建材秒知道
登录
建材号 > 能源科技 > 正文

为什么说煤炭,石油,天然气等矿物燃料是不可再生能源

愤怒的发卡
靓丽的歌曲
2023-02-14 10:39:18

为什么说煤炭,石油,天然气等矿物燃料是不可再生能源

最佳答案
风中的魔镜
单身的斑马
2025-06-28 10:33:28

这类矿产的产生 最短也是以万年来计算的

从有机质的埋藏 压实 变成沉积岩 再埋深 经过一系列演化过程

这个时间短则上万 上十万百万年 长则以千万年甚至亿年计算

而人类进入工业化时代是19世纪 对这类矿产的认识开发业只有短短的数百年历史

大规模工业化开采还不到一百年

消耗速度是远远快于形成速度的

从地质历史的角度 则是可以再生的~只是这又是若干万年的周期

届时有没有人类都是未知数~

所以 以人类的历史和认知范围内 这是不可再生资源——等几十万年以后人在哪呢~

最新回答
超帅的香烟
爱撒娇的手链
2025-06-28 10:33:28

不可再生资源意味着越用会越少,越少就越珍贵,所以不可再生资源都与珍贵相联系。由于珍贵,也就自然而然地被商家炒作利用。不可再生资源主要指矿藏,分为非金属矿藏和金属矿藏。非金属矿藏,特别重要的比如煤炭、石油是工业化国家必不可少的能源矿藏资源,还有各种宝石矿藏;金属矿藏,特别重要的比如金、银、铜、铁等等。除此之外,一些历经千万年才生长一点点的生物或植物天然合成成分也被视为不可再生资源,比如珊瑚、琥珀。在我感兴趣的不可再生资源里,大部分可以用作首饰的原材料,比如金银首饰、钻石、彩色宝石、珊瑚饰品、琥珀饰品。我在这些可以作为首饰原材料的不可再生资源上花费了大量时间和心血去研究,研究它们的品质、可能形成的年代,以及收藏它们中比较漂亮的首饰。可能它们现在还不是价值不菲,但是相信总有一天它们会价值连城。

舒心的铅笔
笨笨的龙猫
2025-06-28 10:33:28
什么是生物能源,生物能源能不能替代石油等不可再生能源?

地球上每年植物光合作用固定的碳达2×1011t,含能量达3×1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物质遍布世界各地,其蕴藏量极大,仅地球上的植物,每年生产量就像当于现阶段人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。虽然不同国家单位面积生物质的产量差异很大,但地球上每个国家都有某种形式的生物质,生物质能是热能的来源,为人类提供了基本燃料。

开发“绿色能源”已成为当今世界上工业化国家开源节流、化害为利和保护环境的重要手段。至少有14个工业化国家在开发“绿色能源”方面取得了良好成绩,其中有些国家通过实施“绿色能源”政策,在相当大程度上缓解了本国能源不足的矛盾,而且显著改善了环境。

我国拥有丰富的生物质能资源,我国理论生物质能资源50亿吨左右。现阶段可供利用开发的资源主要为生物质废弃物,包括农作物秸秆、薪柴、禽畜粪便、工业有机废弃物和城市固体有机垃圾等。然而,由于农业、林业、工业及生活方面的生物质资源状况非常复杂,缺乏相关的统计资料和数据,以及各类生物质能资源间以各种复杂的方式相互影响,因此,生物质的消耗量是最难确定或估计的。

近年来,我国在生物质能利用领域取得了重大进展,特别是沼气技术,每年所生产能源己达115万吨油当量,占农村能源的0.24%;由节柴炕灶每年所节约的能量己达52.5万吨油当量。

我国 *** 及有关部门对生物质能源利用也极为重视,己连续在四个国家五年计划将生物质能利用技术的研究与应用列为重点科技攻关项目,开展了生物质能利用技术的研究与开发,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等,取得了多项优秀成果。政策方面,2005年2月28日,第十届全国人民代表大会常务委员会第十四次会议通过了《可再生能源法》,2006年1月1日起已经正式实施,并于2006年陆续出台了相应的配套措施。这表明我国 *** 已在法律上明确了可再生能源包括生物质能在现代能源中的地位,并在政策上给予了巨大优惠支持,因此,我国生物质能发展前景和投资前景极为广阔。

<生物能源>(中国投资咨询网)

第一章 生物质能概述

1.1 生物质能的概念与形态

1.1.1 生物质能的含义

1.1.2 生物质能的种类与形态

1.1.3 生物质能的优缺点

1.2 生物质能的性质与用途

1.2.1 生物质的重要性

1.2.2 与常规能源的相似性及可获得性

1.2.3 生物质能源的可再生性及洁净性

1.3 生物能源的开发范围

1.3.1 植物酒精成为绿色石油

1.3.2 利用甲醇的植物发电

1.3.3 生产石油的草木

1.3.4 藻类生物能源的利用

1.3.5 海中藻菌能源开发

1.3.6 薪柴与“能源林”推广

1.3.7 变垃圾为宝的沼气池

1.3.8 人体生物发电的开发利用

1.3.9 细菌采矿技术的研究

第二章 全球生物质能的开发和利用

2.1 国际生物质能开发利用综述

2.1.1 全球生物质能开发与利用回顾

2.1.2 欧洲各国生物能源研究机构简介

2.1.3 欧盟国家生物质能发展政策分析

2.2 美国

2.2.1 美国生物质能研发概况

2.2.2 美国生物质能的研究领域

2.2.3 美国将大力开发燃料乙醇和生物燃油

2.3 德国

2.3.1 德国生物质能的研发和应用状况

2.3.2 德国积极发展生物质能替代石油

2.3.3 德国生物柴油生产和销售状况

2.4 日本

2.4.1 日本生物质能的研究计划

2.4.2 日本生物质能发电应用状况

2.4.3 日本生物质能源综合战略分析

2.5 其它国家

2.5.1 英国大力发展生物质能产业

2.5.2 瑞典生物质能发展概述

2.5.3 巴西大力开发生物质能源

2.5.4 农业为法国发展生物燃料奠定基础

2.5.5 印度生物质能开发与利用概况

2.5.6 泰国积极拓展生物能源领域

第三章 中国生物质能开发和利用状况

3.1 中国生物质能发展概述

3.1.1 我国生物质能的资源概况

3.1.2 解析我国发展生物质能的动因

3.1.3 我国对生物质能的应用状况

3.1.4 我国生物质能发展的示范工程

3.1.5 我国发展生物质能的主要成就

3.2 全国各地生物质能利用情况

3.2.1 四川省生物质能资源及利用状况

3.2.2 内蒙古生物质能源发展状况及开发建议

3.2.3 湖北省生物质能集约化应用方向与途径

3.2.4 上海生物质能发展环境与建议

3.3 开发与利用生物质能存在的问题与对策

3.3.1 生物质能利用尚存三大瓶颈

3.3.2 消极因素阻碍生物质能的发展

3.3.3 生物质能开发与国外相比存在的差距

3.3.4 我国发展生物质能的主要策略

3.3.5 未来生物质能发展的基本方向

第四章 中国农村生物质能的开发与利用

4.1 农村生物质能的资源状况

4.1.1 我国农村农作物秸秆资源丰富

4.1.2 农村畜禽养殖场粪便资源状况

4.1.3 林业及其加工废弃物资源状况

4.2 农村生物质能源利用状况

4.2.1 我国农村生物质能利用状况回顾

4.2.2 发展农村生物质能对能源农业的意义

4.2.3 我国农村生物质能开发的主要策略

4.2.4 未来农村生物质能发展战略目标

4.3 主要地区农村生物能源利用状况

4.3.1 江苏农村的生物质能利用状况

4.3.2 北京加速农村生物质能源推广

4.3.3 吉林生物质能源项目的使用概况

第五章 生物质能开发与应用技术分析

5.1 生物质能技术的相关介绍

5.1.1 生物质液化技术

5.1.2 生物质气化技术

5.1.3 生物质发电技术

5.1.4 生物质热解综合技术

5.1.5 生物质固化成型技术

5.2 世界生物质能开发技术分析

5.2.1 国外生物质能技术的发展状况

5.2.2 世界种植“石油”作物技术概况

5.2.3 欧洲生物质能开发与利用技术分析

5.3 中国生物质能技术的发展

5.3.1 我国生物质能技术的主要类别

5.3.2 中国生物质热解液化技术概要

5.3.3 我国生物质能技术存在的主要问题

5.3.4 发展我国生物质能利用技术的策略

5.3.5 我国生物质能利用技术开发建议

第六章 生物柴油

6.1 生物柴油简介

6.1.1 生物柴油的概念

6.1.2 生物柴油的特性

6.1.3 生物柴油的生产工艺

6.1.4 生物柴油的优势与效益

6.2 生物柴油生产的原料来源

6.2.1 油菜成为生物柴油的首选原料

6.2.2 用廉价废旧原料生产生物柴油

6.2.3 花生油下脚废料开发出生物柴油

6.2.4 潲水油可以成为生物柴油原料

6.3 国际生物柴油行业分析

6.3.1 世界生物柴油发展迅速的原因

6.3.2 欧盟生物柴油行业发展现状

6.3.3 美国生物柴油行业发展状况

6.3.4 巴西将提前实现生物柴油发展目标

6.3.5 2007年德国将是生物柴油净出口国

6.3.6 2007年马来西亚将提高生物柴油产量

6.4 我国生物柴油产业发展概述

6.4.1 发展生物柴油的必要性和可行性

6.4.2 我国生物柴油产业尚在初级阶段

6.4.3 我国生物柴油技术发展的成就

6.5 2005-2007年生物柴油产业发展分析

6.5.1 2005年“生物柴油”植物栽培获突破

6.5.2 2006年生物柴油产业迎来投资 ***

6.5.3 2007年环保生物柴油试产成功

6.6 生物柴油发展中的问题与对策

6.6.1 我国生物柴油商业化应用的障碍

6.6.2 突破生物柴油产业发展瓶颈的对策

6.6.3 价格和原料供应问题的解决途径

6.6.4 解析生物柴油发展中的法律欠缺

6.6.5 推动中国生物柴油发展的政策建议

6.7 生物柴油产业发展前景分析

6.7.1 生物柴油在国内的商业化未来

6.7.2 我国生物柴油的市场前景广阔

第七章 燃料乙醇

7.1 燃料乙醇简介

7.1.1 燃料乙醇含义

7.1.2 燃料乙醇的重要作用

7.1.3 变性燃料乙醇简介

7.1.4 变性燃料乙醇国家标准

7.2 燃料乙醇生产原料分析

7.2.1 甘蔗是理想的燃料酒精作物

7.2.2 玉米生产燃料乙醇潜力巨大

7.2.3 不同类型原料的综合比选

7.2.4 发展燃料乙醇原料产业的建议

7.3 国际燃料乙醇产业分析

7.3.1 世界燃料乙醇工业发展回顾

7.3.2 欧洲国家推广应用燃料乙醇概况

7.3.3 乙醇燃料在美国的应用推广过程

7.3.4 巴西 *** 大力发展燃料乙醇工业

7.3.5 全球燃料乙醇替代汽油展望

7.4 中国燃料乙醇产业分析

7.4.1 中国燃料乙醇的生产与应用回顾

7.4.2 中国燃料乙醇推广的实践经验

7.4.3 我国发展燃料乙醇工业的基本原则

7.4.4 燃料乙醇企业面临成本高的难题

7.4.5 发展国内燃料乙醇工业的若干建议

7.5 中国燃料乙醇市场分析

7.5.1 我国燃料乙醇市场简况

7.5.2 燃料乙醇定价与经济性分析

7.5.3 燃料乙醇需求增加使玉米供应出现缺口

7.5.4 推广应用燃料乙醇的经验策略

7.6 燃料乙醇的发展前景和趋势

7.6.1 未来燃料乙醇工业发展前景展望

7.6.2 我国燃料乙醇工业市场前景广阔

7.6.3 木薯制造燃料乙醇的市场前景广阔

第八章 生物质能发电

8.1 国际生物质能发电情况

8.1.1 世界生物质能发电技术日趋成熟

8.1.2 北美地区生物质能发电发展概况

8.1.3 欧盟地区生物质能发电发展分析

8.1.4 生物质能发电未来的前景预测

8.2 中国生物质能发电产业分析

8.2.1 加快生物质发电的必要性和可行性

8.2.2 内地主要生物质发电项目建设情况

8.2.3 发展生物质发电对新农村建设意义重大

8.3 沼气发电

8.3.1 发展我国农村沼气发电的意义重大

8.3.2 我国农村沼气发电的应用技术分析

8.3.3 沼气综合利用发电的经济效益分析

8.3.4 沼气发电商业化发展的障碍与对策

8.3.5 未来我国农村沼气发电的发展前景

8.4 2004-2006年沼气发电项目运行状况

8.4.1 2004年无锡市的沼气发电电量大增

8.4.2 2005年浙江省最大的沼气发电项目成功运行

8.4.3 2006年四川首个沼气发电站在双流建成

8.4.4 2006年徐州建成首家沼气发电工程

8.4.5 2006年兰州大型沼气发电机组试车成功

8.5 秸秆发电

8.5.1 中国秸秆发电发展概况

8.5.2 中国应着力推进秸秆发电事业

8.5.3 国内秸秆发电的技术分析

8.6 生物质气化发电

8.6.1 发展生物质气化发电技术的意义

8.6.2 中国生物质气化发电技术的现状

8.6.3 中小型气化发电技术的现状和问题

8.6.4 生物质气化发电技术的经济性分析

8.6.5 生物质气化发电技术应用市场分析

8.6.6 生物质气化发电技术的发展策略

8.6.7 国家对生物质气化发电的政策支持

第九章 生物质能产业投资分析

9.1 投资生物质能产业的政策环境

9.1.1 我国开发生物质能的有利政策

9.1.2 发展生物质能的财政政策解读

9.1.3 农村能源发展的政策保障与战略思考

9.1.4 我国燃料乙醇工业的相关政策剖析

9.2 投资机会与投资成本分析

9.2.1 中国优先发展的生物能源项目

9.2.2 燃料乙醇行业已成投资热点

9.2.3 国内推广生物柴油的时机成熟

9.2.4 投资生物柴油的经济成本分析

9.3 投资生物质能产业的若干建议

9.3.1 生物质能利用应考虑的几个因素

9.3.2 投资生物质能发电项目亟需谨慎

9.3.3 开发燃料乙醇应关注三大问题

第十章 生物质能利用的发展前景

10.1 全球生物质能的发展前景分析

10.1.1 未来全球将面临能源危机的挑战

10.1.2 全球生物能源利用潜力预测

10.1.3 全球生物质能的发展前景广阔

10.2 中国生物质能的利用前景

10.2.1 我国开发利用生物质能具有广阔前景

10.2.2 我国生物质能资源潜力巨大

10.2.3 中国林业发展生物质能源潜力巨大

10.3 生物质能利用技术的未来展望

10.3.1 生物质能源技术市场前景广阔

10.3.2 未来生物质能应用技术的发展方向

10.3.3 我国生物质能利用技术发展目标

生物能是可再生能源吗

是的.

生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。

生物能是可再生能源还是不可

生物能是以生物为载体将太阳能以化学能形式贮存的一种能量,它直接或间接地来源于植物的光合作用,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍。在各种可再生能源中,生物质是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料 。据估计地球上每年植物光合作用固定的碳达 2x1011t ,含能量达 3x1021j。

下列的能源中,属于不可再生能源的是()A.生物能B.化石能源C.风能D.水

水能、风能可以长期提供,生物能可以再生,所以它们都是可再生能源.

化石能源一旦消耗就很难再生,所以它是不可再生能源.

故选B.

什么是生物能源

生物能源——又称绿色能源。是指从生物质得到的能源,它是人类最早利用的能源。古人钻木取火、伐薪烧炭,实际上就是在使用生物能源。但是通过生物质直接燃烧获得能量是低效而不经济的。随着工业革命的进程,化石能源的大规模使用,生物能源逐步被以煤和石油天然气为代表的化石能源所替代。 “万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不熄灭,生物能源就取之不尽。其转化的过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。生物能源是一种可再生的清洁能源,开发和使用生物能源,符合可持续的科学发展观和循环经济的理念。因此,利用高技术手段开发生物能源,已成为当今世界发达国家能源战略的重要部分。当前生物能源的主要形式有四种:沼气、生物制氢、生物柴油和燃料乙醇。

我们可以把一次能源分为可再生能源和不可再生能源,其中石油属于______能源

我们可以把一次能源分为可再生能源和不可再生能源,其中煤炭、石油、天然气等都属于不可再生能源.

故答案为:不可再生.

下列能源里,()是不可再生资源。 a 海洋能源 b煤c生物能源

下列能源里,(b煤)是不可再生资源。

石油真的是不可再生能源吗?

可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。

煤,石油,天然气等,这样的能直接利用的是一次能源,其他的是二次能源;煤,石油,天然气这样的能源用完就消失了是不可再生能源,核能,太阳能,风力,水力可以再生,是可再生能源,煤炭,煤气是从煤里面再生的,应该归纳为不可再生的能源;常规能源主要是指煤,石油,天然气,水电,风力,新能源主要指太阳能,核能等

乙醇汽油是可再生能源还是不可再生能源,为什么?

可生 因为制作它的主要原料是 玉米 玉米可以可以他 自然就可以在生拉...

而 石油则 不同 但是乙醇 的油我加 感觉 车子跑起来 没有97号的 汽油 有劲...

乙醇汽油是可再生能源。

乙醇,俗称酒精,乙醇汽油是一种由粮食及各种植物纤维加工成的燃料乙醇和普通汽油按一定比例混配形成的新型替代能源。按照我国的国家标准,乙醇汽油是用90%的普通汽油与10%的燃料乙醇调和而成。

乙醇属于可再生能源,是由高粱、玉米、薯类等经过发酵而制得。它不影响汽车的行驶性能,还减少有害气体的排放量。乙醇汽油作为一种新型清洁燃料,是当前世界上可再生能源的发展重点,符合我国能源替代战略和可再生能源发展方向,技术上成熟安全可靠,在我国完全适用,具有较好的经济效益和社会效益。乙醇汽油是一种混合物而不是新型化合物。在汽油中加入适量乙醇作为汽车燃料,可节省石油资源,减少汽车尾气对空气的污染,还可促进农业的生产。

欣慰的鞋垫
淡然的冬日
2025-06-28 10:33:28

东北三省出现了拉闸限电的现象,许多人因为突如其来的停电产生了不一样的感受。那就是东北三省的能源消耗量太大,煤炭数量远远不够市场的需求量,这才使得东北三省采取了非常必要的新店方案。

随着东北三省拉闸限电登上了微博热搜,这也使得国家电网的客服人员回应了东北三省拉闸限电的最终结果。现如今,大部分省份主要是限制工业用电,居民用电并没有受到很大的限制。如果工业限制用电量无法弥补巨大的缺口,那么相关部门会也会进行限制居民用电。

第一个原因:节能减排

众所周知,任何一家企业在生产物品的过程中,任何一家企业都不能够避免地产生许多能源消耗,尤其是电能消耗。现如今,每一个工厂内部都存在着大量的工业化设备,所有的工业化设备的特点就是无电没办法运行。我们来举一个简单的例子,比如一家服装制造企业的工人正在使用缝纫机完成衣服的制作,然而,当地却出现了限制工业用电的现象。缝纫机无法正常运行,工人也会失去原有的工作。最终的原因在于节能减排方案的提出,毕竟二氧化碳的排放量增多,对国内外的环境造成最直接的影响。

第二个原因:能源消耗量太大,不可再生资源的消耗量尤为突出

我国迎来了非常快速的发展阶段,多个省份的多家企业都已经获得了非常多的订单量,这就从很大程度上增加了居民的可支配收入。订单量增多带给居民的直观感受就是收入变高,这背后还伴随着不可再生能源的消耗量越来越高。煤炭资源,石油资源和天然气资源在工业生产中占据着非常重要的地位,所有的行业都不可避免地与三种资源产生间接或直接的联系。工业中的能源消耗量特别大,我国的能源储存量达不到工业生产的需求量,限制用电量可以确保部分地区的煤炭储存量保持在一个适当的平衡中。

总的来说,大家一定要做好万无一失的准备。虽然大部分城市限制的是工业用电,但我们并不能排除工业用电被限制之后,仍然存在着巨大的用电缺口。事实上,任何一个居民都需要理解相关部门制定的措施,毕竟能源的消耗和二氧化碳排放量增多是任何一个国家需要面对的事情。

俏皮的大米
呆萌的日记本
2025-06-28 10:33:28

煤油石油等,这类矿产的产生,最短也是以万年来计算的从有机质的埋藏 压实 变成沉积岩 再埋深 经过一系列演化过程这个时间短则上万 上十万百万年 长则以千万年甚至亿年计算而人类进入工业化时代是19世纪 对这类矿产的认识开发业只有短短的数百年历史大规模工业化开采还不到一百年 消耗速度是远远快于形成速度的 从地质历史的角度 则是可以再生的~只是这又是若干万年的周期届时有没有人类都是未知数~ 所以 以人类的历史和认知范围内 这是不可再生资源。

碳诞生于恒星内部,它随着剧烈的爆炸散布到宇宙空间,然后因为尘埃的聚集慢慢成为地球的一部分。地球上的碳含量几乎是恒定的。

几十亿年来只有极少量的增加,这是因为强烈宇宙射线中的中子辐射9000~15000米的高层大气,使一部分氮-14分解为碳-14和氢。碳-14本身不稳定,它会通过β衰变变回到氮-14。地球上碳-14的含量极少,据计算全球碳-14的存量大约仅有50吨,其中大气层有840千克,其它全被固定在陆地材料中。

50吨的碳-14与地球碳总量相比微不足道。地球上的碳主要是碳-12和碳-13,这是碳的两种稳定同位素,其中碳-12约占碳总量的99%,碳-13约为1%。科学家们估计有超过6亿亿吨的元素碳以碳酸盐的形式被储存在岩石中,另有约1.5亿亿吨碳存在于一种叫做“油母质”或“干酪根”的固体有机混合物里;在地球中心的铁核中还有大量的碳,它与地核的铁结合成碳化铁Fe₇C₃;地球表面广阔的海洋中溶解和储存了大量碳化合物,其中含有38.4万亿吨碳;相比之下大气中的元素碳含量则要少得多,2000年测量的数值约为7200亿吨。