建材秒知道
登录
建材号 > 煤炭 > 正文

准格尔矿区主采煤层中铅和硒的异常高值与成因研究

醉熏的滑板
激昂的巨人
2023-02-13 20:35:46

准格尔矿区主采煤层中铅和硒的异常高值与成因研究

最佳答案
壮观的树叶
欢呼的凉面
2025-07-04 23:07:09

摘 要 为了研究内蒙古准格尔主采煤层中铅和硒的异常,运用电离耦合等离子体质谱( ICP - MS) 、仪器中子活化分析( INAA) 、带能谱仪的扫描电镜( SEM - EDX) 和光学显微镜对主采煤层中铅和硒的含量、赋存状态和地质成因进行了研究。实验结果表明,准格尔矿区主采6 号煤层中铅和硒的质量分数均值分别为 35. 7 × 10- 6和 8. 2 × 10- 6,明显高于华北煤、贵州煤、中国煤和美国煤的算术均值,其富集系数分别高达 2. 4 和 68. 1,铅和硒在该煤层中显著富集铅和硒主要赋存在方铅矿、硒铅矿和硒方铅矿中,这 3 种矿物以植物胞腔充填形式出现,属于化学沉积成因。

任德贻煤岩学和煤地球化学论文选辑

硒的氧化物(SeO2)和铅是有毒物质。燃煤排放是大气中铅和硒的主要来源之一[1]。在大量的燃煤地区产生局部的硒和铅的污染是可能的,在我国鄂西和陕南一带曾经因燃烧富硒的石煤而引起硒中毒。然而,煤中硒富集到一定程度,可以作为伴生的矿床开发利用硒在地壳中的克拉克值为0.05~0.09μg/g,在煤中的质量分数一般为2×10-6左右,世界范围内,煤中硒含量相当于探明铜矿中硒含量的80倍,如果经济可行,煤中硒是巨大而长期可利用的资源[2~4]。对煤中铅和硒等微量元素的含量、赋存状态和地质成因等方面已有较多的报道[2~9]。Finkelman[1]、唐修义和黄文辉[10]分别提出了美国和中国煤中铅和硒的平均含量。代世峰等[3]和Dai等[11]提出了中国华北和贵州煤中铅和硒的背景值。Finkelman对煤中铅和硒的赋存状态进行了详细讨论[12]Hower等[13]和Dai等[14]对煤中铅和硒富集机理进行了研究。本文基于对内蒙古准格尔主采煤层中铅和硒硫化物矿物的新发现,对该煤层中铅和硒的含量、赋存状态和地质成因进行了研究。

一、地质背景和样品的采集

内蒙古准格尔矿区地处鄂尔多斯盆地的东北缘,它是鄂尔多斯盆地煤层最富集的地带,也是沉积相变最明显的地带,上石炭统太原组石灰岩在矿区内全部尖灭,逐渐相变为陆源碎屑岩。准格尔矿区的含煤地层包括上石炭统本溪组、太原组和下二叠统山西组,含煤岩系总厚110~160m,之底为中奥陶统石灰岩,之上为下石盒子组、上石盒子组、石千峰组、刘家沟组等非含煤地层。该区主采煤层6号煤位于太原组的顶部,平均厚度为30m,是在三角洲沉积体系的背景下形成的一巨厚煤层[15]。

按照GB482-1995和MT262-91的采样规范,对准格尔矿区黑岱沟矿6号煤层煤样进行了分层样品的采集。煤层自上而下的编号为ZG6-1,ZG6-2,ZG6-3,ZG6-4-1,ZG6-4-2,ZG6-5和ZG6-6,它们所占的厚度比例分别为:9.6%,11.3%,8.2%,24.3%,31.5%,6.4%和8.5%。用电离耦合等离子体质谱(ICP-MS)测定煤中的铅,用仪器中子活化分析(INAA)测定煤中的硒用带能谱仪的扫描电镜(SEM-EDX)和MPV-III显微镜光度计对矿物中的元素含量和形貌特征进行测定和观察。

二、煤中Pb和Se的含量

表1列出了准格尔矿区主采6号煤层各分层的铅和硒的含量,以及根据各分层所占的厚度比例,计算出的加权均值。从中可以看出,6号主采煤层铅和硒质量分数的加权均值分别为35.7×10-6和8.2×10-6,富集系数分别为2.4和68.1。其中铅和硒在ZG6-3分层中含量最高,质量分数分别为62.2×10-6和14.9×10-6。6号煤层铅和硒的含量远高于华北煤、贵州煤、中国大部分煤和美国大部分煤的算术均值(表1)。铅和硒在准格尔主采煤层中显著富集。

表 1 准格尔矿区 6 号煤层中的铅和硒

注:EF为富集系数。

Swaine认为世界大多数煤中铅的质量分数为2×10-6~80×10-6,硒的质量分数的平均值为0.2×10-6~4×10-6[16]。Finkelman统计的美国7469个煤样品中铅的质量分数算术均值为11×10-6,最高值为1900×10-6,7563个煤样品中硒质量分数算术均值为2.8×10-6,最高值为150×10-6[1]。唐修义和黄文辉提出中国多数煤中煤中铅的质量分数为3×10-6~60×10-6,算术平均值为14×10-6煤中硒质量分数范围为0.1×10-6~13×10-6,算术均值为2×10-6[10]。代世峰等认为中国华北晚古生代煤中铅的质量分数背景值为18.32×10-6,硒的质量分数背景值为2.01×10-6[3]。Dai等(2005)估算的贵州西部晚二叠世煤中铅的质量分数算术均值为15×10-6,硒的质量分数的算术均值为1.7×10-6[11]。

三、煤中铅和硒的赋存状态与成因

由于铅具有亲硫性,因此,煤中铅大多与煤中的硫化物矿物(方铅矿、硒方铅矿、黄铁矿、白铁矿、黄铜矿)有关,并且已经被很多的微区分析结果所证实。煤中铅和硫化物相关,这一可信度为8[12]。铅亦具有亲氧性,它能以类质同象形式出现在含K,Ca的造岩矿物之中,也可形成氧化物。6次配位的Pb2+离子半径为118~132pm,与Sr2+离子半径(112~127pm)、Ba2+离子半径(134~143pm)及K1+的离子半径(133pm)相近,可相互置换,也可部分置换Ca2+(离子半径为99~106pm)。铅也能够被黏土矿物、有机质等吸附,因此在黏土矿物、有机组分中以及部分碳酸盐矿物中都可以富集铅。

煤中硒的赋存状态非常复杂。Finkelman(1994)指出,硒的赋存形式主要是有机结合态,其次是硫化物结合态和硒化物,其余部分可为可溶态和可交换态硒,同时提出,当前煤中硒的赋存状态的置信度为8(最高为10)[12]。Swaine和Goodarzi(1995)认为,煤和富硒黑色页岩中,硒主要以有机结合态和硫化物结合态存在[17]。Huggins和Huffman(1996)认为,新鲜煤中硒主要以元素硒和有机结合态存在,而煤一旦暴露于空气中,元素硒易即氧化[18]。另外,煤中硒可以被黏土矿物吸附[19-21]。代世峰等(2003)用逐级化学提取实验方法对峰峰矿区煤样进行研究,发现硒的赋存状态主要以硫化物结合态和碳酸盐结合态为主,硅铝化合物结合态占一定比例,其他状态的含量很低[19]。

在扫描电镜和光学显微镜下,发现在准格尔主采6号煤层中有铅的硫化物矿物存在,光学显微镜和扫描电镜下,这些硫化物矿物呈亮白色(图1和图2),在SEM-EDX下(4000倍)有空腔结构(图3)。

图 1 硒方铅矿充填在植物胞腔中( SEM)

图 2 硒方铅矿充填在植物胞腔中( 反射单偏光)

图 3 硒方铅矿的内部空腔结构( SEM-EDX)

SEM-EDX成分测试结果表明,在硒方铅矿中(PbSeS),w(Pb)为71%,w(Se)为19%,w(S)为6%,其他杂质元素占4%在方铅矿中(PbS),w(Pb)为76%,w(S)为18%,其他杂质元素占6%在硒铅矿中,w(Pb)为72%,w(Se)为20%,w(S)为5%,其他杂质元素占3%。这3种矿物以ZG6-3中含量最高。它们均亦胞腔充填形式存在(图1和图2)。这3种矿物是该煤层中铅和硒的主要载体。Dai等(2005)认为准格尔煤中的这3种矿物属于热液成因[22],但作者认为,该煤层中的硫化物矿物(方铅矿、硒铅矿和硒方铅矿)应属于化学沉积成因,主要依据如下:

(1)煤中没有发现脉状黄铁矿或其他热液矿物,含铅矿物均为浑圆形或充填胞腔形。古陆区白云鄂博群富铅(35μg/g),同时局部有方铅矿脉,含铅矿物发生氧化分解后,铅可以被带入到泥炭沼泽中。

(2)煤的镜质组最大反射率(Ro,max)仅为0.6%,表明本矿区难以证明受到高地温或热液作用的影响。在该煤层中亦未发现其他热液成因的矿物和热液证据。

(3)这3种硫化物矿物的赋存状态,即它们充填在植物的胞腔中,可以排除它们属于陆源碎屑成因的可能性。

(4)含铅矿物的元素组成较复杂,存在系列过渡:方铅矿-硒方铅矿-硒铅矿,还有铅、铜、铁的硫化物矿物(Pb0.47Cu0.29Fe0.24)S0.55。

(5)在所有的含铅矿物中都有相当数量的Al,Si等造岩元素,SEM-EDX测试结果表明,硒方铅矿中w(Al)为1.4%,w(Si)为0.40%。杂质元素以Al为主、Si次之的特点与煤中基质镜质体伴生元素组成所反映的泥炭沼泽介质是一致的,也可作为方铅矿等含铅矿物化学沉积成因的佐证。

四、结论

(1)鄂尔多斯盆地东缘准格尔矿区主采6号煤层中铅和硒显著富集,质量分数均值分别为35.7×10-6和8.2×10-6,明显高于华北煤、贵州煤、中国煤和美国煤中铅和硒质量分数的算术均值。

(2)6号煤层中的铅和硒主要赋存在于方铅矿、硒铅矿和硒方铅矿中,这3种矿物以植物胞腔充填形式出现,可能属于化学沉积成因。

(3)硒属于分散元素,但在准格尔6号主采煤层中相对富集,是地壳克拉克值的68.1倍,可能是属于新型的伴生矿床类型,其潜在的工业利用价值值得关注。

致谢:感谢中国矿业大学(北京)代世峰博士对硫化物矿物的深入讨论和对本工作的大力支持。

参 考 文 献

[1] FINKELMAN R B. Trace and minor elements in coal/ /Engel M H, Macko S A ( Eds. ) , Organic Geochemistry. Plenum. New York: [s. n. ],1993: 593 ~ 607

[2] 涂光炽,高振敏,胡瑞忠等 . 分散元素地球化学及成矿机制 . 北京: 地质出版社,2003

[3] 代世峰,任德贻,李生盛,等 . 华北地台晚古生代煤中微量元素及 As 的分布 . 中国矿业大学学报,2003,32( 2) : 111 ~ 114

[4] 代世峰,任德贻,孙玉壮,等 . 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取 . 煤炭学报,2004,29( 增刊) : 56 ~60

[5] 秦勇,王文峰,宋党育 . 太西煤中有害元素在洗选过程中的迁移行为与机理 . 燃料化学学报,2002,30 ( 2) :147 ~ 150

[6] 王文峰,秦勇,宋党育 . 煤中有害元素的洗选洁净潜能[J]. 燃料化学学报,2003,31( 4) : 295 ~ 299

[7] 代世峰,任德贻,邵龙义,等 . 黔西晚二叠世煤地球化学性质变异及特殊组构的火山灰成因[J]. 地球化学,2003,32( 3) : 239 ~ 247

[8] 代世峰,唐跃刚,常春祥,等 . 开滦煤洗选过程中稀土元素的迁移和分配特征[J]. 燃料化学学报,2005,33( 4) :416 ~ 420

[9] 代世峰,任德贻,赵蕾,等 . 贵州织金煤矿区晚二叠世煤地球化学性质变异的硅质低温热液流体效应[J]. 矿物岩石地球化学通报,2005,24( 1) : 39 ~49

[10] 唐修义,黄文辉等 . 中国煤中微量元素[M]. 北京: 商务印书馆,2004: 1 ~ 22

[11] DAI S F,REN D Y,TANG Y G,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province,China[J]. International Journal of Coal Geology,2005,61: 119 ~ 137

[12] FINKELMAN R B. Mode of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Pro- cessing Technology,1994,39: 21 ~ 34

[13] HOWER J C,ROBERTSON J D. Clausthalite in coal[J]. International Journal of Coal Geology,2003,53: 219 ~ 225

[14] DAI S F,CHOU C L,YUE M,et al. Mineralogy and geochemistry of a late Permian coal in the Dafang coalfield, Guizhou,China: influence from siliceous and iron-rich calcic hydrothermal fluids[J]. International Journal of Coal Ge- ology,2005,61: 241 ~ 258

[15] 刘钦甫,张鹏飞 . 华北晚古生代煤系高岭岩物质组成和成矿机理研究[M]. 北京: 海洋出版社,1997: 24 ~ 38

[16] SWAINE D J. Trace elements in coal [M]. London: Butterworths,1990

[17] SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal[M]. Dordrecht: Kluwer Academic Pub- lishers,1995

[18] HUGGINS F E,HUFFMAN G P. Modes of occurrence of trace elements in coal from XAFS spectroscopy[J]. Interna- tional Journal of Coal Geology,1996,32: 31 ~ 53

[19] 代世峰,任德贻,刘建荣,等 . 河北峰峰矿区煤中微量有害元素的赋存与分布[J]. 中国矿业大学学报,2003,32( 4) : 358 ~ 361

[20] DAI S F,HAN D X,CHOU C L. Petrography and geochemistry of the middle devonian coal from Luquan,Yunnan province,China[J]. Fuel,2006,85( 4) : 456 ~ 464

[21] DAI S F,LI D H,REN D Y,et al. Geochemistry of the late Permian No. 30 coal seam,Zhijin coalfield of Southwest China: influence of a siliceous low -temperature hydrothermal fluid[J]. Applied Geochemistry,2004,19: 1315 ~ 1330

[22] DAI S F,REN D Y,CHOU C L,et al. Mineralogy and geochemistry of the No. 6 coal ( pennsylvanian) in the Junger coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2006,66: 253 ~ 270

Analysis of anomalous high concentration of lead and selenium and their origin in the main minable coal seam in the Junger coalfield

LI Sheng-sheng1,2,REN De-yi2

( 1. State Administration of Work Safety,Beijing 100713,China

2. School of Resources and Safety Engineering,China University of Mining & Technology,Beijing 100083,China)

Abstract: The concentration,occurrence,and geological origin of lead and selenium in the main minable coal seam from the Junger coalfield w ere studied using inductively coupled plasma mass spectrometry ( ICP-MS) ,instrumental neutron activation analysis( INAA ) ,scan- ning electron microscope equipped w ith an energy - dispersive X-ray spectrometer ( SEM - EDX) ,and optical microscope. The results show that the average concentrations of Pb and Se are as high as 35. 7μg / g and 8. 2μg / g,respectively,w hich are much higher than those of coals from North China,Guizhou,China,and USA. In addition,their enrichment factors are up to 2. 4 and 68. 1,respectively. Lead and selenium are significantly enriched in the seam. Lead and selenium mainly exist in galena,clausthalite,and selenio - galena w hich occur as cell - filling of coal - forming plants and are of chemical - sedimentary origin.

Key words: coalleadseleniumsulfide mineralsJunger coalfield

( 本文由李生盛、任德贻合著,原载《中国矿业大学学报》,2006 年第 35 卷第 5 期)

最新回答
聪明的冰棍
冷酷的花卷
2025-07-04 23:07:09

煤的成分很复杂,是多种有机物和无机物的混合物。煤的主要组成元素是碳,还有少量的氢、氧、硫、氮、硅、铝、钙、铁等元素。为了方便和简化,有时化学题中的“煤”也用碳(C)的化学式,实际上,这是不科学的。

煤干馏后可以得到三种状态的产物:固态的焦炭、液态的煤焦油和粗氨水、气态的焦炉气等。 焦炭为灰黑色多孔状固体,是冶金工业的燃料和还原剂。煤焦油为黑色粘稠液体,是重要的化工原料,从中可以提取苯、萘、蒽、酚等数百种产品,粗氨水可制化肥。

焦炉气的主要成分是氢气、甲烷、一氧化碳等,可作气体燃料。

无心的裙子
甜甜的店员
2025-07-04 23:07:09
主要是碳 C

别称:煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。

一种固体可燃有机岩,主要由植物遗体经生物化学作用,埋藏后再经地质作用转变而成。俗称煤炭。中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品 ,河南巩义市也发现有西汉时用煤饼炼铁的遗址。《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭 。明代李时珍的《本草纲目》首次使用煤这一名称。希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有 《石史》 ,其中记载有煤的性质和产地;古罗马大约在2000年前已开始用煤加热。

煤炭是一种可以用作燃料或工业原料的矿物。它是古代植物经过生物化学作用和地质作用而改变其物理、化学性质,由碳、氢、氧、氮等元素组成的黑色固体矿物。

煤作为一种燃料,早在800年前就已经开始。煤被广泛用作工业生产的燃料,是从18世纪末的产业革命开始的。随着蒸汽机的发明和使用,煤被广泛地用作工业生产的燃料,给社会带来了前所未有的巨大生产力,推动了工业的向前发展,随之发展起煤炭、钢铁、化工、采矿、冶金等工业。煤炭热量高,标准煤的发热量为 7000大卡/千克。而且煤炭在地球上的储量丰富,分布广泛,一般也比较容易开采,因而被广泛用作各种工业生产中的燃料。

煤炭除了作为燃料以取得热量和动能以外,更为重要的是从中制取冶金用的焦炭和制取人造石油,即煤的低温干馏的液体产品——煤焦油。经过化学加工,从煤炭中能制造出成千上万种化学产品,所以它又是一种非常重要的化工原料,如我国相当多的中、小氮肥厂都以煤炭作原料生产化肥。我国的煤炭广泛用来作为多种工业的原料。大型煤炭工业基地的建设,对我国综合工业基地和经济区域的形成和发展起着很大的作用。

此外,煤炭中还往往含有许多放射性和稀有元素如铀、锗、镓等,这些放射性和稀有元素是半导体和原子能工业的重要原料。

煤炭对于现代化工业来说,无论是重工业,还是轻工业;无论是能源工业、冶金工业、化学工业、机械工业,还是轻纺工业、食品工业、交通运输业,都发挥着重要的作用,各种工业部门都在一定程度上要消耗一定量的煤炭,因此有人称煤炭是工业的“真正的粮食”。

我国是世界上煤炭资源最丰富的国家之一,不仅储量大,分布广,而且种类齐全,煤质优良,为我国工业现代化提供了极为有利的条件。

【煤的生成】

在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥;泥炭或腐泥被埋藏后 , 由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤;当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。

【用途】

煤是重要能源,也是冶金、化学工业的重要原料。主要用于燃烧、炼焦、气化、低温干馏、加氢液化等。①燃烧。煤炭是人类的重要能源资源,任何煤都可作为工业和民用燃料。②炼焦。把煤置于干馏炉中,隔绝空气加热,煤中有机质随温度升高逐渐被分解,其中挥发性物质以气态或蒸气状态逸出,成为焦炉煤气和煤焦油,而非挥发性固体剩留物即为焦炭。焦炉煤气是一种燃料,也是重要的化工原料。煤焦油可用于生产化肥、农药、合成纤维、合成橡胶、油漆、染料、医药、炸药等。焦炭主要用于高炉炼铁和铸造,也可用来制造氮肥、电石。电石是塑料、合成纤维、合成橡胶等合成化工产品。③气化。气化是指转变为可作为工业或民用燃料以及化工合成原料的煤气。④低温干馏。把煤或油页岩置于 550℃左右的温度下低温干馏可制取低温焦油和低温焦炉煤气,低温焦油可用于制取高级液体燃料和作为化工原料。⑤加氢液化。将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质破坏,与氢作用转化为低分子液态和气态产物,进一步加工可得汽油、柴油等液体燃料。加氢液化的原料煤以褐煤、长焰煤、气煤为主。

综合、合理、有效开发利用煤炭资源,并着重把煤转变为洁净燃料,是人们努力的方向。

【产地】

在各大陆、大洋岛屿都有煤分布,但煤在全球的分布很不均衡,各个国家煤的储量也很不相同。中国、美国、俄罗斯、德国是煤炭储量丰富的国家,也是世界上主要产煤国,其中中国是世界上煤产量最高的国家。中国的煤炭资源在世界居于前列,仅次于美国和俄罗斯。

【煤的开采】

煤的开采是一项最艰苦的工作,当前正在花较大的力量来改善工作条件.由于煤炭资源的埋藏深度不同,开采方式一般相应地也有矿井开采(埋藏较深)和露天开采(埋藏较浅)之分.其中,可露天开采的资源量在总资源中的比重大小,是衡量开采条件优劣的重要指标,中国可露天开采的储量仅占7.5%,美国为32%,澳大利亚为35%矿井开采条件的好坏与煤矿中含瓦斯的多少成反比,中国煤矿中含瓦斯比例高,高瓦斯和有瓦斯突出的矿井占40%以上.中国采煤以矿井开采为主,如山西\山东\徐州及东北地区大数采用这一开采方式,也有露天开采,如朔州平朔煤矿——全国最大的露天煤矿.

煤可以创造沥青、煤气、煤焦油和焦炭

煤当原料使用煤在1200℃的密闭炉(称为炼焦炉)中干馏,可得固定碳很高含量之煤焦,俗称焦炭

【煤的分类】

煤有褐煤、烟煤、无烟煤、半无烟煤等几种。云南常用的是褐煤、烟煤、无烟煤三种。煤的种类不同,其成分组成与质量不同,发热量也不相同(表4-15)。单位重量燃料燃烧时放出的热量称为发热量,人为规定以每公斤发热量7000千卡的煤作为标准煤,并以此标准折算耗煤量。

(1)褐煤:多为块状,呈黑褐色,光泽暗,质地疏松;含挥发分40%左右,燃点低,容易着火,燃烧时上火快,火焰大,冒黑烟;含碳量与发热量较低(因产地煤级不同,发热量差异很大),燃烧时间短,需经常加煤。

(2)烟煤:一般为粒状、小块状,也有粉状的,多呈黑色而有光泽,质地细致,含挥发分30%以上,燃点不太高,较易点燃;含碳量与发热量较高,燃烧时上火快,火焰长,有大量黑烟,燃烧时间较长;大多数烟煤有粘性,燃烧时易结渣。

(3)无烟煤:有粉状和小块状两种,呈黑色有金属光泽而发亮。杂质少,质地紧密,固定碳含量高,可达80%以上;挥发分含量低,在10%以下,燃点高,不易着火;但发热量高,刚燃烧时上火慢,火上来后比较大,火力强,火焰短,冒烟少,燃烧时间长,粘结性弱,燃烧时不易结渣。应掺入适量煤土烧用,以减轻火力强度。

1989年10月 ,国家标准局发布《 中国煤炭分类国家标准 》(GB5751-86),依据干燥无灰基挥发分Vdaf、粘结指数G、胶质层最大厚度Y、奥亚膨胀度 b、煤样透光性 P、煤的恒湿无灰基高位发热量Qgr,maf等6项分类指标,将煤分为14类。即褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。

【化学组成】

煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,而碳、氢、氧三者总和约占有机质的95%以上;煤中的无机质也含有少量的碳、氢、氧、硫等元素。碳是煤中最重要的组分,其含量随煤化程度的加深而增高。泥炭中碳含量为50%~60%,褐煤为60%~70%,烟煤为74%~92%,无烟煤为 90%~98%。煤中硫是最有害的化学成分。煤燃烧时,其中硫生成SO2,腐蚀金属设备,污染环境。煤中硫的含量可分为 5 级:高硫煤,大于4%;富硫煤,为2.5%~4%;中硫煤,为1.5%~2.5%;低硫煤,为1.0%~1.5%;特低硫煤 ,小于或等于1%。煤中硫又可分为有机硫和无机硫两大类。

【工业分析】

通过工业分析可大致了解煤的性质。又称技术分析。是指煤的水分、挥发分、灰分的测定以及固定碳的计算。水分可分为外在水分、内在水分以及与煤中矿物质结合的结晶水、化合水。外在水分为煤炭在开采、运输、储存及洗选过程中,附着在煤颗粒表面和大毛细孔中的水分。内在水分为吸附或凝聚在煤颗粒内部的毛细孔中的水分,温度超过100℃时可将煤中内在水分完全蒸发出来 。灰分是指煤完全燃烧后残留的残渣量。灰分来自煤的矿物质。挥发分是指煤中有机质可挥发的热分解产物。挥发分随煤化程度增高而降低,可用于初步估测煤种。固定碳是指煤中有机质经隔绝空气加热分解的残余物。固定碳随变质程度的加深而增高,可作为鉴定煤变质程度的指标。

【工艺性质】

煤的工艺性质是工业评价合 理 用 煤的依据,主要包括粘结性、结焦性、发热量、化学反应性、热稳定性、焦油产率和可选性等。粘结性是指煤在高温干馏中产生胶质体,使煤粒相互粘结成块的性能。粘结性是评价炼焦用煤的主要指标。结焦性是指在炼焦炉中能炼出适合高炉用的有足够强度的冶金焦炭的性质。发热量是指单位质量的煤在完全燃烧时所产生的热量。煤的发热量是煤质的重要指标,是计算热平衡、耗煤量、热效率等的依据。

【煤中伴生元素】

指以有机或无机形态富集于煤层及其围岩中的元素。有些元素在煤中富集程度很高,可以形成工业性矿床,如富锗煤、富铀煤、富钒石煤等,其价值远高于煤本身。

根据煤中伴生元素的性质和用途,可分为有益元素、有害元素和指相元素3类。有益元素主要 有锗、镓、铀、钒等,可被利用。有害元素 主要有硫 、磷、氟、氯、砷、铍、铅、硼、镉、汞、硒、铬等。硫是煤中常见的有害成分,其他有害元素在煤中含量一般不高,但危害极大,如砷是一种有毒元素。煤在燃烧中,硫是造成城镇环境污染的主要物质源。当然,对有害元素如果收集、处理得当也可变成对人有用的财富。煤中伴生元素,有各自的地球化学性质,形成于不同的沉积环境中。因此,可根据元素的相对含量、元素的共生组合关系及元素的比值,来判断相和沉积环境。

含糊的小馒头
寒冷的大白
2025-07-04 23:07:09

1.煤中元素的分类

自Richardson于1848年发现煤中锌(Zn)和镉(Cd)以来,除了极稀少的钋(Po)、砹(At)、钫(Fr)、锕(Ac)、镤(Pa)外,其余的元素几乎在煤中都已被发现(Finkel-man,1994)。采用现有分析技术手段,可以从煤及其解吸气体样品中检测到86种元素,而地壳中可供统计的元素也只有88种(黎彤,1992)。国内外某些学者根据元素在煤中的浓度或含量,对煤中元素进行了分类:

——Юдович(1978)参照沉积岩中各类元素的克拉克值,将煤中元素分为造灰元素(含量>0.5%)、次要元素(含量0.5%~0.01%)、稀有元素(含量0.01%~0.0001%)和超稀元素(含量<0.00001%)四种类型。

——程介克(1986)根据元素在地壳中的丰度,提出元素的含量分类为常量元素(1%~100%)、微量元素(0.01%~1%)、痕量元素(0.0001%~0.001%)和超痕量元素(<0.0001%)。

——一般认为,煤中元素可分为常量元素(>0.1%)和微量元素(≤0.1%)两大范畴。常量元素在煤中主要为C,H,O,N,S,Si,Al,Fe,Ca,K,Na,Mg等,其他大多数元素以微量级浓度存在于煤中(唐修义等,2002a;代世峰,2002)。

本书采用后一种分类。此外,根据元素的毒害程度又可对煤中元素进行有害性与无害性分类。

2.煤中的有害元素

煤中有害元素是指煤炭资源在加工、利用、运输和存放过程中,能够以不同形式运移至大气圈、水圈或土壤圈,并对其中的环境造成污染,从而危害人类和其他生物正常生存安全的元素。

(1)煤中有害元素的种类

煤中常量有害元素S和N对环境造成的巨大危害已是众所周知。然而,对煤中有害微量元素的认识,即哪些微量元素对环境与人类健康具有危害潜势,目前还没有统一的认识。

——美国国家研究委员会根据危害程度将元素分为三类:一类污染物有As,B,Cd,Mo,Hg,Pb,Se;二类污染物包括Cr,Cu,F,Ni,V,Zn;三类污染物有Ba,Sb,Sr,Na,Mn,Co,Li,Br。

——美国《毒害性化学品手册》列出了29种毒害性元素,即As,B,Ba,Be,Br,Cd,Cl,Co,Cr,Cu,F,Hg,Hf,In,Mn,Mo,Ni,P,Pb,Sb,Se,Sn,Th,Tl,U,V,Y,Zn 及Zr(Sitting,1981)。

——美国国会1990年颁布的《洁净空气补充法案》列出了11种有害元素,包括Se,Ba,Cd,Hg,As,Cr,Pb,Ag等。

——王连生(1994)将金属元素的潜在毒性进行了排序,认为Ⅰ类元素有Hg,Cd,Tl,Pb,Cr,In,Sn,毒性大;Ⅱ类元素为Ag,Sb,Zn,Mn,Au,Cu,Pr,Ce,Co,Pd,Ni,V,Os,Lu,Pt,毒性中等。

就煤中有害微量元素种类而言,一些组织及学者作过研究:

——美国国家资源委员会(NRC)1980年根据危害程度将煤中元素分为六类(Finkelman,等,1999)。Ⅰ类为值得特别关注的元素,如As,B,C,Cd,Hg,Mo,N,Pb,Se,S;Ⅱ类为值得关注的元素,包括Cr,Cu,F,Ni,Sb,V,Zn;Ⅲ类为值得加以关注的元素,有Al,Ge,Mn;Ⅳ类为需要加以关注的放射性元素,如 Po,Ra,Rn,Th,U等;Ⅴ类是需要关注但在煤及其残余物中很少富集的元素,如Ag,Be,Sn,Tl;Ⅵ类为暂时不需要关注的元素,即上述五类之外的元素(图1-1)。

图1-1 煤中潜在有害元素

(据NRC,1980)

——Swaine(1995)认为:煤中有24种微量元素对生态环境有害,即As,B,Ba,Be,Cd,Cl,Co,Cr,Cu,F,Hg,Mn,Mo,Ni,P,Pb,Sb,Se,Sn,Th,Tl,U,V及Zn。

——Finkelman(1995)讨论了煤中25种对环境敏感的微量元素,即上述的24种元素加上Ag元素。

——赵峰华(1997)通过对比国内外环境标准所列出的元素,认为当前环保关心的有19种元素,即Ag,As,Ba,Be,Cd,Cl,Co,Cr,Cu,F,Hg,Mn,Mo,Ni,Pb,Se,Sb,V,Zn,并把煤中有害元素限定为22种元素,即上述的19种加上Tl,Th,U。其中Tl,Be,Cd,Hg,Pb为有毒元素,Be,Cd,Cr,Ni,Pb,As为致癌元素。

——PECH(1980)根据危害程度将煤中微量元素分为六类(Swaine,1990)。Ⅰ类需要特别关注的元素为As,B,Cd,Hg,Mo,Pb,Se;Ⅱ类需要关注的元素为Cr,Cu,F,Ni,V,Zn;Ⅲ类需要加以关注的元素为Ba,Br,Cl,Co,Ge,Li,Mn,Sr;Ⅳ类放射性元素有 Po,Ra,Rn,Th,U;Ⅴ类是在煤及其残余物中很少富集的元素,如 Ag,Be,Sn,Tl;Ⅵ类为对环境基本无害的元素,上述五类之外的元素。

——Swaine(2000)认为,煤中有26种微量元素应引起环境关注(Enviornmental in-terest),并据其危害性分为三类,从Ⅰ类到Ⅲ类危害程度降低。Ⅰ类元素有As,Cd,Cr,Hg,Pb,Se;Ⅱ类元素有B,Cl,F,Mn,Mo,Ni,Be,Cu,P,Th,U,V,Zn;Ⅲ类元素有Ba,Co,I,Ra,Sb,Sn,Tl。

(2)本项目重点研究的煤中有害元素

上述文献资料显示,各研究者或组织对煤中有害元素的界定不尽相同,但大都包括As,Be,Cd,Cl,Co,Cr,F,Hg,Mo,Mn,Ni,Pb,Sb,Se,Th及U16种元素。Br虽在上述文献中出现的次数不多,但其本身具有毒害性,且在煤燃烧时对锅炉有较强的腐蚀性。

然而,在上述文献资料中没有被包括的某些元素,在煤的利用过程中也可能产生危害。例如,稀土元素致癌是人们极为关注的研究课题,因长期吸入稀土粉尘而引起肺的纤维性病变称为“稀土尘肺”。稀土元素以口、呼吸道和皮肤为途径,可与体内多种组织成分起反应,如轻稀土可与氨基酸络合,重稀土易与蛋白质结合。吸入的稀土元素在体内的半衰期可长达一年至十几年,长期吸入稀土元素对人体是有害的。接触稀土烟雾和尘粒的生产工人,可产生频繁的头疼、恶心、咳嗽、过敏热等,稀土引起的最重要的病理学和生化效应之一是形成脂肪肝(陈清等,1989)。

目前,已制定有关稀土元素卫生标准的国家很少。前苏联提出车间空气中各种稀土元素氧化物气溶胶的最高允许浓度为:氧化钇2mg/m3,氧化铈5mg/m3,铈族6mg/m3,钇族4mg/m3,还提出镧在地面水中最高允许浓度推荐值为0.01mg/L。美国于1960年推荐钇的阈限值(TLV)为5mg/m3,后因前苏联报道给动物气管滴入氧化钇可致严重肺损伤,故将此值修订为1mg/m3。不少研究者总结认为:稀土粉尘的最高允许浓度为4~6mg/m3,人体从食物中摄入稀土硝酸盐的允许量为12~120 mg/(日·人)(赵志根等,2002a)。我国目前正在探讨稀土生产及应用车间空气、地面水以及食品中稀土的最高允许浓度(陈清等,1989)。我国人类食用的植物性食品中稀土限量的国家标准(GB13107-91)已颁布实施。

美国曾对炼油厂稀土污染进行过研究(彭安等,1995)。然而,关于煤中稀土元素是否可列入有害元素的范畴,目前未见文献报道。但在有些煤中、特别是洗选后的煤泥以及燃煤后的粉煤灰、飞灰中,稀土元素丰度较高,有的甚至达到或超过了工业品位(500×10-6)。彭安等(1995)计算了不同排放源对大气元素的贡献,发现煤的燃烧对城市大气中稀土的含量贡献最大。

实际上,元素周期表中的任何一种元素如果高度富集或贫乏,都会对环境和人类健康造成危害(Finkelman等,1999),而且煤中元素有其特殊性,它们在煤的利用(主要是燃烧、洗选、淋滤)过程中的迁移性在很大程度上决定了其危害性。有的元素虽然本身具有毒害性,但在煤利用过程中以及在利用后固体废物受风化或雨水淋滤等作用过程中表现为惰性,基本不向外界环境迁移,那么它就是相对无害的。有的元素,虽在煤中含量不高,但在煤的利用过程中有较大排放量,或虽有较小的迁移量,但能生成毒性更大的化合物,难以降解,具有积累性,那么它就是有害的。

因此,煤中元素的有害性或无害性是相对的,评价其危害性,不但要考虑其含量水平以及本身具有的毒害性,还要考虑其迁移特性。同时,人的认识能力随科学技术的发展而不断提高,在现有认识水准下认为是无害的元素,将来可能被确定为是有害元素。因此,单纯地限定煤中有害元素种类的做法并不科学,重要的是要查明它们的含量水平、分布特征、赋存状态及其在煤利用前、利用过程中、利用后的迁移行为。此外,在煤中有些元素之间存在依存或共生关系,因此单独研究某几种元素也具有较大的片面性。

综合以上考虑,本书除了研究有害常量元素S以外,对煤中砷(As)、铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)、硒(Se)、氟(F)、氯(Cl)、镍(Ni)、锰(Mn)、钴(Co)、钼(Mo)、铍(Be)、锑(Sb)、铀(U)、钍(Th)、溴(Br)17种有害微量元素也应进行重点研究,对其他有害或潜在有害微量元素以及在现今认识水准下认为无害的元素作一般性讨论,即在充分利用现有资料的情况下,尽可能达到不遗漏、不放过有害元素的目的。

暴躁的钥匙
过时的世界
2025-07-04 23:07:09
铅是我们常见的一种金属,我们平时日常生活常常会经常用到它,那么生活中哪些东西含有铅呢?

(一)生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。

(二)食物中的铅,某些饮料、劣质食品、中草药等。食物中的铅,如某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工制成的爆米花,加入氧化铅以加快其成熟的松花蛋。

(三)动植物体内的铅。植物性食品的铅含量受土壤、肥料、农药及灌溉用水含铅量的影响。动物性食品铅含量受饲料、牧草、空气和饮用水含铅量的影响。

(四)大气污染,如用含铅汽油的汽车尾气,以及以煤制品(如煤球、煤饼)为燃料的家庭,室内空气中铅平均含量比室外空气的铅含量高很多。

(五)暴露在含铅环境下的大人及衣物又交叉感染给孩子,例如交通岗亭、印刷厂、钢铁厂、炼油厂、铸造厂、蓄电池行业和矿山等都是铅污染重灾区,许多行业都有接触铅化合物的机会,作为大人平时应注意预防铅中毒,既要保护自己,更是要保护孩子。

(六)使用含铅的上釉瓷器;使用含铅的化妆品。

所以在日常生活中要时常注意,预防铅中毒。

曾经的棒棒糖
舒心的诺言
2025-07-04 23:07:09

coal

一种固体可燃有机岩,主要由植物遗体经生物化学作用,埋藏后再经地质作用转变而成。俗称煤炭。中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品 ,河南巩义市也发现有西汉时用煤饼炼铁的遗址。《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭 。明代李时珍的《本草纲目》首次使用煤这一名称。希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有 《石史》 ,其中记载有煤的性质和产地;古罗马大约在2000年前已开始用煤加热。

煤的生成 在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥;泥炭或腐泥被埋藏后 , 由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤;当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。

煤的分类 由于研究内容和使用的不同,煤有各种分类法,如按元素组成、成因、变质程度、工业用途、工艺性质等的分类 。早期多根据 煤的元素组成分类 ,称科学分类法。在地质上常采用成因分类法,即将煤分为腐殖煤、腐泥煤和腐殖腐泥煤。按煤化程度可分为褐煤、烟煤和无烟煤。1989年10月 ,国家标准局发布《 中国煤炭分类国家标准 》(GB5751-86),依据干燥无灰基挥发分Vdaf、粘结指数G、胶质层最大厚度Y、奥亚膨胀度 b、煤样透光性 P、煤的恒湿无灰基高位发热量Qgr,maf等6项分类指标,将煤分为14类。即褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。

化学组成 煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,而碳、氢、氧三者总和约占有机质的95%以上;煤中的无机质也含有少量的碳、氢、氧、硫等元素。碳是煤中最重要的组分,其含量随煤化程度的加深而增高。泥炭中碳含量为50%~60%,褐煤为60%~70%,烟煤为74%~92%,无烟煤为 90%~98%。煤中硫是最有害的化学成分。煤燃烧时,其中硫生成SO2,腐蚀金属设备,污染环境。煤中硫的含量可分为 5 级:高硫煤,大于4%;富硫煤,为2.5%~4%;中硫煤,为1.5%~2.5%;低硫煤,为1.0%~1.5%;特低硫煤 ,小于或等于1%。煤中硫又可分为有机硫和无机硫两大类。

工业分析 通过工业分析可大致了解煤的性质。又称技术分析。是指煤的水分、挥发分、灰分的测定以及固定碳的计算。水分可分为外在水分、内在水分以及与煤中矿物质结合的结晶水、化合水。外在水分为煤炭在开采、运输、储存及洗选过程中,附着在煤颗粒表面和大毛细孔中的水分。内在水分为吸附或凝聚在煤颗粒内部的毛细孔中的水分,温度超过100℃时可将煤中内在水分完全蒸发出来 。灰分是指煤完全燃烧后残留的残渣量。灰分来自煤的矿物质。挥发分是指煤中有机质可挥发的热分解产物。挥发分随煤化程度增高而降低,可用于初步估测煤种。固定碳是指煤中有机质经隔绝空气加热分解的残余物。固定碳随变质程度的加深而增高,可作为鉴定煤变质程度的指标。

工艺性质 煤的工艺性质是工业评价合 理 用 煤的依据,主要包括粘结性、结焦性、发热量、化学反应性、热稳定性、焦油产率和可选性等。粘结性是指煤在高温干馏中产生胶质体,使煤粒相互粘结成块的性能。粘结性是评价炼焦用煤的主要指标。结焦性是指在炼焦炉中能炼出适合高炉用的有足够强度的冶金焦炭的性质。发热量是指单位质量的煤在完全燃烧时所产生的热量。煤的发热量是煤质的重要指标,是计算热平衡、耗煤量、热效率等的依据。

煤中伴生元素 指以有机或无机形态富集于煤层及其围岩中的元素。有些元素在煤中富集程度很高,可以形成工业性矿床,如富锗煤、富铀煤、富钒石煤等,其价值远高于煤本身。

根据煤中伴生元素的性质和用途,可分为有益元素、有害元素和指相元素3类。有益元素主要 有锗、镓、铀、钒等,可被利用。有害元素 主要有硫 、磷、氟、氯、砷、铍、铅、硼、镉、汞、硒、铬等。硫是煤中常见的有害成分,其他有害元素在煤中含量一般不高,但危害极大,如砷是一种有毒元素。煤在燃烧中,硫是造成城镇环境污染的主要物质源。当然,对有害元素如果收集、处理得当也可变成对人有用的财富。煤中伴生元素,有各自的地球化学性质,形成于不同的沉积环境中。因此,可根据元素的相对含量、元素的共生组合关系及元素的比值,来判断相和沉积环境。

用途 煤是重要能源,也是冶金、化学工业的重要原料。主要用于燃烧、炼焦、气化、低温干馏、加氢液化等。①燃烧。煤炭是人类的重要能源资源,任何煤都可作为工业和民用燃料。②炼焦。把煤置于干馏炉中,隔绝空气加热,煤中有机质随温度升高逐渐被分解,其中挥发性物质以气态或蒸气状态逸出,成为焦炉煤气和煤焦油,而非挥发性固体剩留物即为焦炭。焦炉煤气是一种燃料,也是重要的化工原料。煤焦油可用于生产化肥、农药、合成纤维、合成橡胶、油漆、染料、医药、炸药等。焦炭主要用于高炉炼铁和铸造,也可用来制造氮肥、电石。电石是塑料、合成纤维、合成橡胶等合成化工产品。③气化。气化是指转变为可作为工业或民用燃料以及化工合成原料的煤气。④低温干馏。把煤或油页岩置于 550℃左右的温度下低温干馏可制取低温焦油和低温焦炉煤气,低温焦油可用于制取高级液体燃料和作为化工原料。⑤加氢液化。将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质破坏,与氢作用转化为低分子液态和气态产物,进一步加工可得汽油、柴油等液体燃料。加氢液化的原料煤以褐煤、长焰煤、气煤为主。

综合、合理、有效开发利用煤炭资源,并着重把煤转变为洁净燃料,是人们努力的方向。

产地 在各大陆、大洋岛屿都有煤分布,但煤在全球的分布很不均衡,各个国家煤的储量也很不相同。中国、美国、俄罗斯、德国是煤炭储量丰富的国家,也是世界上主要产煤国,其中中国是世界上煤产量最高的国家。

煤可以创造沥青、煤气、煤焦油和焦碳

【mei】

coal;

méi

(1)

(形声。从火,某声。本义:烟尘)

(2)

同本义 [soot]。如:煤尾(屋中的烟尘)。又指制墨的烟灰

试扫其煤以为墨,黑光如漆,松墨也。――宋·沈括《梦溪笔谈》

(3)

指墨 [ink]

中官欲于苑中作墨灶,取西湖九里松作煤。――宋·陆游《老学庵笔记》

(4)

又如:煤精(煤的一种。色黑,质硬,可用以雕刻工艺品)

(5)

灯芯的余烬,即灯花 [snuff]。如:煤火(煤燃烧时的火焰)

(6)

煤炭,一种黑色固体矿物 [coal]。如:煤毒(即煤气)煤炸(小煤块)煤掌(煤矿井下的工作面)煤气灶(以煤气为燃料的灶具)

煤仓

méicāng

[coal bunker] 贮藏船用煤使用的一种大隔间

煤层

méicéng

[coal bed] 作层状分布在地下的煤

煤房

méifáng

(1)

[room]∶房柱式采煤的回采工作地点,通大巷,适合于水率或缓慢倾斜的煤层的开采

(2)

[bordroom]∶煤房中的煤正被回采或已采完所形成的空间

煤矸石

méigānshí

[gangue] 煤矿中无用的岩石

煤核

méihé

[coal Cinderpartly-burned coal] 煤中的一种结核,通常由方解石或氧化硅和碳质物质组成,并有碎片状或显微状的植物残体

煤核儿

méihúr

[partly-burned briquet] 没烧透的煤块或煤球

煤焦油

méijiāoyóu

[coal tar] 干馏煤炭得到的黑褐色粘稠液体

煤矿

méikuàng

(1)

[colliery]∶煤矿藏和采煤有关的建筑物

(2)

[coalpit]∶采掘煤炭的矿井

煤气

méiqì

[coal gas] 由煤制得的气体

煤气灯

méiqìdēng

[gas burnergas lamp] 一种带喷嘴或有一组出气口的装置,通过它放出可燃气体并燃烧

煤气罐

méiqìguàn

[gas pitcher] 储存石油液化气的罐儿也指液化煤气灶的整套装置

煤气中毒,煤炭中毒

méiqì zhòngdú,méitàn zhòngdú

[gas poisoning] 因吸入煤、木炭及其他含碳物质不完全燃烧产生的一氧化碳而中毒

煤球

méiqiú

[coal ball] 煤末加水和黄土制成的小圆球,是做饭取暖等的燃料

煤炭

méitàn

[coal] 即“煤”。植物残体经受不同程度的腐解转变而成的一种黑色或褐黑色固体可燃矿物物质

煤田

méitián

[coalfield] 大面积的开煤地带

煤烟

méiyān

[smoke from burning coal] 煤燃烧时发出的烟

煤窑

méiyáo

[coalpit] 小型煤矿,一般用手工开采

煤油

méiyóu

[kerosineparaffin] 石油分馏出来的燃料油,挥发性比汽油低

煤渣

méizhā

[coal cinder] 煤燃烧后剩余的灰渣

煤柱

méizhù

[coal column] 地下采煤时,为了工作方便和安全而保留的、暂时或永久不予开采的一部分矿体

煤砖

méizhuān

[briquette] 通常由细小的散料(如用作燃料的煤粉)掺入粘结料,或掺入粘结料又加压而形成的常为砖形的一种结实的块料

méi ㄇㄟˊ

(1)

古代的植物压埋在地底下,在不透空气或空气不足的条件下,受到地下的高温和高压年久变质而形成的黑色或黑褐色矿物:~矿。~田。~层。~气。~焦油。~精。

(2)

烟气凝结的黑灰,为制墨的主要原料:~炱。松~(松烟)。