煤的岩石类型有哪些,各自的特征是什么
煤岩组分:肉眼可以区分的煤的基本组成单元。
英国煤岩学家(1919)在条带状烟煤中区分出4种可见组分,即镜煤、亮煤、暗煤和丝煤(炭),称为煤岩组分,亦称煤岩成分或煤的岩石类型。其中,镜煤、丝煤为简单煤岩组分,亮煤和暗煤为复杂煤岩组分。最小分层厚度一般为3~5毫米。复杂煤岩组分中可以包含厚度小于3~5毫米的简单煤岩组分的薄条带或透镜体。在光泽强度上丝煤和暗煤是暗淡的,镜煤和亮煤则是光亮的。
煤的宏观类型:煤岩组分数量与组合不同,所反映的煤的相对光泽不同,根据煤新鲜断面上相对光泽强度而划分的肉眼研究单元,称为煤的宏观类型。镜煤与丝煤厚度往往很小,难以形成独立的分层,亮煤和暗煤虽然成层可以较厚,但又有互相过渡的现象,分层界限常不易严格确定。因此,常采用宏观类型代替煤岩组分作为肉眼观察研究煤层的单位,共划分为光亮煤、半亮煤、半暗煤和暗淡煤。
镜煤:是煤中颜色最黑、光泽最亮的组分。质地均匀,以具贝壳状断口和垂直于条带的内生裂隙为特征。内生裂隙面常呈眼球状,有时裂隙面上有方解石或黄铁矿薄膜。镜煤性脆,易破碎成棱角状小块,中常呈透镜状或条带状,大多厚几毫米到1~2厘米。显微镜下镜煤的轮廓清楚、纯净,主要由木质纤维组织经过凝胶化作用形成的均质镜质体或结构镜质体。挥发分高,粘结性强。
亮煤:是最常见的煤岩组分,不少煤层以亮煤为主组成较厚的分层,甚至整个煤层全由亮煤组成。亮煤的光泽较强,仅次于镜煤,较脆易碎,内生裂隙也较发育,但程度逊于镜煤,比重较小,有时也具贝壳状断口。亮煤的均一程度不如镜煤,表面隐约可见微细纹理。显微镜下观察,组成比较复杂,以镜质组组分为主,并含有不同数量的惰质组组分和壳质组组分。
暗煤:一般呈灰黑色,光泽暗淡,比重大,致密坚硬,韧性较大;内生裂隙不发育,断面粗糙。常以较厚的分层出现,甚至单独成层。显微镜下观察,组成比较复杂,一般镜质组组分较少,矿物质含量较高。
暗煤和亮煤的特征和性质取决于其显微组分。富含惰质组组分的暗煤,宏观往往略带丝绢光泽,挥发分低,粘结性弱;富含树皮体的暗煤,常略现油脂光泽,挥发分和氢含量都较高,粘结性较好;含大量粘土的暗煤则比重大,灰分产率高。
丝煤:外观像木炭,又名丝炭。颜色灰黑,具有明显的纤维状结构和丝绢光泽。丝煤疏松多孔、硬度小、脆度大、易碎染手。丝煤的空腔常为矿物质所充填,矿化丝煤坚硬致密,比重大,一般呈扁平透镜体出现。显微镜下观察,具有明显植物细胞结构的丝炭化组织——丝质体和半丝质体,有时还显示年轮结构。丝煤含氢量低而含碳量高,不具粘结性。由于孔隙度大,吸氧性强,易被氧化而发生自燃。
岩石为矿物的集合体,是组成地壳的主要物质。岩石可以由一种矿物所组成,如石灰岩仅由方解石一种矿物所组成;也可由多种矿物所组成,如花岗岩则由石英、长石、云母等多种矿物集合而成。组成岩石的物质大部分都是无机物质。岩石可以按照其成因因分为三大类,但由於自然界是连续体,很难真正依据我们的非类分成三种岩性,因此会存在一些过度性的岩石,好比说凝灰岩(火山灰尘与岩块落入地表或水中堆积胶结而成)就可能被归於沉积岩或火成岩,但大抵是我们还是可以分为主要的三大类:
沉积岩
占地表的66%,为地表的主要岩类。由原来已形成的岩石,受到风化作用后变为碎屑,或由生物的遗迹等,再经过侵蚀、沉积、及石化等作用而造成的岩石。这类岩石都成层状,最先沉积者在下部,时代较老;层次愈上者,则时代愈新,这叫做叠置层法则。当岩石沉积的时候往往含有生物的一还埋没后长可以完好保存历久就变成化石;在火成岩中则多无化石存在。
火成岩
地球内部的温度和压力都很高,所有组成物质〔指矿物质〕都呈现熔融状态的流体,名为岩浆。火成岩即由於岩浆侵入地壳内部,或流出地表面造成熔岩,在经冷却凝固而造成,如玄武岩及花岗岩等都是。火成岩是所有岩石中最原始的岩石。
变质岩
原来的火成岩或沉积岩,再经过地壳运动或岩浆侵入作用所发生的高温和高压与热液的影响,可以改变其原来岩石的结构或组织,或使部分矿物消失,而产生他种新的矿物,因而成为另外一种与原岩不同的岩石,称为变质岩,如大理岩变自石灰岩;板岩变自页岩;石英岩变自砂岩等。典型的变质岩存在於前寒武纪或造山带区域,常有区域构造相关之劈理,或矿物的变化。
岩石的种类很多,但并不是每一种岩石都可以使用,这里除了审美的观点之外,更重要的是石头中的化学成分是否会影响水质,从而带来负面影响。
在地下
形成的。植物残骸一层一层堆积起来后,受重力的作用被挤压腐烂,经过上百万年慢慢形成了煤。
根据沉积物
类型
把沉积岩分成三类:碎屑岩、有机岩和
化学岩
。
所以煤属于沉积岩
宏观煤岩成分,一般分为镜煤、亮煤、暗煤和丝炭。
1、镜煤
镜煤,光泽最强、均一、性脆、常具有内生裂隙的煤岩成分。在煤层中呈厚几毫米到2厘米的凸镜状或条带状。
2、亮煤
亮煤为复合组分,内生裂隙发育;光泽较强,仅次于镜煤;层理隐约可见。在显微镜下观察,与暗煤相比,亮煤中的镜质组组分较多,壳质组组分较少,并常与暗煤逐渐过渡。
3、暗煤
暗煤致密坚硬,韧性较大,一般层理不明显,有时为粒状结构,断面粗糙,具不规则或平坦断口。在显微镜下观察,常含较多的孢粉体和角质体等壳质组组分,或含较多的惰性组组分,也可含大量矿物质。
4、丝炭
丝炭又称丝煤。四种煤岩组分中的一种。丝绢光泽,组分简单,具纤维状结构,外表像木炭,故得名丝炭。
丝炭中的矿樤物质含量高于镜煤。对8个样品的结构参数进行了计算,结果表明,丝炭芳香层片的定向程度和聚合程度高于镜煤,陆相环境条件下形成的煤,其镜煤与丝炭的d002面网间距较小,Lc和La较大。
利用光学仪器来研究煤的岩相组分及其特征,通常采用显微镜。 煤岩的显微研究是指将煤制成煤片以后,在显微镜下观察研究。
在显微镜下观察,按颜色和形态不同,把煤中有机物分成三大显微组分,即镜质组、丝质组和壳质组(稳定组)。
用肉眼或放大镜(10X)直接观察研究煤,主要观察:颜 色,光泽,端口,条痕,硬度等外观特征。适于野外勘探、采煤。按平均光泽强度和煤岩成分不同,将煤划分四种基本宏观煤岩类型。
各种材料内部结构
随着所用仪器分辨率的不同将有不同的结构类型和名称,因此,岩相分析的顺序首先为肉眼观察描述,其次是显微观察描述以及借助x射线衍射等方法。肉眼观察描述包括构造特征、粒径状况、表面状况、是否存在风化和蚀变的痕迹、是否存在大化石和是否存在铁镁矿物侵蚀的痕迹。微观描述包括微观构造特征、组分、矿物质和颗粒状况。
迄今为止,已经发现的煤中矿物高达 125 种 ( Finkelman,1994) ,由于成煤时代、成煤地区、成煤地质背景、成煤物质来源以及后期赋存、演化、改造上的差异,不同地区煤中矿物种类和数量上的差异相当明显。
邵靖邦等 ( 1999) 给出煤中的常见矿物有 5 类共 20 种 ( 表 2. 7) 。Couch ( 1994) 对所有种类煤经低温灰化后得到的灰状物质用 X 射线衍射 ( XRD) 分析得到的主要矿物种类是黏土矿物 ( 硅酸盐) 、碳酸盐和二硫化物,次要矿物是硫酸盐、长石、硫化物和氧化物,二者合计有 22 种矿物,其他可能存在的矿物有 20 种。
表 2. 7 电厂燃煤中的常见矿物组成
( 据邵靖邦等,1999)
Ward ( 1989) 对澳大利亚悉尼盆地与美国伊利诺伊盆地烟煤中的矿物进行研究后发现,它们主要由硅酸盐、碳酸盐、磷酸盐以及其他矿物组成。常见的硅酸盐矿物有高岭石、伊利石和蒙脱石,也常见混层矿物,如伊利石-蒙脱石混层矿物常见的碳酸盐矿物包括方解石、白云石、铁白云石和菱铁矿,在许多情况下,煤中碳酸盐矿物因固态溶解而形成复杂的混合型矿物煤中最常见的氧化物类矿物是石英和金红石硫化物类矿物是黄铁矿,也见有白铁矿,偶尔可见到方铅矿、闪锌矿和黄铜矿磷酸盐类矿物有独居石和磷灰石硫酸盐类矿物在煤中比较少见,只在风化煤中出现。
按照形成时间的不同,煤中矿物可分为同生矿物和后生矿物 ( 孔洪亮等,2001) 。同生矿物是指在泥炭堆积期及早期成岩作用阶段在煤中形成的矿物,如高岭石、石英、菱铁矿、金红石等后生矿物则是指晚期成岩作用及其后生作用阶段的产物,如黄铁矿、方解石、白云石以及由表生作用形成的次生矿物褐铁矿、针铁矿等。
由于低温灰化本质上并不改变煤中矿物的原始状态 ( Demir 等,2001) ,所以为减少煤中有机质对 X 射线衍射 ( XRD) 分析的影响,我们首先将准格尔电厂炉前煤进行低温灰化 ( 170℃) ,然后用 XRD 方法进行分析,得到的结果与其他电厂炉前煤有较大区别( 表 2. 8) 。
表 2. 8 准格尔电厂炉前煤低温灰化 ( 170℃) 后 XRD 分析结果
准格尔电厂炉前煤中矿物一个显著特点是富含高岭石和勃姆石 ( 一水软铝石) ,高岭石的含量为 63. 3% ~ 84. 2%,平均 71. 1%勃姆石的含量为 7. 1% ~ 29. 3%,平均21. 1% 二者之和超过 90% 。煤中矿物以石英含量为最低,范围为 0. 4% ~ 6. 4% ,平均含量仅有 1. 9%,另外还含有少量的方解石和石膏,方解石含量为 0. 6% ~ 4. 0%,平均2. 5% 石膏含量为 0 ~ 5. 3% ,平均 3. 0% 。XRD 分析结果表明,准格尔电厂燃煤中的矿物种类并不复杂,除富含高岭石和勃姆石外,其他能鉴别出来的矿物只有 3 种,且其含量的总和仅为 7. 4%。准格尔电厂燃煤中如此之高的勃姆石含量在国内、外煤中都很罕见。将准格尔电厂长焰煤与首钢电厂长焰煤中矿物组成相比可以看出,后者矿物组成要复杂得多,而且石英含量高达 32% ( 图 2. 3) 。
图 2. 3 准格尔电厂与首钢电厂炉前煤低温灰化后 XRD 分析结果之对比
高岭石是煤中的常见黏土矿物,一般形成于泥炭沼泽的酸性介质中,是湿热气候条件下的产物,也是燃煤产物的主要物质来源。
勃姆石最常见于铝土矿中,它是铝土矿形成过程中的一种矿物类型,而世界不同时代铝土矿床的成因研究表明,铝土矿是在一种特殊气候条件下经表生作用形成的,产于湿热气候和排水良好的环境中,是风化壳化学风化的最终产物 ( 吴国炎,1997) 。从古生代、中生代至新生代,铝土矿往往呈现出一水硬铝石、勃姆石、三水铝石的矿物序列 ( 刘中凡,2001) 。
实验表明,勃姆石矿物主要形成于 pH =7 ~10 的弱碱性环境 ( Okada 等,2002) ,相对干燥的气候条件有利于勃姆石矿物的稳定 ( Mongelli,2002) 。
据 Eriwin 等 ( 1951) 对 Al2O3-H2O 体系的研究,三水铝石向勃姆石的转化温度约为140℃ ( 梁绍暹等,1997) ,但依据所赋煤层煤化程度 ( 长焰煤,Ro= 0. 60% ) 的古温度,应在 85℃左右,这可能是因为上述实验是在液相条件下形成的,而煤中矿物往往是在漫长的地质历史中通过固相转化方式实现的。因此,煤中勃姆石与其他矿物的组合特征及其与煤化作用的依存关系,是一个非常值得探讨的问题。
刘钦甫等 ( 1997) 在研究准格尔黑岱沟露天矿 6 号煤层中的高岭石夹矸时指出,夹矸中的勃姆石在 XRD 曲线上出现 0. 6142 nm、0. 3167 nm、0. 2347 nm 三个明显的特征峰。在显微镜下,具正高突起,一级灰黄干涉色,一般呈隐晶或细小鳞片状结构,可见勃姆石交代蠕虫状高岭石现象,并且指出,这种勃姆石可能是在成岩阶段由于高岭石的脱硅作用形成的。而含量高达 63% ~85%呈隐晶质结构的勃姆石,可能是由原生沉积形成的。
方解石往往充填于煤中的各种裂隙中,是煤中典型的后生矿物。它的形成一方面要求有足够的二氧化碳,同时还要有相应的弱碱性环境,这些条件在泥炭阶段 ( 泥炭层上部有足够的二氧化碳,但介质为酸性) 及成岩阶段 ( 二氧化碳不足) 往往都不具备。所以,煤中的方解石主要是后生的,有时可见方解石交代细胞腔内的高岭石现象。
石英既可作为成煤初期的同生矿物,也可以是后期煤化作用过程中形成的后生矿物,但对燃煤产物而言,石英主要属于原生矿物。
煤中石膏常常是成岩作用或后生作用的产物,煤中黄铁矿和有机硫的风、氧化作用通常可以使其中的硫转化为石膏,另外它也常常形成于煤炭开采、运输和储存过程之中,是煤中新生矿物的主要类型。
这次对煤样低温灰化 ( 170℃) 后所作的 XRD 分析表明,煤中矿物勃姆石出现的 3个特征峰 d 值分别在 0. 616 nm、0. 317 nm 和 0. 235 nm 左右,并且衍射强度较高。另外一个明显的特征峰为高岭石峰,d 值在 0. 721 nm 和 0. 359 nm 左右,均为高岭石的最强衍射峰位置,且强度特征明显,d 值 0. 721 nm 稍高于高岭石的标准值 0. 716 nm。图谱上的石英、方解石和石膏 3 种矿物的谱峰均不明显,特别是石英的特征谱峰 0. 334 nm,在绝大多数电厂燃煤中都普遍作为标准谱峰进行校对,但这一情况在准格尔电厂燃煤中也仅有ZGR-C3 样品中有较明显显示,在其他样品中衍射峰均不明显。
图 2. 4 显示了 7 个炉前煤样低温灰化后的 XRD 图谱。
图 2. 4 准格尔电厂炉前煤低温灰化 ( 170℃) 后的 XRD 图谱
通常情况下,煤灰中 Al2O3的多少主要取决于原煤中黏土矿物的种类和含量,在常见的 3 种黏土矿物中 Al2O3/ SiO2质量比由大到小依次为高岭石、伊利石和蒙脱石,分别为0. 85、0. 61 和 0. 35。高岭石矿物中 Al2O3和 SiO2含量分别为 41. 2%和 48. 0%,所以,高岭石矿物含量较高的煤,其燃烧产物中 Al2O3的含量必然较高。
勃姆石 ( AlOOH) 矿物属于铝的氢氧化物类矿物,其中 Al2O3的含量为 85. 7%,H2O为14. 3%。由此可知,高岭石和勃姆石矿物为准格尔电厂粉煤灰中高 Al2O3含量提供了重要物质来源。
黑黑的煤炭从地底下挖掘出来,从它的长相与形态来看,大多数人都会把它与岩石看作一家人。虽然煤炭有时也被称为有机岩,但它并非真正的岩石。因为岩石都是无机的,而煤炭主要由亿万年前的植物遗体埋藏在地下,经历了漫长而复杂的生物化学、物理化学作用和地质作用转变而成的可燃性矿物,它和石油、天然气一样,都是化石燃料。
煤岩又称煤光泽岩石类型、宏观煤岩类型。 为肉眼观察时,按照同一变质程度煤的平均光泽强度所划分的类型。 按平均光泽强度依次分为光亮煤、半亮煤、半暗煤和暗淡煤四类。 各类型分层在煤层中常多次交替出现。 煤岩类型多具复杂结构,因之又常按结构划分为若干亚型,如带状亚型、不明显条带状亚型、线理状亚型和均一状亚型等。 煤岩类型通常作为煤层分层的划分单位,分层厚度一般为3~10厘米。 影响煤的光泽强度的因素较多,如煤岩组分、矿物质的含量、风化程度以及挤压错动和破碎程度等,特别是煤的光泽强度随变质程度的加深而增强。例如高变质半暗煤的光泽强度往往强于低变质半亮煤的光泽强度,因此划分煤岩类型应以变质程度相同的煤做比较。
煤岩组分:
又称煤岩成分(lithotype of coal)、煤的组分、肉眼煤岩类型。
是指腐殖煤中肉眼可以鉴别的基本组成单位,可划分四种基本岩石类型,即镜煤、亮煤、暗煤和丝炭,其中镜煤和丝炭是简单组分,亮煤和暗煤是复合组分。
对煤岩组分进行研究可进一步阐明煤质特征和进行煤质评价。
腐泥煤则分出烛煤和藻煤两种煤岩组分。