能源的资源储量如何?
资源和储量术语多种多样。将不同的能源潜力进行比较时,由于所采用的能量定量术语几乎没有一致性可言,情况就变得极为复杂。石油的储量用桶来表述(百万桶或几十亿桶),一桶油等于42加仑。油的能量含量是可变的,但平均数为580万英热单位/桶。油产量和消耗量一般用“桶/天”表示(BOPD)。天然气量用千立方英尺(MCF)表示。有时在中间插入“S”(MSCF)表示气量是在标准温度和压力条件下计量的。气的能量单位通常为1000英热单位/立方英尺,或百万英热单位/千立方英尺(较大气量可以用几百万、几十亿、甚至几千亿立方英尺表示,但都是千进制。应用公司通常都采用较小单位计量,即百立方英尺(CCF)。公制单位用立方米,而不是立方英尺。
下面给出了几种常用的能量表述单位:
1Btu(英热单位)=1055J(焦)=252cal(卡)
=0.000293kW·h(千瓦小时)
如果表述的范围值大,则用不同的前缀表示:
1MJ=106J1TJ=1012J1PJ=1015J1EJ=1018J1quad(夸特)=1015 Btu=1.055EJ油和煤的能量含量虽不尽相同,但许多作者都用如下表述给资源定量:
1tce(吨煤当量)=2778万英热单位1toe(吨油当量)=4000万英热单位由于每个特定的术语本身都不尽相同,所以这里给出的换算只是大概的平均数。例如,同样是以“Btu”计量能量,但不同的压力和温度下的值就有所变化,好在这种变化的量很小(两种状态下的误差只有0.1%)。资源和储量估算中的误差很大,但这种变化可以忽略不计。
描述不同能源及其利用潜力的术语多得数不胜数,最准确的可能还是“资源基础”这一术语,它是指已知条件下已知能源存在的总量。全球太阳能的资源基础是指太阳传给地球的能量总量,由于太阳能持续不断地到达地球,因此计量表述上要有“年”或某种时间概念。非洲的石油资源基础是指整个非洲大陆地下存在的油的总量的估算,不同专家给出的估算值可能会有巨大差异,非洲大陆油气勘探程度低,这种差异就更为明显。
从地球中开采出的所有能源都必须经过地下勘探才能找到,因此,化石燃料、核能及地热资源的已知资源量可能只占总量很小的一部分。一个地区,勘探程度越高,资源基础已知的部分就越大,但对地下存在的资源量的认识程度会有区别。如果地质勘探表明某一地区有资源存在,地质学家们就可以推测出该地区未勘探区域所具备的资源量。
各公司和决策者们最关心的是还有多少资源可开采出来加以利用。受经济和技术条件限制,要把所有的可采资源量都开发出来绝不可能,因此“储量”这一术语是指在现有经济和技术条件下可采出的总量。单独使用“储量”一词时,最可能的意义是指(经生产证实的)探明储量,细分还有“控制储量”(inferred reserves),是指通过勘测认识的量,但未经开发证实。评价可采资源量比评价原始地质总量更有意义,因此,针对资源基础的估算量,用可采百分比的概念来确定未发现的储量,发现储量和未发现储量之和称为可采资源量。
对于能开发成连续能量流的能量形式(太阳能、风力和水力),则无储量可言。因此,非衰竭性能源其潜在的可获取量(与实际显现的储量相比)被称为生产能力。
衰竭性能源,已开发的量被称为“产出量”(produced),一经产出,就不再具备资源量,而非衰竭性能源,相应的产出部分被称为产量(production),并可以持续利用。无论是“产出量”还是“产量”,对于地下资源来说,是唯一可以直接计量的指标,而对于非衰竭性能源,则是最确定的数字计量。还有许多不同的分类来表述不同的核实程度和经济产能,在有关能源量的沟通方面引起了相当程度的混淆。
生物燃料和地热资源介于衰竭性和非衰竭性两类能源之间,其原因是这两种资源都有一定的再生能力和蓄积能力。
令人沮丧的是,在许多流行出版物的报告中,甚至有一些专业技术作者也把“资源量”和“储量”混为一谈。如本书后几章说明的那样,已知石油资源量的最终采收率不可能超过30%,如果将已知资源量(known resource)和储量(reserves)搞混,误差高达300%;如果将总的资源基础(total resource base)和储量(reserve)混用,误差就有可能达到百分之几千。
人们之所以对“石油用尽”这一说法感到困惑,上述情况是很重要的一个原因。即使没有把资源量和储量搞混,用可延续多少年来表示目前储量也有问题。其实,以目前的产量水平,用时间长度来表示当前储量并没有实际意义,新发现不断使储量增加,而生产又使储量减少;用储采比来表示还有多少剩余油,这种方法忽略了新发现储量、技术改进及价格上涨(随能源供应短缺而持续)等因素,而这些因素都有可能提高最终采收率,从而提高已知资源量中的储量部分。下面这段话(注1)可能出自20世纪70年代某文章的标题,实际上引自1919年的美国燃料研究:“(美国石油的总储量)以目前的消耗水平可持续14年……今后25年左右,美国石油供应将彻底枯竭。”这段话生动地表现了“储采比”做法的缺陷。
术语缺乏统一的标准原因有很多,其中之一是可再生资源和不可再生资源不同。比如,要想谈论太阳能的最终采收率,最起码要预测一下人类还能存续多长时间,这样做没有任何实际意义。虽然许多种能源形式都可使用“资源基础”这一概念,但用于可再生能源时就要格外注意。每年到达地球的太阳能有4000万亿英热单位,相当于1980年全世界(商业性)能源消耗的15000倍(注2),既然如此,难道可以认为太阳能的资源基础是世界能源需求的15000倍吗?当然不能,捕获的光子用于发电后,就不能再用于光合作用、将水蒸发形成云或日光浴,太阳能有相当一部分用来延续地球上的生命,那么对太阳能资源基础最客观的估算,也只占入射地球表面阳光中很小的一部分。但不管怎么说,太阳能有丰富的资源基础,至少在理论上能满足全人类的能量需求,只是因为受限于技术水平而无法使用和储存,其他一些可再生能源也存在类似问题。
能源分类所采用的术语其实很容易引起误导,如可再生能源、化石燃料、核能等等。那么每遇到一个术语,建议大家在使用前先弄清它的含义。
可再生资源
可再生性资源一般包括太阳能、水力、风能和生物燃料(生物燃料是指可以用做燃料的、近期死亡的有机质)。实际上,太阳能不可再生,太阳本身燃烧,将氢气原子融入氦,释放出像电子辐射一样的核能。事实上,太阳内部每秒有大约65700万吨的氢气熔化,变成65300万吨的氦,400万吨的差表示这部分物质转换成了能量(注3),这一过程中没有再生步骤,一对氢核子一旦熔合,就不再分裂再次熔合,太阳本身的大小和热度都不足以将这种熔合作用再推进一步。之所以称太阳能为可再生能源,只是因为它不受人类干扰持续不断地到达地球表面,而且可能会一直延续到人类历史的终结。太阳能尽管有巨大的资源量,但太阳本身的生命也有限,也会衰老,科学家预言太阳还能再释放五十亿年的能量。
有些作者声称其他所有可再生能源都是从太阳能衍生出来的,其实不尽然。风能产生的部分原因就是由于地球自转,潮汐(本书将之归类为水力发电资源的一种)则在月球的引力作用下产生。当然了,生物燃料和河流的水力发电利用了其本身储存的能量,而这部分能量是从太阳衍生而来,因此生长过程和水循环过程虽然生生不息,但这种过程很大程度上都依赖于有限的资源。
很多人没有把地热归为可再生能源,但地热的再生能力其实很强。地球内部自然放射性衰变、重力、也许还有其他的力,产生了一股相当稳定的热流,并能使热量不断得到补充,关于这些过程的实际意义还有争论,但与太阳能相比,地热的资源量也很大,且有再生的过程。
上述分类基本上从学术角度出发,某种程度上太过琐细。太阳能有巨大的资源基础,这当然毋庸置疑,人类活动不会使太阳能衰竭,这也是不争的事实。但需要强调一点:再生能力并不是绝对的。比如说,一般认为化石燃料是不可再生资源,但实际上,每年大约有16000吨油当量的植物燃料腐烂,使化石燃料资源得到补充(注4)。(全球气候温暖且有巨大沼泽的地质时代,再生速度远高于此,目前人类的各种活动,如乱砍滥伐、沼泽枯竭、过度占用耕地等降低了这种再生速度,但再生绝没有停止。)
绝大部分称为可再生的能源(如风能、太阳能、水力)都属于不受人类活动影响的资源。关于可再生资源,争议最多的就是植物燃料,它像煤、油和气一样持续不断地形成,再生速度也远远高于化石燃料,但尽管它可源源不断地生产出来,新的植物燃料资源却要依赖于现有的储量基础(森林等)。人类活动能够而且也确实衰减了这一资源基础,继而又降低了再生速度。
化石燃料
什么是化石燃料?本质上它和植物燃料相同,唯一区别是其构成物质死亡时间的长短。(根据最为流行的地质理论)化石燃料是:某种程度上,在温度、压力、化学反应和时间作用下而改变的、满载碳物质的死亡有机体的残骸,包括煤、油、气和干酪根(油页岩),并可持续再生。几百万年前所发生的死亡、腐烂、自然埋藏(海底和湖底沉积物)过程,形成了今天的煤田、油田和气田,这一过程今天也同样在进行。其实,只要去一趟佛罗里达州的奥克弗诺基沼泽(Okefenoke swamps)或北卡罗来纳州的迪斯默尔沼泽(Dismal Swamp),就能观察到未来煤层形成的早期过程。之所以说化石燃料不可再生,是因为人类一开始使用化石燃料,其消耗速度就超过了再生速度。
核能
破坏少量物质就可释放出巨大的核能。其具体过程是大核子分裂成小核子或小核子聚合成大核子。对于人类来说,分裂大核子相对容易一些,因为某些自然状态的原子核,如铀235的原子核本身就很不稳定,只需把中子填到原子核中,它就会裂变,释放出巨大的能量。若是把两个原子核放在一起让其熔合聚变就会产生更大的能量。风和日丽的天气里,我们能清楚地感受到原子核聚变的潜力——太阳能就来自于太阳中的熔合聚变作用。但利用原子核的电荷很难将原子核拉到足够近的距离使其熔合,因此需要一种可作为触发器的巨大能量来开始聚变作用,这是目前技术和利用原子核聚变之间的一道障碍。
不可再生能源,又称非再生能源、耗竭性能源,与可再生能源对应,是无法经过短时间内再生的能源,而且它们的消耗速度远远超过它们再生的速度。煤炭、石油、天然气等化石燃料与核燃料、矿产等均属于不可再生能源,如该能源一旦耗尽,将不能开采出更多的可用储备供将来使用。
不可再生能源核燃料
核能发电提供约6%和世界的13%-14%的电,核技术需要核燃料作为能源,但核燃料在世界上的浓度相对很低,开采相对困难,目前只有19个国家能够开采到铀矿。 核电厂、医院、农业、工业、食品业与科学研究等都会产生出放射性废料,世界上有许多国家虽然没有核电厂但是也有放射性废料处理厂。
化石燃料
由于使用化石燃料的内燃机技术在17世纪被迅速发展,因此化石燃料被现代社会大量使用。然而化石燃料是不可再生的,目前人类使用的主要能源仍然依赖不可再生能源,而且主要能源快速消耗的同时,需求还不断增加。可是所有耗竭性能源都需要数百万年时间慢慢形成,在人类的时间尺度上,它们都不能被及时再补充,是不可再生的资源。由于不可再生能源在短时间内无法被制造,而人类社会的许多活动都会消耗不可再生能源,导致其价格不断攀升。
可再生能源生物质能
生物质能是指能够当作燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物(Biodegradable waste)制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。
地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达摄氏7000度,而在80至100公里的深度处,温度会降至摄氏650度至1200度。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
海洋能
海洋能源(有时也简称为海洋能)是指由波浪、潮汐、洋流、海水盐度的和海洋温度的差异产生能量。海洋能是一种新兴技术,地球上的海洋运动提供庞大的动能力量或运动中的能量。可以利用这种能量发电,以供家庭、运输和工业用电。
太阳能
太阳能一般是指太阳光的辐射能量,自地球形成生物就主要以太阳提供的热和光生存,广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能,化石燃料可以称为远古的太阳能。自古人类就懂得以阳光晒干物件,也是保存食物的方法,如制盐和晒咸鱼等。太阳能使用的方式可分为光热转换(被动式利用)和光电转换两种方式。主动式太阳能技术,包括利用太阳能光伏板和太阳能集热器储存能量。被动式太阳能技术,包括导向建筑物在阳光下,选择材料具有良好的热质量或光分散性能和设计自然空气流通的空间。
水力
在水中的能量亦为人类所驱,因为水比空气的密度高800倍,即使是慢慢流的水都可以产生很大的能量。
风能
空气中随着温度高低,气流会移动,即为“风”, 风力发电机利用风能可以转变成机械能,再将机械能转成电能,现代的风力发电机一开始系由丹麦研究进入商业运行,起始于1970年代后期的石油危机,丹麦意识到自己国家缺乏自产能源,高度仰仗进口能源将危害国家中长期发展,所以在此危机意识下,大力推动风力发电。
现代的风机在1980年后至今有突飞猛进的进步,不论在技术的进步以及成本的下降,都足以和传统电能分庭抗礼。现代风机的单机容量在1.5-3MW之间。由于风的能量与其速度为2的立方比(8倍),所以风速增加一些些,其能产生的能量就大得许多。一般而言,风机的发电量每年在1500-3000满发小时之间。
目前已经发掘的天然气存储地主要是伊朗、俄罗斯、卡塔尔、土库曼斯坦、美国等国家,这些国家同时也是天然气重要出口国。
其中作为世界第一天然气储量国的伊朗,天然气探明储量为34万亿立方米,约合原油当量2244亿桶。这也是为什么伊朗作为一个小国,却经常出现在国际新闻里面,因为他们作为天然气出口的第一大国,会直接影响到世界的经济。当然,也正是因为怀璧其罪,所以这个国家一直以来都受战乱之苦,毕竟一个小国拥有如此大的天然气储备,的确会让一些列强心动的。
俄罗斯作为第二大天气热储量国,也是我们中国重要的天然气输入国之一,他们的天然气探明储量为32.3万亿立方米,约合原油当量2132亿桶。同时:塔卡曼斯坦、哈萨克斯坦、缅甸等国也是中国天然气出口国,我们国家也和他们有很好的合作关系。朋友之间本来就是互通有无的,而国家与国家之间也是。这其中,有的国家可能并不是那么好相处,但是为了获得生产生活所需要的天然气,也会和他们建立友好的合作关系。这可能就是老天爷给饭吃的一个具体表现吧!
其实,从各个国家的天然气和石油的储备量来看,是非常庞大的。但是随着世界人口的增加,还有天然气和石油的使用率越来越高,很多专家都认为,石油时代至少将持续两三个世纪。也就是说,照如今的能源使用情况来看在两三百年之后,石油和天然气的能源可能就会枯竭。虽然两三百年对于一个人的一生而言是不长久的,但是对于一个种族的发展是非常短暂的,所以现在大家才迫切的希望可以找到代替石油和天然气的新能源,毕竟石油和天然气都是一种不可再生能源。
好在为了解决燃油和燃气的能源问题,现在科学家们也正在努力发掘更多的可再生资源。比如这两年大力推广的新能源汽车,使用了代替石油的电力能源。其实中国也有天然气和石油储备,但是我们总要给子子孙孙留下些资源,所以大力依靠能源进口。不过当新能源普及以后,对于石油和天然气的依赖肯定会大大降低,对于整体的经济发展是有很大的利处的。
随着人类对地球资源的无节制的获取和利用,地球的有限资源将在未来的几百年枯竭,地球的生态系统也会受到巨大的影响。人类只有减少非再生能源的使用,逐渐向可再生能源转型,这样才可以维持人类的可持续发展。可再生能源主要包括风能,太阳能、水能、生物质能、地热能、海洋能和核能等。
可再生能源的意义。地球上的不可再生资源主要包括煤炭、石油和天然气。这些资源探明的储备量已经远远无法满足人类的使用了。石油只够使用50年,天然气只够使用60年,而煤炭只够使用200年,其他金属矿产只够使用不到200年,不过虽然人类技术的提高,金属的回收利用的效率也会提升。人们面临的最大问题就是能源危机。除了能源危机以外,不可再生资源的燃烧和利用会产生大量的有害气体和温室气体,多生态环境的影响是巨大的。所以大力发展可再生能源就是人类的未来,而且这些能源最大的优点是清洁无污染。
可再生能源的种类。可再生能源中最常见的就是太阳能,该能源主要来自于太阳辐射,目前人类的卫星和航天器都用太阳能提供持续的动力,未来可以提高给汽车和飞机使用,也可以普及居民用电,光伏产业目前已经成为全世界关注的焦点。风能是地球表面空气的运动而产生的,风力发电是目前最常见的使用领域。水能和潮汐能都是利用水的运动而产生的能源,目前主要用于发电,这类能源是取之不尽用之不竭的能源。生物能主要包括沼气、生物制氢、生物燃料乙醇等,但是该能源如果不合理的开发会对生态系统造成影响。核能是人类文明最重要的发现,虽然技术含量较高,但是能源的持续性较好,而且宇宙中的原材料是取之不尽的。
随着世界经济规模的不断增大,世界能源消费量持续增长。1990年世界国内生产总值为26.5万亿美元(按1995年不变价格计算),2000年达到34.3万亿美元,年均增长2.7%。根据《2004年BP能源统计》,1973年世界一次能源消费量仅为57.3亿吨油当量,2003年已达到97.4亿吨油当量。过去30年来,世界能源消费量年均增长率为1.8%左右。2. 世界能源消费呈现不同的增长模式,发达国家增长速率明显低于发展中国家
过去30年来,北美、中南美洲、欧洲、中东、非洲及亚太等六大地区的能源消费总量均有所增加,但是经济、科技与社会比较发达的北美洲和欧洲两大地区的增长速度非常缓慢,其消费量占世界总消费量的比例也逐年下降,北美由1973年的35.1%下降到2003年的28.0%,欧洲地区则由1973年的42.8%下降到2003年的29.9%。OECD(经济合作与发展组织)成员国能源消费占世界的比例由1973年的68.0%下降到2003年的55.4%。其主要原因,一是发达国家的经济发展已进入到后工业化阶段,经济向低能耗、高产出的产业结构发展,高能耗的制造业逐步转向发展中国家;二是发达国家高度重视节能与提高能源使用效率。3. 世界能源消费结构趋向优质化,但地区差异仍然很大
自19世纪70年代的产业革命以来,化石燃料的消费量急剧增长。初期主要是以煤炭为主,进入20世纪以后,特别是第二次世界大战以来,石油和天然气的生产与消费持续上升,石油于20世纪60年代首次超过煤炭,跃居一次能源的主导地位。虽然20世纪70年代世界经历了两次石油危机,但世界石油消费量却没有丝毫减少的趋势。此后,石油、煤炭所占比例缓慢下降,天然气的比例上升。同时,核能、风能、水力、地热等其他形式的新能源逐渐被开发和利用,形成了目前以化石燃料为主和可再生能源、新能源并存的能源结构格局。到2003年底,化石能源仍是世界的主要能源,在世界一次能源供应中约占87.7%,其中,石油占37.3%、煤炭占26.5%、天然气占23.9%。非化石能源和可再生能源虽然增长很快,但仍保持较低的比例,约为12.3%。由于中东地区油气资源最为丰富、开采成本极低,故中东能源消费的97%左右为石油和天然气,该比例明显高于世界平均水平,居世界之首。在亚太地区,中国、印度等国家煤炭资源丰富,煤炭在能源消费结构中所占比例相对较高,其中中国能源结构中煤炭所占比例高达68%左右,故在亚太地区的能源结构中,石油和天然气的比例偏低(约为47%),明显低于世界平均水平。除亚太地区以外,其他地区石油、天然气所占比例均高于60%。4. 世界能源资源仍比较丰富,但能源贸易及运输压力增大
根据《2004年BP世界能源统计》,截止到2003年底,全世界剩余石油探明可采储量为1565.8亿吨,其中,中东地区占63.3%,北美洲占5.5%,中,南美洲占8.9%,欧洲占9.2%,非洲占8.9%,亚太地区占4.2%。2003年世界石油产量为36.97亿吨,比上年度增加3.8%。通过对比各地区石油产量与消费量可以发现,中东地区需要向外输出约8.8亿吨,非洲和中南美洲的石油产量也大于消费量,而亚太、北美和欧洲的产消缺口分别为6.7亿、4.2亿和1.2亿吨。
煤炭资源的分布也存在巨大的不均衡性。截止到2003年底,世界煤炭剩余可采储量为9844.5亿吨,储采比高达192(年),欧洲、北美和亚太三个地区是世界煤炭主要分布地区,三个地区合计占世界总量的92%左右。同期,天然气剩余可采储量为175.78万亿立方米,储采比达到67。中东和欧洲是世界天然气资源最丰富的地区,两个地区占世界总量的75.5%,而其他地区的份额仅分别为5%~7%。随着世界一些地区能源资源的相对枯竭,世界各地区及国家之间的能源贸易量将进一步增大,能源运输需求也相应增大,能源储运设施及能源供应安全等问题将日益受到重视。二、世界能源供应和消费趋势
根据美国能源信息署(EIA)最新预测结果,随着世界经济、社会的发展,未来世界能源需求量将继续增加。预计,2010年世界能源需求量将达到105.99亿吨油当量,2020年达到128.89亿吨油当量,2025年达到136.50亿吨油当量,年均增长率为1.2%。欧洲和北美洲两个发达地区能源消费占世界总量的比例将继续呈下降的趋势,而亚洲、中东、中南美洲等地区将保持增长态势。伴随着世界能源储量分布集中度的日益增大,对能源资源的争夺将日趋激烈,争夺的方式也更加复杂,由能源争夺而引发冲突或战争的可能性依然存在。
随着世界能源消费量的增大,二氧化碳、氮氧化物、灰尘颗粒物等环境污染物的排放量逐年增大,化石能源对环境的污染和全球气候的影响将日趋严重。据EIA统计,1990年世界二氧化碳的排放量约为215.6亿吨,2001年达到239.0亿吨,预计2010年将为277.2亿吨,2025年达到371.2亿吨,年均增长1.85%。
面对以上挑战,未来世界能源供应和消费将向多元化、清洁化、高效化、全球化和市场化方向发展。1. 多元化
世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛的利用。可持续发展、环境保护、能源供应成本和可供应能源的结构变化决定了全球能源多样化发展的格局。天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势。未来,在发展常规能源的同时,新能源和可再生能源将受到重视。在欧盟2010年可再生能源发展规划中,风电要达到4000万千瓦,水电要达到1.05亿千瓦。2003年初英国政府公布的《能源白皮书》确定了新能源战略,到2010年,英国的可再生能源发电量占英国发电总量的比例要从目前的3%提高到10%,到2020年达到20%。2. 清洁化
随着世界能源新技术的进步及环保标准的日益严格,未来世界能源将进一步向清洁化的方向发展,不仅能源的生产过程要实现清洁化,而且能源工业要不断生产出更多、更好的清洁能源,清洁能源在能源总消费中的比例也将逐步增大。在世界消费能源结构中,煤炭所占的比例将由目前的26.47%下降到2025年的21.72%,而天然气将由目前的23.94%上升到2025年的28.40%,石油的比例将维持在37.60%~37.90%的水平。同时,过去被认为是“脏”能源的煤炭和传统能源薪柴、秸杆、粪便的利用将向清洁化方面发展,洁净煤技术(如煤液化技术、煤气化技术、煤脱硫脱尘技术)、沼气技术、生物柴油技术等等将取得突破并得到广泛应用。一些国家,如法国、奥地利、比利时、荷兰等国家已经关闭其国内的所有煤矿而发展核电,它们认为核电就是高效、清洁的能源,能够解决温室气体的排放问题。3. 高效化
世界能源加工和消费的效率差别较大,能源利用效率提高的潜力巨大。随着世界能源新技术的进步,未来世界能源利用效率将日趋提高,能源强度将逐步降低。例如,以1997年美元不变价计,1990年世界的能源强度为0.3541吨油当量/千美元,2001年已降低到0.3121吨油当量/千美元,预计2010年为0.2759吨油当量/千美元,2025年为0.2375吨油当量/千美元。
但是,世界各地区能源强度差异较大,例如,2001年世界发达国家的能源强度仅为0.2109吨油当量/千美元,2001~2025年发展中国家的能源强度预计是发达国家的2.3~3.2倍,可见世界的节能潜力巨大。4. 全球化
由于世界能源资源分布及需求分布的不均衡性,世界各个国家和地区已经越来越难以依靠本国的资源来满足其国内的需求,越来越需要依靠世界其他国家或地区的资源供应,世界贸易量将越来越大,贸易额呈逐渐增加的趋势。以石油贸易为例,世界石油贸易量由1985年的12.2亿吨增加到2000年的21.2亿吨和2002年的21.8亿吨,年均增长率约为3.46%,超过同期世界石油消费1.82%的年均增长率。在可预见的未来,世界石油净进口量将逐渐增加,年均增长率达到2.96%。预计2010年将达到2930万桶/日,2020年将达到4080万桶/日,2025年达到4850万桶/。世界能源供应与消费的全球化进程将加快,世界主要能源生产国和能源消费国将积极加入到能源供需市场的全球化进程中。5. 市场化
由于市场化是实现国际能源资源优化配置和利用的最佳手段,故随着世界经济的发展,特别是世界各国市场化改革进程的加快,世界能源利用的市场化程度越来越高,世界各国政府直接干涉能源利用的行为将越来越少,而政府为能源市场服务的作用则相应增大,特别是在完善各国、各地区的能源法律法规并提供良好的能源市场环境方面,政府将更好地发挥作用。当前,俄罗斯、哈萨克斯坦、利比亚等能源资源丰富的国家,正在不断完善其国家能源投资政策和行政管理措施,这些国家能源生产的市场化程度和规范化程度将得到提高,有利于境外投资者进行投资。三、启示与建议
1. 依靠科技进步和政策引导,提高能源效率,走高效、清洁化的能源利用道路
中国有自己的国情,中国能源资源储量结构的特点及中国经济结构的特色,决定在可预见的未来,我国以煤炭为主的能源结构将不大可能改变,我国能源消费结构与世界能源消费结构的差异将继续存在,这就要求中国的能源政策,包括在能源基础设施建设、能源勘探生产、能源利用、环境污染控制和利用海外能源等方面的政策应有别于其他国家。鉴于我国人口多、能源资源特别是优质能源资源有限,以及正处于工业化进程中等情况,应特别注意依靠科技进步和政策引导,提高能源效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展。2. 积极借鉴国际先进经验,建立和完善我国能源安全体系
为保障能源安全,我国一方面应借鉴国际先进经验,完善能源法律法规,建立能源市场信息统计体系,建立我国能源安全的预警机制、能源储备机制和能源危机应急机制,积极倡导能源供应在来源、品种、贸易、运输等方式的多元化,提高市场化程度;另一方面应加强与主要能源生产国和消费国的对话,扩大能源供应网络,实现能源生产、运输、采购、贸易及利用的全球化。
所谓新能源,是对已成熟的常规能源而言的。一般是指在新技术基础上加以开发利用的可再生能源,即传统能源之外的各种能源形式。新能源十分多种多样,风能,水能,太阳能,核能等都是新能源。而这一次我们要介绍的,是一种十分新兴的能源,叫做“可燃冰”。“可燃冰”的名字使人一听就感到一头雾水,冰怎么可能燃烧?原来,“可燃冰”并不是真正的冰,将可燃冰中形象地加入“冰”一字是由于它外形惊似晶莹剔透的白色固体物质。而“可燃冰”的实质是一种可燃气体 ——甲烷,所以又被称为甲烷水合物。
早在1965年,就有苏联科学家曾发表论文叙述预言过海洋底部的地层表中可能存在的“可燃冰”。20世纪60年代以来,人们在北极的海洋深处发现了大量的这种曾被估测过的“可燃冰”。当将这种“冰”从海底捞出来时,它很快就会成为冒着气泡的泥水,而奇异的是这些附着在“可燃冰”上的气泡居然都能被点燃。甲烷可以像固体酒精一样被点燃,这是“可燃冰”化学成分的一大特点。
然而,可燃冰的形成并不是轻易而简单的,需要等到一种特定的环境在能被酿造。在这种特殊环境下,温度、压力和原料是三个必不可少的决定因素。首先,温度不能过高(高于20摄氏度),否则“可燃冰”会因为受热分解而烟消云散。但是因为海底温度的常态就是处于2~4摄氏度之间,所以这一因素在深海区域基本可以忽略不考虑。第二个因素就是一定的高压(30个大气压),现在普遍认为压力越大,“可燃冰”就越不容易分解。这个因素在海底也是迎刃而解,即以深海的深度这种高压随处都是。最后一点便是需要一定埋藏在海底泥沙中的掉下来的生物遗体,来经过细菌的分解后产生足量的甲烷气体作为“可燃冰”形成的原料。这一点也不难再深海中轻而易举地找到答案——海底积累起来的残骸简直比陆地上多得多!所以,这种“困难环境”是针对于陆地的,海底却是“可燃冰”最好的制造厂。
可燃冰同时也是一种节能且环保的能源。现代汽车大多数是用石油来发动的,但一旦将石油该换为可燃冰,会比之前节能且环保许多。所以说这也是可燃冰的一大好处。
可燃冰产生于深海底,以前人们对于它的重视度并不够大,导致我们对它的认识也很少,直到近几年,人们逐渐发现可燃冰的储量十分的多,在深海储存的可燃冰可达全世界天然气总储量的2倍,美国、中国、日本发达国家才纷纷投入巨资来勘探调查,至今在海底发现了116处含有“可燃冰”的所在地。如果海底智慧生物真的存在,那么这种能源的存在几乎可以用“宝库”来描述,他们可采用的能源要远远比人类可以用到的多。
但不管是什么能源,都不是取之不尽用之不竭的。我们需要的是爱护和节省,用行动来为未来创造出一片蓝天!
不可再生资源一般指不可更新资源。不可更新资源即不可再生资源,指经人类开发利用后,在相当长的时期内不可能再生的自然资源。不可更新资源的形成、再生过程非常的缓慢,相对于人类历史而言,几乎不可再生。
核能源于核矿石内的能量,核矿石属于矿产资源,而矿产资源属于非可再生资源.所以它是不可再生能源。核能(或称原子能)是通过核反应从原子核释放的能量,符合阿尔伯特·爱因斯坦的质能方程E=mc² ,其中E=能量,m=质量,c=光速。核能可通过三种核反应之一释放:核裂变,较重的原子核分裂释放结合能。核聚变,较轻的原子核聚合在一起释放结合能。核衰变,原子核自发衰变过程中释放能量。核能是人类最具希望的未来能源之一。人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研究之中。可不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。铀是目前最重要的核燃料,1千克铀可供利用的能量相当于燃烧2500吨优质煤。然而陆地上铀的储藏量并不丰富,且分布极不均匀。只有少数国家拥有有限的铀矿,全世界较适于开采的只有100万吨左右即使加上低品位铀矿及其副产铀化物,总量也不超过500万吨,按消耗量,只够开采几十年。而在巨大的海水水体中,却含有丰富的铀矿资源据估计,海水中溶解的铀的数量可达45亿吨,相当于陆地总储量的几千倍。如果能将海水中的铀全部提取出来,所含的裂变能可保证人类几万年的能源需要。
黄金之所以被人类用作货币,最重要的原因之一就是它是一种“惰性”金属。“惰性”金属是指它几乎不与其他元素发生反应,并且具有极其稳定的化学性质。因此,它不会生锈,没有毒性,不能成为生物圈的可用能源。换句话说,生活并不需要它。
拓展资料:
一、现在,在地球表面上可以开采的金矿数量已经不多,人们已经开采了80%。不到20年,黄金可能就会被开采完毕。根据科学家的推算,可以开采的黄金都处在地核处。这里的平均深度达到3400公里,温度有5000摄氏度。以目前人类的力量来说,还难以办到这挖掘地球内核。所以,虽然知道这里含有黄金,但也只能眼睁睁的看着,没办法去开采。
二、虽然数量庞大,不过也跟地球内核的黄金一样,人类无法开采它们。只能希望以后科学技术变得越来越先进的时候,能够突破这一个难点。估计到了那时,若黄金的开采变得容易,恐怕价格就没有现在这么高。另外,人们也要注意对地球上资源的保护,不论是什么资源,都会有用尽的那一天。大家应该学会合理利用眼下的所有资源,给后人们留下一个美好的生活环境。
三、黄金曾经是世界上一个重要的货币体系。最初的纸币是以黄金为基础的,可以与黄金自由兑换,两者可以同时流通。直到1973年,尼克松才决定放开美元和黄金之间的联系。尼克松这样做的理由很简单。美国没有那么多的黄金来担保他印刷的钞票了。但目前,黄金仍是继美元、欧元、英镑、日元之后国际通行的第五大国际结算货币,也是许多国家官方财政战略储备的主体。
纯爪机手打,望采纳。