生的(光伏电池板、风能发电等),整个循环就是彻底的不产生有害物质排放的过程。
无噪声
燃料电池运行安静,噪声大约只有55dB,相当于人们正常交谈的水平。这使得燃料电池适合于室内安装,或是在室外对噪声有限制的地方。
高效率
燃料电池的发电效率可以达到50%以上,这是由燃料电池的转换性质决定的,直接将化学能转换为电能,不需要经过热能和机械能(发电机)的中间变换。
区别
干电池、蓄电池是一种储能装置,是把电能贮存起来,需要时再释放出来;而氢燃料电池严格地说是一种发电装置,像发电厂一样,是把化学能直接转化为电能的电化学发电装置。另外,氢燃料电池的电极用特制多孔性材料制成,这是氢燃料电池的一项关键技术,它不仅要为气体和电解质提供较大的接触面,还要对电池的化学反应起催化作用。
近日在上海举行的第三届中国国际进口博览会期间,东芝多位高管对澎湃新闻表示,除了已提出“氢能源 社会 ”愿景的日本本土之外,东芝非常看好氢能在中国的发展前景。
放眼全球,日本是近年来最热衷于发展氢能的国家之一。日本“氢能基本战略”提出,到2030年要确立国内可再生能源制氢技术,构建国际氢能供应链,长期目标是利用碳捕获(CCS)技术实现平价化石燃料的脱碳制氢和可再生能源制氢。对于能源自给率低的日本而言,用零碳排的可再生能源来制取清洁高效、较易储运的氢能,无疑是“后福岛时代”得以兼顾能源安全和碳中和目标的理想选择。
日本能源转型历程
“东芝早在50年前就已经开始做氢能方面的技术研发,进行相关技术储备。我们在40年前推向市场的产品,已经有氢能利用的影子。”负责氢能业务的东芝(中国)有限公司营业总监张童对澎湃新闻表示,早年东芝的制氢路线是烃类醇类重整制氢。但在零碳理念下,该公司内部近十年间全面提升氢能体系,东芝燃料电池体系全部是纯氢燃料电池。
据介绍,东芝的纯氢能燃料电池系统H2Rex已累计在日本国内交付100台以上。这种100kW的模块化单元可根据需求灵活组合,启动时间不到5分钟,高效将管道或气罐中的氢气转化为电能和热能。
东芝的纯氢能燃料电池系统H2Rex累计在日本交付100台以上
典型场景如东芝的新氢能综合应用中心,利用太阳能电解水制备氢气,并直接将其应用在东芝的日本府中工厂的燃料电池物流叉车上。这样,不但燃料电池物流叉车在运转时不排放二氧化碳,而且,因为使用了通过可再生能源制取的氢气作为燃料,从制氢到氢利用的全程实现了零碳排。
当突发灾难时,这套小型分布式能源亦可大显身手,作为一条生命线为300名受灾群众提供一周的电力和热水供应。
纯氢固然样样好,但目前在全球范围内仍受居高不下的成本所困。据澎湃新闻了解,上述在日本落地的东芝纯氢燃料电池系统均为有日本政府政策支持的项目。
张童表示,全球可再生能源快速发展,但风电、光伏始终存在间歇性问题。尤其在中国,风电、光伏装机的迅猛增长对电网调峰要求巨大,弃风、弃电的问题屡见不鲜。若将这部分电力转换成氢能储存起来,在需要时再调取,就是一个最理想的结合。“可再生能源与电解质制氢技术结合起来,制出来的氢完全是绿色的。”
他认为,在该领域,东芝的所长是对电力系统、电子设备、控制系统的深入了解和对氢的长期技术积累,目前正在与多家上游制氢企业探讨合作。在氢能起步阶段,东芝呼吁政府对全行业予以政策支持,鼓励更多企业参与氢能产业链的完善,并尽早明确氢使用的法律法规。在这些前提下,氢能成本才能随着规模化效应快速下降。
氢能成本的下降有赖于一个足够大且高速成长的下游市场。东芝正在推动纯氢能燃料电池系统H2Rex尽早应用于中国市场,使其成本上尽早符合中国市场潜在的需求,并联合中国合作伙伴一起开拓市场。
实际上,东芝对于“终极能源解决方案”的认识,在日本福岛核事故之后出现了彻底的转变。东芝曾是全球核能领域的重要参与者,旗下拥有 历史 战绩辉煌的美国西屋电气公司。但由于2011年福岛核事故后全球核电建设放缓、建造成本陡增、西屋电气申请破产保护等原因,东芝最终选择剥离核电资产。
今年10月,日本首相菅义伟在临时国会上发表施政演说时宣布,日本将争取在2050年实现温室气体净零排放。这标志着作为全球第三大经济体和第五大碳排放国的日本在气候议题上的立场发生巨大转变。目前,日本的温室气体排放中有至少80%来自能源领域。
“二氧化碳零排放并不是最近才有的呼声,很早以前大家就在进行与此相关的探讨。”东芝中国总代表宫崎洋一对澎湃新闻说道,福岛核事故改变了全球的碳减排思路。2011年之前,日本、欧洲都将低碳发电目标寄希望于核能,但福岛事故后由于安全标准升级、核能发电成本陡增,欧洲主要国家纷纷选择弃核。
宫崎洋一称,除了重点业务氢能之外,目前东芝还有其他颇具竞争力的能源业务和碳捕捉技术,可以根据不同地区的特征进行灵活组合。具体而言,在水电领域,东芝的实际供货数量和技术实力处于全球第一梯队,已经向44个国家及地区累计供货2300多台水轮机和1800多台发电机;光伏领域,东芝的工业用光伏发电系统在日本有2700处应用,住宅用光伏发电系统在日本为10万户以上客户使用;地热领域,东芝已向全球提供累计达3.7GW的地热发电设备,以设备容量计处于全球第一。
福岛氢能研究基地(FH2R)
在日本国立的新能源产业技术综合开发机构(NEDO)牵头下,东芝与另外两家日本企业合作的福岛氢能研究基地(FH2R)已于今年2月底建成。
FH2R系统概览
该项目建有全球最大的利用可再生能源的10MW级制氢装置,正在验证清洁低成本的制氢技术。这里产生的氢气不仅用来平衡电力系统,还为固定的氢燃料电池系统、移动的氢燃料车等提供动力。
校对:刘威
氢能利用,是指将氢能转化为电能、热能等加以利用。
氢能是一种二次能源,它是通过天然气重整、电解水、太阳能光合作用、生物制氢等其它能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。
基本介绍中文名 :氢能利用 外文名 :Hydrogen utilization 优点 :安全、环保 套用 :广泛 历史 :二战开始就已利用 利用方向 :燃料、发电等 氢能利用历史,开发现状,氢能制备方法,特点,氢能利用安全问题,氢能利用方向,展望, 氢能利用历史 在化学史上,人们把氢元素的发现,主要归功于英国化学家和物理学家卡文迪许(Cavendish,H.1731-1810)。但早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特(van Helmont,J.B.1579-1644)曾偶然接触过这种气体,但没有把它离析、收集起来;波义耳虽偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解;1700年,法国药剂师勒梅里(Lemery,N.1645-1715)在巴黎科学院的《报告》上也提到过它。 第一个对氢气进行收集并认真研究的卡文迪许,但卡文迪许对氢气的认识并不正确,他认为水是一种元素而氢则是含有过多燃素的水。直到1782年,拉瓦锡明确提出水并非元素而是化合物。1787年,他把过去称作“易燃空气”的这种气体命名为“Hydrogen”(氢),意思是“产生水的”,并确认它是一种元素。 氢作为内燃机的燃料并是人类最近的发明。在内燃机中使用氢气已有相当长的历史。 人类历史上第一款氢气内燃机的历史可以上溯到 1807 年,瑞士人伊萨克·代·李瓦茨制成了单缸氢气内燃机。他把氢气充进气缸,氢气在气缸内燃烧最终推动活塞往复运动。该项发明在 1807 年 1 月 30 日获得法国专利,这是第一个关于汽车产品的专利。但由于受当时的技术水平所限,制造和使用氢气远比使用蒸汽和汽油等资源复杂,氢气内燃机于是被蒸汽机、柴油机以及汽油机“淹没” 在第二次世界大战期间,氢就被用做A-2火箭发动机的液体推进剂。 1960年液氢首次用作航天动力燃料,1970年美国发射的“阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料,现在氢已是火箭领域的常用燃料了。 对现代太空梭而言,减轻燃料自重,增加有效载荷变得更为重要。氢的能量密度很高,是普通汽油的3倍,这意味着太空梭以氢作为燃料,其自重可减轻2/3,这对太空梭无疑是极为有利的。除此之外,氢还可以用于宇宙飞船。 现在科学家们正在研究一种“固态氢”的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料,在飞行期间,飞船上所有的非重要零件都可以转作能源而“消耗掉”,这样飞船在宇宙中就能飞行更长的时间。 80年代后期多种燃料电池汽车被公开示范. 90年代后期小型燃料电池取代蓄电池的可行性得到证实。 进入21世纪,在面对环境污染等危机下,氢能燃料电池快速发展,并且更多成型的氢燃料电池汽车正开始走向市场。 开发现状 氢能作为倔强当前人类所面临困境的新能源而成为各国大力研究的对象,据美国能源部(DOE)新能源开发中心调查,过去5年,全世界工业化国家对氢能的开发投入年均递增20.5%。美国一直重视氢能。2003年,布希 *** 投资17亿美元,启动氢燃料开发计画,该计画提出了氢能工业化生产技术、氢能储存技术、氢能套用等重点开发项目。2004年2月,美国能源部公布了《氢能技术研究、开发与示范行动计画》,该计画详细阐述了发展氢经济的步骤和向氢经济过渡的时间表,该计画的出台是美国推动氢经济发展的又一重大举措,标准著美国发展氢经济已经从政策评估、制定阶段进入到了系统化实施阶段。2004年5月美国建立了第一座氢气站,加利福尼亚州的一个固定制氢发电装置“家庭能量站第三代”开始试用。2005年7月,世界上第一批生产氢能燃料电池的公司之一------戴姆勒----克莱斯勒(Daimler Chrysler)公司研制的“第五代新电池车”成功横跨美国,刷新了燃料电池车在公路上的行驶记录,该车以氢气为动力,全程行驶距离为5245km,最高速度145km/h。 对我国来说,能源建设战略是国民经济发展之重点战略,我国化石能源探明可采储量中,煤炭量为1145亿t、石油量为38亿t、天然气储量为1.37万亿m3,分别占世界储量的11.6%、2.6%、0.9%。我国人口多,人均资源不足,人均煤炭探明可采储量仅为世界平均值的1/2,石油仅为1 /10左右,人均能源占有量明显落后;同时,我国近年来交通运输的能还所占比重愈来愈大,与此同时,汽车尾气污染已经成为大气污染特别是城市大气污染最重要的因素,以此,寻找新的清洁能源对我国的可持续发展有着特别重要的意义。“九五”和“十五”期间,科技部都把燃料电池汽车及相关技术研究开发列入国建科技计画,2002年1月,中国科学院启动科技创新战略行动计画重大项目---------大功率质子交换膜燃料电池发动机及氢能源技术,由中科院大连化学物理研究所主持的这个重大科研项目,主要以科技部国家高技术发展计画(“863”)“电动汽车重大专项”为背景,研究和开发具有自主智慧财产权的75KW和150KW燃料电池发动机及氢能源成套技术,这项世界前沿的技术将有助于我国早日进入氢能时代。目前我国已成功研制除燃料电池轿车和客车,累计实验运行超过2000km,这标志着我国具备开发氢动力燃料电池发动机的能力,2008年奥运会和2010年世博会召开时,燃料电池轿车已经小批量示范性的行驶在街头。 氢能制备方法 1、矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。其方法主要有重油部分氧化重整制氢,天然气水蒸气重整和煤气化制氢。用蒸汽和天然气作原料的制氢化学反应为:CH 4 +2H 2 O=CO 2 +4H 2 .用蒸汽和煤作原料来制取氢气的基本反应过程为:C+2H 2 O=CO 2 +2H 2 。虽然目前90%以上的制氢都是以天然气和煤为原料。但天然气和煤储量有限,且制氢过程回对环境造成污染,按照科学发展观的要求,显然在未来的制氢技术中该方法不是最佳的选择。 2、电解水制氢 电解水制氢工业历史较长,这种方法是基于如下的氢氧可逆反应:2H 2 O=2H 2 +O 2 目前常用的电解槽一般采用压滤式复极结构,或箱式单级结构,每对电解槽压在1.8~2.0V之间,制取1m3H2的能耗在4.0~4.5Kwh。箱式结构的优点是装备简单,易于维修,投资少,缺点是占地面积大,时空产率低;压滤式结构较为复杂,优点是紧凑、占地面积,小、时空产率高,缺点是难维修,投资大。随着科学技术的发展,出现了固体聚合物电解质(SPE)电解槽。SPE槽材料易得,适合大批量生产,而且使用相同数量的阴阳极进行H 2 、O 2 的分离,其效率比常规碱式电解槽要高,另外,SPE槽液相流量是常规碱式电解槽的1/10,使用寿命约为300天。缺点是水电解的能耗仍然非常高。目前,我国水电解工业扔停留在压滤式复极结构电解槽或单级箱式电解槽的水平上,与国外工业和研究的水平差距还很大。 3、甲烷催化热分解制氢 传统的甲烷裂解制造氢气过程都伴有大量的二氧化碳排放,但近年来,甲烷因热分解制氢能避免CO 2 的排放,而成为人们研究的热点。甲烷分解1mol氢气需要37.8KJ的能量,排放CO 2 0.05mol。该法主要优点在于制取高纯氢气的同时,制的更有经济价值、易于出场的固体碳,从而不向大气排放二氧化碳,减轻了温室效应。由于基本不产生CO 2 ,被认为是连线化石燃料和可再生能源之间的过渡工艺。但生产成本不低,如果副产物碳能具有广阔的市场前景,该法将会成为一种很有前途的制氢方法。 4、生物制氢 利用生物制氢技术,可节约不可再生能源,减少黄精污染,可能成为未来能源制备技术的主要发展方向之一。生物制氢是利用微生物在常温、常压下以含氢元素物质(包括植物淀粉、纤维素、糖等有机物及水)为底物进行酶生化反应来制的氢气。迄今为止,以研究报导的产氢生物可分为两大类:光合生物(厌氧光合细菌、蓝细菌和绿藻)和非光合生物(严格厌氧细菌、兼性厌氧细菌和好氧细菌)。 光合生物蓝细菌和绿藻可利用体内巧妙的光合结构转化太阳能为氢能,故其产氢研究远较非光合生物深入。二者均可光裂解水产生氢气,光裂解水产氢是理想的制氢途径,但蓝细菌和绿藻在光合放氢的同时,伴随氧的释放,除产氢效率较低外,如何解决氢酶遇氧失活是该技术应解决的关键问题。厌氧光合细菌与蓝细菌和绿藻相比,其厌氧光合放氢过程不产生氧,故工艺简单。目前鉴于光合放氢过程的复杂性和精密性,研究内容仍主要集中在高活性产氢菌株的筛选或选育、育化和控制环境条件以提高产氢量,其研究水平和规模还基本处于实验室水平。 非光合生物可降解大分子有机物而产氢,使其生物转化可再生能源物质(纤维素及其降解产物和淀粉等)生产氢能研究中显示出优越于光合生物的优势。该类微生物作为氢来源的研究始于20世纪60年代,至20世纪90年代末,我国科学家任南琪等研究开发了以厌氧活性污泥和有机质废水为原料的“有机废水发酵法生物制氢技术”,该技术突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径,中试试验结果表明,生物制氢反应器最高持续产氢能力达到5.7m 3 /(m 3 ·d),生产成本约为目前采用的电解水法制氢成本的一半。 特点 (1)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质 (2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体 (3)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,3%-97%范围内均可燃。而且燃点高,燃烧速度快 (4)除核燃料外,氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,达142.35lkJ/kg,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍 (5)所有元素中,氢重量最轻。在标准状态下,它的密度为0.0899g/L;氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种套用环境的不同要求 (6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用 氢能利用安全问题 氢是安全燃料。大量使用实践表明,氢有着安全的使用记录。美国1967~1977年间发生145起氢事故,都是发生在石油精炼、氯碱工业或核电厂中,并未真正涉及能源套用。 国内外用氢经验显示,氢常见事故可归纳为:未察觉的泄漏阀门故障或泄漏安全阀失灵排空系统故障管道或容器破裂材料损坏置换不良、空气或氧气等杂质残留在系统中氢气排放速率太高管路接头或波纹管损坏输氢过程发生撞车或翻车事故。 这些事故需要补充两个条件才能发生火灾,一是火源,二是氢气与空气或氧气的混合物要处于当时、当地的着火或暴震的极限当中,没有这两个条件,不能酿成事故。实际上,严格管理和认真执行操作规程,绝大多数事故是可以避免的。 氢能利用方向 氢能的利用方式主要有三种: ①直接燃烧; ②通过燃烧电池转化为电能; ③核聚变。 其中最安全高效的使用方式是通过燃料电池将氢能转化为电能。目前,氢能的开发正在引发一场深刻的能源革命,并将可能成为21世纪的主要能源。美、欧、日等已开发国家都从国家可持续发展和安全战略的高度,制定了长期的氢能发展战略。 1、氢内燃机 氢内燃机的基本原理于汽油或者柴油内燃机原理一样。氢内燃机是传统汽油内燃机的带小量改动的版本。氢内燃直接燃烧氢,不使用其他燃料或产生水蒸气排出。氢内燃机不需要任何昂贵的特殊环境或者催化剂就能完全做功,这样就不会存在造价过高的为题。现在很多研发成功的氢内燃机都是混合动力的,也就是既可以使用液氢,也可以使用汽油等作为燃料。这样氢内燃机就成了一种很好的过渡产品。例如,在一次补充燃料后不能到达目的地,但能找到加氢站的情况下就使用氢为燃料;或者先使用液氢,然后找到普通加油站加汽油。这样就不会出现加氢站还不普及的时候人们不敢放心使用氢动力汽车的情况。氢内燃机由于其点火能量小,易实现稀薄燃烧,故可在更宽阔的工况内得到较好的燃油经济性。 2、燃料电池 氢能的套用主要通过燃料电池来实现的。氢燃料电池发电的基本原理是电解水的逆反应,把氢和氧分别供给阴极和阳极,氢通过阴极向外扩散和电解质发生反应后,放出电子通过外部的负载到达阳极。氢燃料电池与普通电池的区别主要在于:干电池、蓄电池是一种储能装置,它把电能储存起来,需要的时候再释放出来而氢燃料电池严格的说是一种发电装置,像发电厂一样,是把化学能直接转化为电能的电化学发电装置。而使用氢燃料电池发电,是将燃烧的化学能直接转换为电能,不需要进行燃烧,能量转换率可达60%~80%,而且污染少,噪声小,装置可大可小,非常灵活。从本质上看,氢燃烧电池的工作方式不同于内燃机,氢燃烧电池通过化学反应产生电能来推动汽车,而内燃机则是通过燃烧热能来推动汽车。由于燃料电池汽车工作过程不涉及燃烧,因此无机械损耗及腐蚀,氢燃烧电池产生的电能可以直接被用于推动汽车的四轮上,从而省略了机械传动装置。现在,各已开发国家的研究者都已强烈意识到氢燃烧电池将结束内燃机时代这一必然趋势,已经开发研究成功氢燃烧电池汽车的汽车厂商包括通用(GM)、福特、丰田(Toyota)、宾士(Benz)、宝马(BMW)等国际大公司。 3、核聚变 核聚变,即氢原子核(氘和氚)结合成较重的原子核(氦)时放出巨大的能量。 热核反应,或原子核的巨变反应,是当前很有前途的新能源。参与核反应的氢原子核,如氢、氘、氟、锂等从热运动获得必要的动能而引起的聚变反应。热核反应是氢弹爆炸的基础,可在瞬间产生大量热能,但目前尚无法加以利用。如能使热核反应在一定约束区域内,根据人们的意图有控制的产生于进行,即可实现受控热核反应。这正是目前在进行试验研究的重大课题。受控热核反应是聚变反应堆的基础。聚变反应堆一旦成功,则可能向人类提供最清洁而又取之不尽的能源。 目前,可行性较大的可控核聚变反应堆就是托卡马克装置。托卡马克是一种利用磁约束来实现受控核聚变的环形容器。他的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是有位苏联莫斯科的库尔恰托夫研究所的阿奇莫维奇等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部回产生巨大的螺旋形磁场,将其中的等离子加热到很高的温度,已达到核聚变的目的。我国也由两座核聚变实验装置。 展望 能源、资源及环境问题迫切需要氢能源来化解这种危机,但目前氢能源的制备还不成熟,储氢材料的研究大多仍处于实验室的探索阶段。氢能源的制备应主要集中在生物制氢这一方面,其他制氢方法,是不可持续的,不符合科学发展的要求。生物制氢中的微生物制氢需要基因工程同化学工程的有机结合,这样才能充分利用现有科技尽快开发出符合要求的产氢生物。生物质制氢需要技术的不断改进和大力推广,这些都是一个艰难的过程。 氢气的储存主要集中在新材料的发现方面,对材料的规模化或工业制备还未及考虑,对不同储氢材料的储氢机理也有待于进一步研究。另外,因为每一种储氢材料都有其优缺点,且大部分储氢材料的性能都有加合性的特点,而单一的储氢材料的性质也较多地为人们所认识。因此认为,应该研制出集多种单一储氢材料储氢优点于一体的复合储氢材料是未来储氢材料发展的一个方向。