显微镜下的煤是什么样子的?
在电子显微镜下的金原子的颜色是黑色的。
煤炭是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可燃沉积岩,这就是煤炭的形成过程。
扩展资料
煤炭应用范围
1、动力煤:发电用煤、建材用煤、蒸汽机车用煤、一般锅炉用煤、生活用煤和冶金动力用煤。
2、炼焦煤:炼焦煤的主要用途是炼焦炭,焦炭由焦煤或混合煤高温冶炼而成,一般1.3吨左右的焦煤才能炼一吨焦炭。焦炭多用于炼钢,是钢铁等行业的主要生产原料,被喻为钢铁工业的“基本食粮”
在显微镜下,煤炭是色彩斑驳的——既可以呈现出耀眼的金色,也可能是高冷的蓝调或枪灰色。
煤并不是表里如一的。人们常把黑色的或褐色的煤炭比作黑金,一般指其从植物转化为泥炭再到煤炭的过程漫长且储量有限,但在显微镜下,肉眼下的煤炭的确其貌不扬,而在显微镜下,它却是色彩斑驳的——既可以呈现出耀眼的金色,也可能是高冷的蓝调或枪灰色。
扩展资料:
显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率表示它们的放大本领。
因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大率。显微镜观察物体时通常视角甚小,因此视角之比可用其正切之比代替。
煤的显微组成是研究煤成因的基础,也是煤岩学与煤地球化学相结合的枢纽。煤中每一个可用显微镜鉴定的组分称之为一个显微组分或煤岩组分。煤的显微组分可分为三类:①壳质组(或稳定组),富类脂质植物遗体的残余物,如树脂蜡、花粉、角质和藻类体。壳质组富含脂肪族成分,氢含量(一般大于6%)和挥发分(50%~97.4%)高、碳含量低;②镜质组(或腐殖组),含木质素、纤维素的植物组织的残余物,如树皮、树干、树根等。镜质组富芳香族成分、氧含量高(1.5%~20%)、挥发分中等(2%~50%)、氢含量为1.5%~5.5%;③丝质组(或惰性组),较硬的富碳脆性小颗粒,其原始物质和化学结构与镜质组相似,是丝碳化作用的产物。其芳构化程度高,富含碳(大于90%),含氢量(小于3%)、含氧量(4%左右)和挥发分低。三种煤岩组分的差异较为明显(图4-14)。
煤中主要元素为碳、氢、氧,其次为硫、氮。除上述五种主要元素以外,煤中还伴有60余种微量元素,其中主要的有V、U、Ga、Ge、Ni、Mo、Fe、Pb、Zn、Cu、Au、Ag等,且大部分的元素含量都超过该元素的克拉克值,V、U、Ga、Ge、Ni、Mo等在煤和煤系地层中可形成工业矿床。Breger(1958)总结了生物有机质对煤中元素聚集及分布的影响,认为:①生命有机体的生命活动造成了C、N、P、S、Fe、Si、Ca、Ba、Mn、I(Cu、V)、Zn的聚集;②生命有机体死亡后的聚积作用,其一为通过化学方式,如V、Ga、Ge等进入到有机分子中,Fe、Pb、Zn、Cu等以硫化物形式沉淀下来,Ag经过还原途径聚积起来;其二为通过吸附方式聚积起来,如V、Ag、U、Th。
图4-13 生物及其组织和天然有机岩的H/C、O/C原子比图
图4-14 煤在H/C~O/C图上的位置
“无机显微组分”为显微镜下能观察到的矿物,常见的有粘土矿物、石英、黄铁矿、方解石、菱铁矿等;
“有机显微组分”为显微镜下所能识别的有机质的基本单位,有镜质体、丝质体、树脂体、角质体、孢子体、木栓质体、藻类体等等。
煤的显微组成
一般在显微镜下才能识别的煤的成分,叫显微成分。由植物转变成的是有机显微成分,而矿物质是无机显微成分。
(1)镜质组 它是腐植煤中最主要的显微组分,由植物茎、叶的木质纤维组织经煤化作用形成的各种胶体。国内绝大多数的煤都以镜质组为主,且其性质与变质程度呈有规律变化,故可用镜质组作为煤的代表组分。
(2)丝质组 其原始材料与镜质组相同,只是它经过丝炭化作用而成。
(3)半镜质组 在镜质组与丝质组之间存在的一种过渡组分。其性质大约1/3近似于镜质组,2/3近似于丝质组。
(4)稳定组 植物残骸中的角质、孢子、树脂等,因有角质或树脂保护,能抵抗细菌生化作用而在泥炭中保持原有状态,所以称作稳定组。
(5)矿物质 是煤中的惰性组分,由各种矿石如粘土矿、黄铁矿等组成。
宏观煤岩成分的镜煤中主要是镜质组,丝炭主要是丝质组,亮煤和暗煤是各种组分的混合体,但亮煤的主体是镜质组,暗煤的主体是丝质组。
3.煤岩显微组分的工艺性质
(1)各显微组分的工艺性质和元素分析 对同一种煤的不同显微组分而言,一般挥发分产率以稳定组最高,镜质组其次,丝质组最低。碳含量则以丝质组最高,稳定组其次,镜质组稍低于稳定组。
(2)干馏后的变化 在焦炭或半焦中以骨架形式存在的丝质组,没有粘结性,称为惰性组分。在热分解时基本没有液态产物,也不熔融,故和灰分一样,都称为不可熔组分。以颗粒状粘结物形式存在的镜质组粘结性最好,半镜质组及稳定组形成的胶质体易于挥发,粘结性次于镜质组。它们称为活性组分,也称为可熔组分。
(3)干馏产物的收率 焦炭产率以丝质组最高,镜质组其次,稳定组最低,稳定组的焦油收率最高,丝质组焦油产率最低。
(4)氧化 一般稳定组比镜质组和丝质组较难氧化。
岩浆侵入热会使煤的显微煤岩特征发生变化,主要包括高温热解转化和碳化两个过程。高温热解导致煤中挥发分和大量的气体产生,而碳化阶段主要引起煤的碳含量显著增加,直至转化为石墨。随着岩浆侵入,高温热液或蒸汽极易导致煤的镜质组发生塑化或软化,并生成大量脱挥发分气孔;当侵入体冷却时,又会在煤岩中形成大量的缩聚裂隙。研究发现,靠近岩浆接触处,煤中的气孔和裂隙有逐渐增高的趋势,且这些气孔和裂隙主要产生于均质镜质体、团块镜质体和基质镜质体中(图3.9a~图3.9c),大部分脱挥发分气孔和微裂隙被后生矿物所充填(图3.9b~图3.9d)。如图3.9b所示,团块镜质体周边气孔中充填大量的黄铁矿,这说明该处侵入时的温度不高于黄铁矿的热解温度500℃。在后生充填矿物中,碳酸盐矿物最为普遍(图3.9d)。一方面,热液交代围岩中的矿物质并在煤的孔裂隙中沉淀形成碳酸盐矿物;另一方面,煤发生热解、碳化并生成大量CO和CO2气体。这很好解释了靠近侵入接触处,煤的灰分含量显著增高的现象。如图3.9d所示,相对于原生的均质镜质体,热改造的均质镜质体呈现较高程度的变形,并在显微镜下显示较高的反射特征。
图3.9 接触热变煤的显微煤岩照片(油侵,500倍反光;F,丝质组;C1,原生均值镜质体;C1a,热改造均质镜质体;C2,基质镜质体;C3,团块镜质体;df,缩聚裂隙;dv,脱挥发分气孔)
岩浆的侵入会导致煤的显微组分含量发生一定的变化。在岩浆热作用下,煤层中的富氢的镜质组组分和稳定组分产生易挥发的气相物质,因此组分含量降低;而煤中的惰质组含量相应增高。这种规律在五个重点调查矿区的孟庄矿、红菱矿和朱庄矿非常明显(表3.1)。如图3.10和图3.11所示,在朱庄矿和红菱矿,镜质组含量在靠近岩浆接触处相对较低,特别是其中的均值镜质体的含量,靠近岩体处显著降低;相反,惰质组及其亚组分的含量呈现靠近岩浆接触处显著增高的特点。值得指出的是,显微组成随接触距离的这种变化规律在印度尼西亚的南苏门答腊盆地也得到印证(Amijaya and Littke,2006)。
图3.10 朱庄矿煤岩显微组成与岩浆接触的关系
图3.11 红菱矿煤岩显微组成与岩浆接触的关系
煤是古代植物遗体堆积在湖泊、海湾、浅海等地方,经过复杂的生物化学和物理化学作用转化而成的一种具有可燃效能的沉积岩。煤的化学成分主要为碳、氢、氧、氮、硫等元素。在显微镜下可以发现煤中有植物细胞组成的孢子、花粉等,在煤层中还可以发现植物化石,所有这些都可以证明煤是由植物遗体堆积而成。科学家们在地质考察研究中发现,在地球上曾经有过气候潮溼、植物茂盛的时代,如石炭纪、二迭纪(距今约3亿年)、侏罗纪(距今约1.3亿~1.8亿年)等。当时大量繁生的植物在封闭的湖泊、沼泽或海湾等地堆积下来,并迅速被泥砂覆盖,经过亿万年以后,植物变成了煤,泥砂变成了砂岩或页岩。由于有节奏的地壳运动和反复堆积,在同一地区往往具有很多煤层,每层煤都被岩石分开。由植物变为煤的过程可以分为三个阶段:(1)菌解阶段,即泥炭化阶段。当植物堆积在水下被泥砂覆盖起来的时候,便逐渐与氧气隔绝,由嫌气细菌参与作用,促使有机质分解而生成泥炭。通过这种作用,植物遗体中氢、氧成分逐渐减少,而碳的成分逐渐增加。泥炭质地疏松、褐色、无光泽、比重小,可看出有机质的残体,用火柴烧可以引燃,烟浓灰多。(2)煤化作用阶段,即褐煤阶段。当泥炭被沉积物覆盖形成顶板后,便成了完全封闭的环境,细菌作用逐渐停止,泥炭开始压缩、脱水而胶结,碳的含量进一步增加,过渡成为褐煤,这称为煤化作用。褐煤颜色为褐色或近于黑色,光泽暗淡,基本上不见有机物残体,质地较泥炭致密,用火柴可以引燃,有烟。(3)变质阶段,即烟煤及无烟煤阶段。褐煤是在低温和低压下形成的。如果褐煤埋藏在地下较深位置时,就会受到高温高压的作用,使褐煤的化学成分发生变化,主要是水分和挥发成分减少,含碳量相对增加;在物理性质上也发生改变,主要是密度、比重、光泽和硬度增加,而成为烟煤。这种作用是煤的变质作用。烟煤颜色为黑色,有光泽,致密状,用蜡烛可以引燃,火焰明亮,有烟。烟煤进一步变质,成为无烟煤。
煤矿是怎么形成的?
由于古代的在植物大量沉积,被深深的埋在地层下,受到高压和高温,经过几亿年的时间,变成煤炭
煤矿和其它矿一样,是层状的,且不是到处都有,如果是地表植物积聚而成,则不会那么集中,应该到处都有,所以我认为,书上所说的不对。碳元素是地球故有的,地表的碳大部分以化合物形式存在,地心的碳以单质形式存在,地心的碳向地表喷出时,一部分为钻石,一部分为石墨,大部分为煤(不同条件下形成不同的物质),和其它大部分矿的成因一样。
植物当被压在地下,在长时间的缺氧高压的条件下便会形成煤。
石炭纪地球植物大繁盛,为煤的形成形成的强大的物质基础,后来的造山运动为煤的形成提供了外部条件。经过常年累月,便有了煤。
煤是怎么来的?
地球四十三亿年的年龄里,只有两个比较重大的成煤时代,一个是石炭纪,一个是侏㑩纪。我们现在开采的大多是形成于侏㑩系的煤层,就近看乌鲁木齐地底下赋存的侏㑩纪西山窑组煤系,就是一个相当优质的煤系,出产动力弱粘结煤,用于锅炉取暖和动力热电。我就以那个特殊的地质年代来简要描述一下煤的形成过程。
侏㑩纪是地球上物种相当丰富的时期,森林密布,恐龙盛行。最重要的是地球在那个时期已形成了大规模的森林植被,那是一切植物和动物的天堂乐园。设想在一个四面环山的盆地里,盆地的中央是茂密的森林,森林在日光的照耀下和雨水河流的滋润下,一年一年的生根发芽,新老更替。枯死的树干和枝丫被风吹雷击而倒伏在大地上,和着落叶化为了尘泥,日积月累,形成了厚厚的含有丰富有机质的泥层。这个厚度甚至可以达到几十米,上百米。然而在这个过程中,盆地在大地构造运动的作用下在慢慢地变迁,盆地四周的山脉越来越高,盆地的中央越来越低,河流冲刷著泥沙覆盖了森林里的地层,有的树木已经枯死,有的树木还在地质运动变化里继续保持着物种的延续。经过几万年还几十万年,原有的森林最终在整体上化作了腐化了的有机地表,最终被泥沙覆盖,形成了一个特殊的盆地沉积构造。这个过程还没有结束,在厚厚的地表泥沙的重力挤压之下,原来的森林有机体最终被压缩成了一个从几米到几十米甚至上百米的含炭地层(估且这么叫,不太专业),煤层的雏形已形成了。在高压甚至高温的地质作用下,原有的有机质被分解,有机质被石炭化,形成了,炭质的状态,脱离有机体的是水还有甲烷、硫化氢、二氧化炭等衍生物。在这个脱氧,脱水的过程中,煤就形成了,这个过程可不短,至少经历了几亿年之久,之所以我们觉得不可思议,主要是因为我们的生命对于这个过程来说只是瞬间的闪逝,我们看不到这个过程的整体面貌,只能依靠逻辑的推理。
最终在今天,我们人类依靠科学工具找到了深埋于地下的各式各样赋存条件的煤层,有直立的,有倾斜的,有水平的,厚度有薄的,有中厚的,有厚的,有特厚的等等多姿多型的煤层。我们使用一项人类最伟大的工程技术――采矿工程来挖掘宇宙自然恩赐予我们的礼物。我们从地面选择合适的地点,向地下凿出立井或斜井,通向煤层,然后象切蛋糕一样分块处理,做好采掘前必备的井巷工程。然后我们用现代化的机械装置切割煤层,装运地下采出的原煤,通过运输装置提升至地面,我们就看到了堆垛得象山一样巨大的煤场,还有拉着一节节满载原煤的火车长龙。我们生活的世界因此有了动力,还有温暖还有了多种多样的材料。煤就是这么来的。
可以想象煤的来源是多么的复杂和不易,我们仅仅是依靠近百年来发展起来的现代化科技来攫取著宇宙上苍赋予我们的造物,我们却造不出来这些大地的精华。在我们将那些乌黑乌黑的能量之源化为灰烬之时,我们同时进行着一种毁灭的过程,即毁灭了大自然原有的积累了亿万年的储蓄,毁灭了大自然依靠时间的力量而完成的生态平衡。我们肆无忌惮地将大地挖掘的千疮百孔;肆无忌惮地燃烧着原煤,将本是积存在地底的碳基通过二氧化碳的形式释放到天空,我们的环境在恶化,我们的能源在枯竭。我们的大地在哭泣。当我们用我们的灵性和智慧无情地撕开了大地的肌肤,掏空了她的肌体里那部分珍贵之后,她是应该喜还是忧呢?
当人类的思想倒逆着流淌到了那时间长河的彼端,在曾经真实现在幻化的世界里,我们应该将那原始优美的大地的同我们现在文明化的土地做个认真的比较了,宇宙还会给我们多少次......
煤是怎么形成的?
煤的形成:
煤是由植物残骸经过复杂的生物化学作用和物理化学作用转变而成的。这个转变过程叫做植物的成煤作用。一般认为,成煤过程分为两个阶段泥炭化阶段和煤化阶段。前者主要是生物化学过程,后者是物理化学过程。
在泥炭化阶段,植物残骸既分解又化合,最后形成泥炭或腐泥。泥炭和腐泥都含有大量的腐植酸,其组成和植物的组成已经有很大的不同。
煤化阶段包含两个连续的过程:
第一个过程,在地热和压力的作用下,泥炭层发生压实、失水、肢体老化、硬结等各种变化而成为褐煤。褐煤的密度比泥炭大,在组成上也发生了显著的变化,碳含量相对增加,腐植酸含量减少,氧含量也减少。因为煤是一种有机巖,所以这个过程又叫做成岩作用。
第二个过程,是褐煤转变为烟煤和无烟煤的过程。在这个过程中煤的性质发生变化,所以这个过程又叫做变质作用。地壳继续下沉,褐煤的覆盖层也随之加厚。在地热和静压力的作用下,褐煤继续经受着物理化学变化而被压实、失水。其内部组成、结构和性质都进一步发生变化。这个过程就是褐煤变成烟煤的变质作用。烟煤比褐煤碳含量增高,氧含量减少,腐植酸在烟煤中已经不存在了。烟煤继续进行着变质作用。由低变质程度向高变质程度变化。从而出现了低变质程度的长焰烟、气煤,中等变质程度的肥煤、焦煤和高变质程度的瘦煤、贫煤。它们之间的碳含量也随着变质程度的加深而增大。
温度对于在成煤过程中的化学反应有决定性的作用。随着地层加深,地温升高,煤的变质程度就逐渐加深。高温作用的时间愈长,煤的变质程度愈高,反之亦然。在温度和时间的同时作用下,煤的变质过程基本上是化学变化过程。在其变化过程中所进行的化学反应是多种多样的,包括脱水、脱羧、脱甲烷、脱氧和缩聚等。
压力也是煤形成过程中的一个重要因素。随着煤化过程中气体的析出和压力的增高,反应速度会愈来愈馒,但却能促成煤化过程中煤质物理结构的变化,能够减少低变质程度煤的孔隙率、水分和增加密度。
当地球处于不同地质年代,随着气候和地理环境的改变,生物也在不断地发展和演化。就植物而言,从无生命一直发展到被子植物。这些植物在相应的地质年代中造成了大量的煤。在整个地质年代中,全球范围内有三个大的成煤期:
(1)古生代的石炭纪和二迭纪,成煤植物主要是袍子植物。主要煤种为烟煤和无烟煤。
(2)中生代的株罗纪和白垩纪,成煤植物主要是裸子植物。主要煤种为褐煤和烟煤。
(3)新生代的第三纪,成煤植物主要是被子植物。主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。
推测煤是怎样形成的?
亿万年前,地表的植物枝、叶由于地壳运动作用,被掩埋在了地底的深处,经过亿万年时间,在高胆缺氧环境下,通过系列复杂的化学反应,碳化,就成了今天的煤
煤炭是怎么形成的
煤炭是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可然化石,这就是煤炭的形成过程
一座煤矿的煤层厚薄与这地区的地壳下降速度及植物遗骸堆积的多少有关。地壳下降的速度快,植物遗骸堆积得厚,这座煤矿的煤层就厚,反之,地壳下降的速度缓慢,植物遗骸堆积的薄,这座煤矿的煤层就薄。又由于地壳的构造运动使原来水平的煤层发生褶皱和断裂,有一些煤层埋到地下更深的地方,有的又被排挤到地表,甚至露出地面,比较容易被人们发现。还有一些煤层相对比较薄,而且面积也不大,所以没有开采价值,有关煤炭的形成至今尚未找到更新的说法。
煤炭是这样形成的吗?有些论述是否应当进一步加以研究和探讨。一座大的煤矿,煤层很厚,煤质很优,但总的来说它的面积并不算很大。如果是千百万年植物的枝叶和根茎自然椎积而成的,它的面积应当是很大的。因为在远古时期地球上到处都是森林和草原,因此,地下也应当到处有储存煤炭的痕迹;煤层也不一定很厚,因为植物的枝叶、根茎腐烂变成腐植质,又会被植物吸收,如此反复,最终被埋入地下时也不会那么集中,土层与煤层的界限也不会划分得那么清楚。
但是,无可否认的事实和依据,煤炭千真万确是植物的残骸经过一系统的演变形成的,这是颠簸不破的真理,只要仔细观察一下煤块,就可以看到有植物的叶和根茎的痕迹;如果把煤切成薄片放到显微镜下观察,就能发现非常清楚的植物组织和构造,而且有时在煤层里还储存著像树干一类的东西,有的煤层里还包裹着完整的昆虫化石。值得探讨的是它为何形成得如此集中,而且又是那么如此的优质呢?
记得上小学的时候,我家住在离城不远的乡村,每当盛夏雨季来临时,一场暴雨过后,村子中央就会出现一条湍急的“小溪流”,我们许多小朋友就会跑到那里面去嬉戏,那小溪流也会因暴雨停止时间的延长,而变得越来越小,最后干涸。但在没有断流之前你会发现,很多水流处却被冲下来的木棍儿、杂草等漂浮物堵塞,形成一个个小的水坎儿。为了能让水流通畅,我们不时地把那些小水坎扒开,有的时候也会借此筑起一道小溪上的“堤坝”。既便是现在居住在城里,一场暴雨过后,街道上很多地方也会出现各种各样的漂浮物截住了水流,堵塞了下水道口,而且很多漂浮物又被集中地滞留在一个地方的现象。
小巫见大巫,由此我们便可以推断出煤炭的形成可能与洪水有直接关系。如果没有洪水那样强大的力量和搬运的功能,煤炭的形成绝对不会那么集中,也不会那么优质。
我们可以设想一下,在千百万年前的地质历史期间,由于气候条件非常适宜,地面上生长著繁茂高大的植物,在海滨和内陆沼泽地带,也生长著大量的植物,那时的雨量又是相当的充沛,当百年一遇的洪水或海啸等自然灾害降临时,就会淹没了草原、淹没了大片森林,那里的大小植物就会被连根拨起,漂浮在水面上,植物根须上的泥土也会随之被冲刷得乾乾净净,这些带着须根和枝杈的大小树木及草类植物也会相互攀缠在一起,顺流漂浮而下,一旦被冲到浅滩、湾叉就会搁浅,它们就会在那里安家落户,并且象筛子一样把所有的漂浮物筛选在那里,很快这里就会形成一道屏障,并且这个地方还会是下次洪水堆积植物残骸(也会有许多动物的残骸)的地方。当洪水消退后,这里就会形成一道逶迤的堆积植物残骸的丘岭,再经过长期的地质变化,这座植物残骸的丘岭就会逐渐地埋入地下,最后演变成今天的煤矿。
那么也许有人会问,1998年中国遭受的一场罕见的水灾,为何没有出现这样的情况呢?我认为,那是因为中国目前的森林覆盖率很低,而且有森林......
煤炭资源是怎样形成的
古代植物的遗体在缺氧环境下碳化,形成泥炭,泥炭经理地质运动的高温高压,进一步碳化,逐渐形成褐煤、气煤、焦煤、烟煤、无烟煤
煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。那么你煤炭对了解多少呢?以下是由我整理关于煤炭知识的内容,希望大家喜欢!
煤炭应用历史
虽然煤炭的重要位置已被石油所替代,但在相当长的一段时间内,由于石油的日渐枯竭,导致它必然走向衰败,而煤炭因储量巨大,加之科学技术的飞速发展,煤炭汽化等新技术日趋成熟,并得到广泛应用,煤炭必将成为人类生产生活中的无法替代的能源之一。
根据成煤的原始物质和条件不同,自然界的煤可分为三大类,即腐植煤、残植煤和腐泥煤。
中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品,河南巩义市也发现有西汉时用煤饼炼铁的遗址。《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭。明代李时珍的《本草纲目》首次使用煤这一名称。希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有《石史》,其中记载有煤的性质和产地古罗马大约在2000年前已开始用煤加热。
煤炭形成原因
煤炭是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可燃沉积岩,这就是煤炭的形成过程。 一座煤矿的煤层厚薄与这地区的地壳下降速度及植物遗骸堆积的多少有关。地壳下降的速度快,植物遗骸堆积得厚,这座煤矿的煤层就厚,反之,地壳下降的速度缓慢,植物遗骸堆积的薄,这座煤矿的煤层就薄。又由于地壳的构造运动使原来水平的煤层发生褶皱和断裂,有一些煤层埋到地下更深的地方,有的又被排挤到地表,甚至露出地面,比较容易被人们发现。还有一些煤层相对比较薄,而且面积也不大,所以没有开采价值,有关煤炭的形成至今尚未找到更新的说法。 煤炭是这样形成的吗?有些论述是否应当进一步加以研究和探讨。一座大的煤矿,煤层很厚,煤质很优,但总的来说它的面积并不算很大。如果是千百万年植物的枝叶和根茎自然堆积而成的,它的面积应当是很大的。因为在远古时期地球上到处都是森林和草原,因此,地下也应当到处有储存煤炭的痕迹煤层也不一定很厚,因为植物的枝叶、根茎腐烂变成腐植质,又会被植物吸收,如此反复,最终被埋入地下时也不会那么集中,土层与煤层的界限也不会划分得那么清楚。 但是,无可否认的事实和依据,煤炭千真万确是植物的残骸经过一系统的演变形成的,这是颠簸不破的真理,只要仔细观察一下煤块,就可以看到有植物的叶和根茎的痕迹如果把煤切成薄片放到显微镜下观察,就能发现非常清楚的植物组织和构造,而且有时在煤层里还保存着像树干一类的东西,有的煤层里还包裹着完整的昆虫化石。在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥泥炭或腐泥被埋藏后, 由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。冰川过程可能有助于成煤植物遗体汇集和保存。
煤炭造成的环境问题
1、排烟脱硫
大气中的SO2污染主要由包括煤炭在内的燃料燃烧所致。燃烧前脱硫可由煤炭洗选及转化中完成。燃烧中脱硫可以用加入脱硫剂办法除掉部分硫分,常用的脱硫剂为白云石和石灰石。
更常用的脱硫技术为排烟脱硫,即将排放的含硫烟气或废气通入吸收剂和吸附剂去掉硫氧化物,又可分为干法、半干法及湿法三种。干法采用固态吸附剂、吸收剂,其装备庞大,费用较高。半干法包括将半固态脱硫剂吹入烟道,也可将排烟气和空气同时吹入半固态脱硫剂,以除去烟气中的SO2、湿法用液态吸收剂,包括碱性吸收剂法和碱土金属类吸收剂法等,前者使用铵、钠、钾溶液,后者使用有钙镁的氧化物或氢氧化物溶液。
2、烟尘污染及防治
煤在燃烧过程中产生烟气、尘粒可形成环境污染。其污染物可分为两类,即气溶胶状态污染物和气态污染物。烟尘属于前者。
煤炭在燃烧过程中经过三个阶段,首先是干燥挥发阶段,其次为燃烧阶段,最后为燃尽阶段,不同阶段需要不同的空气量,过大或过小的空气量都会使燃烧不完全,而使炭粒排入空中形成黑烟。煤中不可燃成分如灰分,燃烧中部分留于灰渣,部分随烟气排入大气形成烟尘,不同灰分的煤其烟尘量也有很大差别。按烟尘粒径不同可分为降尘和飘尘,后者可以长期不降落且可输送距离更远。
烟尘可致人体呼吸道疾病,或作为其他污染物及细菌载体。还可影响植物生长及降低大气的能见度。防治方法是改进燃烧设备和燃烧方式,减少烟尘排放量,还要安装除尘装备,降低烟尘排放浓度。
煤炭开采方法
矸石排放
煤矿生产排放量最大的固体废物, 也是中国工业固体废物中产生量和堆积量最大的固体废物,产生量一般为煤炭产量的10%左右。中国煤矸石年排放量大约在1、5 亿~2、0 亿吨之间。截止2002 年底, 全国煤矸石积存量约34亿吨,占地2、6 万公顷, 是中国工业固体废物中产出量和累计积存量最大的固体废物。2004 年,全国煤矸石综合利用量为1、35 亿吨, 利用率54%。
矿井排水
在煤矿建设和生产过程中,各种类型的水源水会通过不同的途径进入巷道和工作面, 为了保证采矿安全,防止水害发生,需将矿井涌水排出。据不完全统计,在采煤过程中, 2004 年全国煤矿矿井水排放约30 亿m³,平均每吨煤涌水量约为2m³。资源化利用率仅占22%左右。
瓦斯抽放与矿井通风
在煤炭开采前和开采中抽放瓦斯气, 是保证煤矿安全的重要措施。但将抽放的瓦斯排入大气,会产生强烈的温室效应,瓦斯中所含甲烷的温室效应比二氧化碳大20 倍。另外煤矿在生产过程中, 井下巷道每秒钟都需要数十万乃至数百万立方米的空气,它们主要是通过矿井通风来完成, 矿井通风同样含有瓦斯,并且还有大量粉尘。据近几年有关评价估算,全国煤层瓦斯资源量为3×106 。2002 年中国重点煤矿煤层瓦斯产生量为9773、37,其中利用瓦斯量为517、49 ,利用率5%左右。
开采造成的生态破坏
传统煤炭开采忽略其它共生、伴生矿物的开采、加工、利用, 造成了资源的浪费。中国煤系共生、伴生20 多种矿产,绝大多数没有利用, 另外矿物的随意存放丢弃还会造成环境污染,破坏生态环境。
(一)显微组分组成及分布特征
1.准噶尔盆地
准噶尔盆地煤岩显微组分定量统计结果见表3-23及图3-27、3-28及3-29。
由表3-32结合区域资料分析,八道湾组煤岩显微组分以镜质组为主,一般含量80%~97.4%,平均90%左右。惰性组较少,一般含量0.7%~2.2%,平均2%左右;少数较高者也多小于20%,如在准南西段的四棵树和头屯河分别为10.13%和7.31%。壳质组在准东一般1.6%~10.4%,平均6%左右,准南2.22%~6.05%;壳质组一般小于2%,个别地区含量较高,如阜康小龙口和水西沟,壳质组可达8%,主要为角质体(吴传荣等,1995),赋存于角质微亮煤中。
西山窑组各煤层及不同地区的显微煤岩组分特点在盆内各地不尽一致,含量变化较大,一般镜质组和壳质组含量较低,丝质组含量较高。如在准东、和什托洛盖的组分平均含量为镜质组50%,丝质组50%,壳质组微—少量,显微煤岩类型以富丝质组的微镜丝煤为主;在东部巴里坤地区2、3煤层镜质组含量大于87%,而在三塘湖地区镜质组含量降至44%左右,惰性组约为50%,壳质组很低,小于2%。而在准南,镜质组一般都在80%~90%,丝质组较低10%~25%,壳质组2%,显微煤岩类型以富镜质组的微镜丝煤为主。如准南乌鲁木齐、阜康三工河一带的某些煤层中,壳质组含量很高。镜质组中以基质镜质体最常见,均质镜质体和结构镜质体少见,结构保存程度也差。惰性组中有丝质和半丝质体、粗粒和碎屑惰质体等。壳质组分中以孢粉体分布最普遍,其次有角质体,木栓质体极少见。
图3-26 汝箕沟侏罗系主采煤层煤岩-煤质柱状图
表3-23 准噶尔盆地侏罗系煤显微组分含量%
续表
图3-27 准噶尔盆地煤岩显微组分三角图
图3-28 准噶尔盆地部分地区J1-2煤岩显微组分对比图
图3-29 准噶尔盆地中下侏罗统煤岩显微组分
总体看来,准噶尔盆地煤岩显微组分主要以镜质组为主,其含量大多在60%以上,惰性组仅在个别煤层中含量较高,而壳质组在近50%的煤样中,含量超过了15%~20%,特别是在南缘煤层中,角质体是壳质组最主要的组分,在个别煤层中含量甚至达70%,其次是木栓质体,孢子体、树脂体、藻类体和壳屑体含量最少。值得指出的是,基质镜质体在镜质组中占有较高的比例,一般可占整个组分的25%~40%,多的可占到77%。显微镜下的荧光研究表明,相当数量基质镜质体不具有荧光,部分煤样中的基质镜质体虽有荧光,但荧光强度十分微弱,在某些样品中还见有具微弱的暗褐色荧光的基质镜质体向无荧光的基质镜质体过渡的现象。
2.塔里木盆地
库拜煤田显微煤岩组分无论是沿走向或是倾向,各矿区、各煤组均以镜质组为主,其次为丝质组;壳质化物质一般1%左右;矿物质一般1%~10%。沿走向镜质组总的变化趋势是西部略高于东部;相反,丝质组是西部较东部为低。垂向上,下部的A、B煤组较C煤组镜质组略高;丝质组,上部的C煤组则明显的高于A、B两个煤组。各矿区、各煤组的具体变化见表3-16。
镜下观察表明,阳霞煤产地克孜勒努尔组煤层显微组分以惰性组为主,一般介于67.8%~81.1%,个别高达90.6%,其中,半丝质体一般在14.9%以下,丝质体介于51.6%~70.2%;镜质组介于7.5%~26.6%,个别高达79.8%;壳质组在1.0%~13%之间(表3-24)。库拜煤田俄霍布拉克矿区塔里奇克组煤显微组分以镜质组为主,介于63.9%~72.5%,惰性组次之,介于20%~21.8%,壳质组为7.3%~12.9%(表3-24)。阿艾东风矿区煤显微组分中镜质组以均质镜质体为主,一般32.3%~57.4%,基质镜质体次之,一般为13.6%~21.2%,结构镜质体变化较大,介于0.6%~24.5%,团块镜质体和碎屑镜质体介于2.3%~10.9%;惰性组以丝质体和半丝质体为主,介于0.3%~10.5%,粗粒体2.2%~5.8%,微粒体一般0.6%~1.6%;壳质组以孢子体为主,介于1.1%~3.6%,角质体、树脂体和壳屑体次之,木栓质体和藻类体在部分煤样中亦有发现;煤中矿物以粘土矿物为主。和田布雅矿区煤显微组分以镜质组和惰性组为主,其中,均质镜质体为25.1%,丝质体达38.2%;壳质组占3.7%(表3-16及表3-24)。
乌恰煤产地各矿区、各煤层组分差异不大,以镜质组为主,含量85%~98%,丝质组为少,壳质组2.7%~6.5%。乌恰煤产地康苏矿区工作程度较高,该矿区早侏罗世晚期康苏组显微煤岩组成有机组占80%~94%,无机组为6%~20%。有机组中镜质组含量85%~98%,多数为89%~96%,平均93%;丝质组微少;壳质组2.7%~6.5%,平均4.06%,其中以角质层和小孢子为主,有个别大孢子、树脂体和不定形体,成因类型属腐植煤类。各组分含量在垂向上的变化趋势见表3-18。
由表3-18反映康苏组成煤初期环境不大稳定,时期沼泽覆水浅,形成丝质组较高的微镜丝煤;其后覆水深度增大,并保持比较平稳,形成以高镜质组单一组分为主的微镜煤和双组分微亮煤。
总体看,塔里木盆地煤中有机显微组分组成与新疆其他盆地煤中的有机显微组成存在差异,煤中丝质体含量偏高,可能是该盆地煤层容易自燃的原因。
3.吐哈盆地
吐哈盆地西山窑组和八道湾组煤显微组分以镜质组为主,可达40%~95%;惰性组含量变化较大,在2%~67%,平均20%;壳质组含量低于10%,平均可达7%(表3-25及图3-30)。
表3-24 塔里木盆地侏罗系煤显微组分含量%
图3-30 吐哈盆地煤的显微组分三角图
吐哈盆地煤的显微组分组成不均匀。平面上,哈密坳陷尤其三道岭、大南湖等地以富含惰性组为特征,镜质组含量平均为50%,而惰性组则为40%以上,以丝质体和半丝质体为主。壳质组+腐泥组在全盆地煤中含量最低。托克逊凹陷则以高含量的镜质组为特征,可达80%以上(图3-30),结构镜质体与均质镜质体及团块镜质体含量为盆地内分布最多的,惰性组含量较低,平均为7%,壳质组分含量较高,达7%,其中木栓质体平均可达3%。北部凹陷带则以壳质组分含量高为特征,可达9%,镜质组分中以无结构的基质镜质体为主,平均可达50%。纵向上,北部凹陷带西山窑组和八道湾组煤的显微组分组成亦有差异,镜质组含量西山窑组低于八道湾组煤,且八道湾组以高含量具暗褐色荧光的基质镜质体为主要组分,可达50%,基质镜质体中见有超微类脂体,且在七泉湖一带含量较高(图3-31);而西山窑组以富含薄壁角质体为特征。需要指出的是,无论西山窑组还是八道湾组煤,均见有一定量的藻类体,含量可达1%(表3-25及图3-32)。
表3-25 吐哈盆地煤显微组分定量统计结果%
总体上,吐哈盆地煤显微组分可以概括为“碎”、“小”、“薄”和过渡组分含量高。“碎”即含有较高的碎屑镜质体,碎屑壳质体;“小”即壳质组分个体小,如孢子体基本为小孢子体,藻类体的个体也很小;“薄”即角质体为薄壁角质体,而大孢子体,厚壁角质体缺少,树脂体相对缺乏。过渡组分含量高,如半丝质体含量可达5%,不但存在镜质组与丝质组的过渡,而且存在基质镜质体向沥青质体的过渡。
图3-31 吐哈盆地煤层超微脂类体含量等值线图
图3-32 吐哈盆地煤的镜质组含量等值线图
4.伊犁盆地
煤岩镜下观察表明,煤显微组分以镜质组为主,一般介于45%~70%,个别高达90%(B-2孔),半丝质组在10%以下,丝质组介于20%~35%,壳质组在2%~13%之间(表3-26)。伊犁矿区八道湾组煤显微组分中镜质组和惰性组含量相当,介于20%~70%,壳质组一般<5%;西山窑组煤显微组分以惰性组为主,介于42%~88%,镜质组仅为6%~50%,壳质组0.5%~10%(表3-26)。霍城矿区煤显微组分中镜质组以基质镜质体为主,一般20%~30%,结构镜质体1%~5%,团块镜质体和均质镜质体介于1%~3%,极少见胶质镜质体;惰性组以丝质体和半丝质体为主,介于35%~85%,粗粒体0~3%,微粒体一般1%~3%,个别层位可达15%;壳质组以孢子体为主,1%~3%,树脂体和角质体次之,木栓质体在部分煤样中亦有发现,<1%,极少见藻类体;煤中矿物以粘土矿物为主。总体看,伊犁盆地煤中有机显微组分组成与新疆其他盆地煤中的有机显微组成存在差异,可能主要是由于成煤环境差异造成的,因为伊犁盆地属于山间盆地,盆地规模小,盆地中间还存在一个小隆起,周围陆源物质供应充分,冲积相和河流相发育,泥炭沼泽经常暴露地表,造成成煤环境受到风氧化作用,因而煤中丝炭化组分含量较高,而凝胶化组分较少的局面。
表3-26 伊犁盆地侏罗系煤显微组分含量%
5.柴达木盆地
对柴达木盆地和祁连地区煤储层样品的显微组分含量的镜下测试结果见表3-27及表3-28。
表3-27 柴北缘及祁连地区煤储层显微煤岩组分及煤岩类型
表3-28 柴达木盆地侏罗系煤显微组分含量%
镜下观察表明,柴达木盆地西部鱼卡矿区侏罗纪煤储层显微组分以镜质组和惰性组为主,分别为21.1%~89.8%和1.8%~69.9%,含少量壳质组及无机组分,分别占2.9%~8.8%和0.6%~16.7%。且在纵向上显微组分呈规律变化,即从下到上镜质组含量明显增大,惰性组明显减少。其中,镜质组中以基质镜质体、结构镜质体和团块镜质体为主,惰性组中以半丝质体和丝质体为主,煤层上部样品中微粒体含量较高,壳质组中以孢子体为主。大煤沟矿区煤层显微组分以惰性组为主,镜质组次之,分别为28.2%~92%和2.7%~68.5%,壳质组含量为2.3%~5.2%,无机组分含量为1%~3%。
在纵向上显微组分无规律性变化,但煤层顶部样品中镜质组含量明显高于中部和下部,惰性组正相反。其中,镜质组中以基质镜质体为主,惰性组中以丝质体为主,半丝质体次之,壳质组中以孢子体为主。旺尕秀矿区显微组分以镜质组为主,占47.3%~87.9%,惰性组和壳质组的含量较低,在10%以下,并含有少量无机组分,个别样品中无机组分含量较高。其中,镜质组中以结构镜质体、均质镜质体、基质镜质体及团块镜质体为主,惰性组中以丝质体和半丝质体为主,壳质组中以孢子体和树脂体为主。
祁连山含煤区木里煤矿侏罗纪煤储层显微组分以镜质组为主,占50.1%~85.6%,惰性组次之,占13.3%~48.9%,并含少量壳质组和无机组分,分别占0~1.1%和0.3%。其中,镜质组中以均质镜质体和基质镜质体为主,碎屑镜质体和团块镜质体次之,惰性组中以丝质体为主,半丝质体、碎屑惰质体及粗粒体次之,壳质组中只见到孢子体。热水矿区煤层显微组分以镜质组为主,惰性组次之,分别占53.5%~82.6%和15.7%~46.5%,并含少量无机组分,占0.4%~1.7%,未见壳质组。在纵向上,煤层中部和顶部镜质组含量高于底部,中部高达82.6%,而底部的惰性组含量最高,达46.5%。其中,镜质组中均质镜质体为主要成分,惰性组中以丝质体、半丝质体和粗粒体为主。大通矿区煤层显微组分以惰性组为主,镜质组次之,并含少量壳质组和无机组分,分别占40.4%~81.3%、12.4%~55.1%、2.7%~5.2%及0.7%~4.3%,在纵向上无规律性变化。其中镜质组中以基质镜质体、结构镜质体和均质镜质体为主,惰性组以丝质体为主,壳质组以孢子体为主。
总的看来,柴达木盆地西部鱼卡矿区侏罗纪煤储层显微组分以镜质组为主,惰性组次之;向东大煤沟矿区、大头羊矿区及绿草山矿区惰性组含量增高,在显微组分中占主要地位,镜质组次之;盆地东端旺尕秀矿区显微组分以镜质组为主,惰性组和壳质组含量极低,在10%以下。祁连山含煤区西部木里矿区侏罗纪煤层显微组分以镜质组为主,惰性组次之;向东热水矿区、海德尔矿区及默勒矿区同木里矿区相似;大通矿区煤层则以惰性组为主,镜质组次之(表3-27和表3-28)。
6.鄂尔多斯盆地
由表3-29、表3-30及表3-31可知,研究区内煤的显微组成多以镜质组占绝对优势,惰性组次之,壳质组极少,属于腐植煤。煤中矿物质以石炭—二叠系煤居多,延安组煤较少。煤的显微组分在纵向分布上,镜质组含量以延长组最高,约占89%(张福礼等,1992);其次为太原组和山西组煤,延安组煤含镜质组最少。壳质组含量由太原组→山西组→延长组→延安组依次减少。惰性组以延安组占优势,次为山西组、太原组与延长组。
石炭—二叠系煤的显微煤岩组分以镜质组为主,含量在59.8%~83.8%,丝质组次之(表3-30)。其中盆地西缘中部镜质组含量一般大于70%左右,丝质组含量12%左右。北部府谷盆地中部及东部镜质组在80%左右(图3-33),丝质组含量多低于10%。在平面分布上,表现为由北往南石炭—二叠系煤的镜质组含量增多,惰性组减少;从盆缘到盆内镜质组亦增加,惰性组含量变化与此相反(图3-33)。这表明盆地边缘丝炭化作用较强,向盆内覆水加深,水体稳定闭塞,还原作用加强,导致其凝胶化作用加强。
表3-29 鄂尔多斯盆地侏罗系煤的显微组分定量统计表%
表3-30 鄂尔多斯盆地石炭—二叠系煤的显微组分定量统计表%
续表
表3-31 鄂尔多斯盆地显微煤岩组成%
侏罗系延安组煤的显微组分以镜质组含量普遍较低,丝质组含量较高为特点(表3-29)。除汝箕沟矿区煤的镜质组含量局部最高达96%之外,全区煤的镜质组含量在32%~80%之间。煤的显微组分在平面分布总的趋势为,由盆地周缘向盆地中心镜质组含量增加,丝质组含量减少。盆地北缘的东胜地区煤的镜质组含量最低,一般在27.5%~50%之间,陕西神府,榆横地区煤的镜质组含量较高,镜质组含量在60%~70%之间。盆地西缘汝箕沟、石炭井、华亭等矿区镜质组含量大于60%外,其他地区均在40%左右(表3-31)。在垂向上,延安组煤的镜质组含量由低+高+低,而惰性组含量则由高+低+高。这可能与沉积环境演变有关,湖水面由扩展到收缩,湖滨三角洲由建设性转为废弃时水位发生变化,同时也反映了古气候由较干旱到潮湿,再到较干旱的旋回演变。
图3-33 鄂尔多斯盆地石炭—二叠系煤的镜质组含量等值线图
(二)显微组分岩石学特征
1.镜质组
镜质组是煤中占优势的有机组分,可划分为结构镜质体和无结构镜质体两大类,后者又可划分为基质镜质体、均质镜质体、团块镜质体和胶质镜质体。准噶尔盆地煤中的基质镜质体,无论是从煤矿取的样品还是从钻井岩心中取的样品,含有可分辨的壳质组碎屑较少,普遍荧光很弱,部分样品根本就无荧光显示。
(1)结构镜质体
来源于植物的细胞结构,这些细胞壁被称为结构镜质体,而细胞腔往往被无结构镜质体或者经常被树脂体、微粒体或粘土所充填。其在透射光下呈棕红—褐红色、橙红—褐红色,细胞结构保存完好、清晰或部分朦胧可见。常见胞腔结构的挤压变形现象,局部形成显微揉皱,并可见木质部胞管单列纹孔呈散S形;部分结构镜质体变形成肠状,并具丝炭化。偶见煤核中的木质髓部具清晰的生长年轮,结构镜质体可有角质体镶边,特征明显。也偶见角质体碎片充填结构镜质体的细胞腔。纯净的结构镜质体在本区十分罕见。
(2)无结构镜质体
无结构镜质体是由植物的木质纤维组织和其他成分经过凝胶化作用形成的胶状物演变而来。根据形态和成因,可进一步细分为4个亚组分:①均质镜质体,显微镜下呈均一状,油浸反光下呈不同程度的灰色色调,透射光下为橙红色至棕褐色,是最适合于测定反射率以确定“煤阶”或“成熟度”的组分,其在镜下多呈宽窄不等的条带状、条纹状、透镜状分布,局部呈橙黄色,应为富氢均质镜质体成分。局部可见角质体镶边或见其中散布有橙黄色角质化小团块。均质镜质体是本区煤中常见的显微组分之一,尤其在准噶尔盆地西北缘的煤中占有重要地位。②基质镜质体,是腐殖碎屑与非常细粒的腐殖凝胶的混合物,它比均质镜质体有稍弱的反射率和较高的氢含量,常含有壳屑体、惰屑体及粘土矿物杂质。基质镜质体是本区的主要显微组分之一,在大多数煤样中其含量均在30%以上;镜下其呈片状分布或呈其他组分的“胶结物”出现,橙红色,无固定形态和细胞结构痕迹。吐哈盆地基质镜质体在蓝光激发下具有暗褐色荧光。③胶质镜质体,胶质镜质体是腐殖溶胶充填在植物的细胞腔或其他空隙中形成的亚组分。实际上,由真正凝胶形成的胶质镜质体很少出现,也很难与均质镜质体区分。镜下胶质镜质体少见,红褐色,总体呈条带状断续分布,可见大小不等的胞腔结构,内部边界为不甚规则的弧形等形状。④团块镜质体,主要来源于植物树皮中的鞣质,其产出状态既可孤立出现亦可作为细胞充填物产出。本区煤岩中团块镜质体也较少见,棕红—褐红色,呈圆形、椭圆形、浑圆形、透镜状散布,局部有拉长变形现象。
2.惰性组
惰性组在煤中一般以其高的反射率易于识别。丝质体具有较清晰的细胞结构,透射光下呈黑色、褐黑色,呈棒条状、条带状、透镜状,或呈棱角状、长条状、不规则状分布。镜下常见氧化丝质体与火焚丝质体的混生现象;局部可见清晰的细棒状丝质体的生长结点、断口及压实变形,细胞腔或呈原始形状,或被挤压拉长变形成椭圆、长椭圆、长条形等,具定向排列,并偶见显微断层截断现象。粗粒体无原始细胞结构,以大小不等的圆形、椭圆形颗粒出现,在煤中还可以以基质状态出现。半丝质体的反射率较丝质体的低,介于镜质体和丝质体之间,其细胞结构不如丝质体保存得好。本区煤岩中半丝质体较为发育,多呈与结构镜质体的过渡形式出现,反射光下呈棕褐-褐黑色,惰屑体也称为碎屑惰性体,为煤中或源岩中高反射率的有机质碎屑,由于颗粒小,分辨不出其原始植物的细胞结构。微粒体一般是在煤化作用过程中由富氢显微组分转变而来的。在油浸反光下,微粒体为大小约1 μm左右的白色微粒集合体,常呈条带状或充填细胞腔形式出现。在准噶尔盆地三工河、头屯河、四棵树、安集海及齐009井等地煤样皆有较多的微粒体,它们常以星点状、条带状分布于基质镜质体中。
总之,在本区的煤中惰性组分较多。特别是准噶尔盆地头屯河、三工河剖面煤样中,惰性组分含量高达80%以上,鄂尔多斯盆地焦坪、黄陵及彬长惰性组含量往往达60%以上,并且半丝质体的成分较多。
3.壳质组
(1)孢子体
常见的小孢子体,一般呈压扁的长条状,分布于基质镜质体或沥青质体中,小孢子体在本区煤中分布很普遍但含量较少,仅在个别井(如吉7井)中含量达到10%以上。大孢子体在本区煤中少见,荧光较弱,而小孢子体一般呈较强的黄色荧光,具有强的荧光正变化。
(2)角质体
角质体为植物叶或茎的表皮保护层角质膜转变而来,是本区煤壳质组中最为丰富的一种显微组分。油浸反光下呈灰黑色,细长条状,有单体产出,亦有成层分布,荧光下具黄绿-褐黄色荧光,具光滑边或锯齿边,后者锯齿状边缘特别清晰;反射光下呈黄色、橙黄-褐黄色,呈条带状、镶边状、碎片状,偶呈铁丝条纹状分布。根据本区角质体的光性特征及成因,将其分为两种组分:①薄壁角质体,薄壁角质体A,一般呈条带状,角质体的厚度稍有差异,但大多较厚,具有极强的黄绿色荧光,可能来源于植物茎的保护层角质蜡。薄壁角质体B,呈非常细的长条带状产出,具黄-褐黄色荧光,常与薄壁角质体A共生,可能来源于植物叶的角质层。②厚壁角质体,这种角质体在本区较为少见,一般为褐黄色荧光。
(3)树脂体
树脂体来源于高等植物的树脂、树胶、树蜡等分泌物。在本区煤层中一般呈长椭圆形、椭圆形、肾形、粗短条状或不规则状散布,局部呈充填细胞腔形式出现,偶见挤压变形现象。常与角质体共生,并且与周围的角质体无切割关系,个体有时达50~100 μm,透射光下呈均匀亮黄色,反射光下为深灰色-灰黑色,有内反射现象,荧光颜色变化很大,从褐黄色到黄绿色荧光均有分布,荧光变化为正变化。
(4)木栓质体
木栓质体是由原始植物树干和根的外层皮组织演化而来的。木栓质体一般指的是木栓化了的细胞壁,一般认为木栓质体在亚烟煤和烟煤阶段之间的分界线上经过一次煤化跃变,在亮褐煤阶段只出现微弱的浅红色荧光,在高挥发分烟煤C阶段,其荧光消失。据魏辉等(1998)研究,它是本区煤中重要的显微组分之一,细胞结构保存较好,大多呈叠瓦状排列,在准噶尔冒烟山剖面八道湾组煤层中木栓质体含量达20%,四棵树剖面西山窑组、车27井、石西1井煤样的木栓质体含量也都在10%左右。吐哈托克逊凹陷含量较高,有的井段可达13%,普遍为4%~6%,台北凹陷仅在二塘沟煤中鉴别出较高数量的木栓质体(8%),其他井区为2%左右,哈密坳陷少见木栓质体。鄂尔多斯盆地木栓质体主要呈叠瓦状排列,长条状顺层分布,见清晰的木栓结构。油浸反光下深灰-浅灰色,蓝光激发下具黄-褐黄色荧光。荧光谱呈单,激发30分钟后,荧光强度增强,荧光变化为正变化,这可能与其成熟度较低有关(刘大锰,1997)。
(5)沥青质体
沥青质体是本区煤中十分常见的显微组分。具有低反射率,大多为微弱的浅褐色荧光。在垂直层理的切面上,常呈条带状,细分散状,条纹状,小透镜状或基质状态出现。Teichmüller(1974)依荧光特征将其分成3种类型:1型有荧光且有荧光变化;2型有荧光但无光变化;3型不具荧光。在本区仅见1、2这两种类型的沥青质体且以1型为主,其丰度较低,在吐哈托克逊凹陷中、下侏罗统和台北凹陷中侏罗统七克台泥岩中分布较普遍(赵长毅,1998)。其成因认为是藻类、浮游生物等在细菌作用下的降解产物(Teichmüller,1970)。
(6)超微类脂体
超微类脂体是富氢显微组分沥青化作用的歧化固体残余产物,煤加水热解实验也证明了这点。吐哈微粒体多小于1 μm,呈圆形颗粒,反射光下为浅灰色、灰白色,无突起。吐哈盆地西山窑组和八道湾组中的超微类脂体主要分布于无结构镜质体和少量粗粒体之中,一般呈条带状分布于基质镜质体中,并与过渡组分(如半镜质体和半丝质体)共生;有时呈胞腔充填状或透镜状产出。该盆地侏罗系煤盆地中超微类脂体含量一般在5%~17%,其中盆地中部的吐鲁番坳陷含量最高,超微脂类体于壳质组总含量可达17%;西部艾维尔沟超微类脂体含量最低,其含量一般小于2%(图3-31)。
(7)壳屑体
泛指那些来源于各种具荧光的碎屑状类脂有机质,在煤中常出现于基质镜质体中。碎屑类脂体在煤中呈片状、细条状及颗粒状,荧光强度不一,黄色、褐黄甚至褐色。在成因上既有化学分解的,也有机械破碎的,在该区煤中较为常见。Taylor等(1991)利用TEM研究了澳大利亚某些低变质煤中的基质镜质体,发现其中含有较丰富的超微壳质组碎屑,并认为是导致基质镜质体产生可见荧光的原因,并具有一定生液态烃潜力。
此外,研究中还发现了渗出沥青质体,主要以裂隙充填物的形式出现,另外它也可以充填在细胞的空腔中,油浸反光下呈黑色,有时周围共生有不同色彩的油晕,即牛顿环(Teichmüller,1976),渗出沥青质体的荧光强度和颜色可相差很大,但都无固定形态,并以次生产状与其他类型有机组分相区别。