甲醇是一种可再生能源,具有广泛的开发和应用前景.请回答下列与甲醇有关的问题.(1)甲醇分子是______
(1)甲醇分子是甲基和羟基形成的化合物是极性分子;
故答案为:极性;
(2)①工业上一般可采用如下反应来合成甲醇:CO(g)+2H2(g)?CH3OH(g)△H═-86.6KJ/mol,在T℃时,往一个体积固定为1L的密闭容器中加入Imol CO和2mol H2,反应达到平衡时,容器内的压强是开始时的
3 |
5 |
CO(g)+2H2(g)?CH3OH(g)
起始量(mol) 1 2 0
变化量(mol) x 2x x
平衡量(mol)1-x 2-2x x
1-x+2-2x+x=3×
3 |
5 |
x=0.6
一氧化碳转化率=60%;
故答案为:60%;
②CO(g)+2H2(g)?CH3OH(g)△H═-86.6KJ/mol,反应是气体体积减小的放热反应;
A.反应速率之比等于化学方程式系数之比,是正反应之比,v(H2)正═2v(CH3OH)逆,才能说明反应达到平衡状态,故A错误;
B.CO的消耗速率等于CH3OH的生成速率,说明费用正向进行,不能说明反应达到平衡状态,故B错误;
C.反应前后气体物质的量改变,容器内的压强保持不变,气体物质的量不变,说明反应达到平衡状态,故C正确;
D.气体质量不变,体积固定,混合气体的密度保持不变,不能说明反应达到平衡状态,故D错误;
E.混合气体都是无色气体,颜色保持不变不能说明反应达到平衡状态,故E错误;
F.气体质量不变,物质的量变化,混合气体的平均相对分子质量不随时间而变化,说明反应达到平衡状态,故F正确;
故答案为:CF;
(3)①2CH3OH(l)+3O2(g)═2CO2(g)+4H2O(g)△H═-akJ?mol-1
②2CO(g)+O2(g)═2CO2(g)△H═-bkJ?mol-1
③H2O(g)═H2O(l)△H═-ckJ?mol-1
依据盖斯定律计算,
①+4③?② |
2 |
b?a?4c |
2 |
故答案为:
b?a?4c |
2 |
(4)①燃料电池,电池的一个电极通 入空气,另一个电极通入甲醇气体,电解质是氢氧化钠溶液,根据原电池原理,正极电极反应是O2得到电子生成氢氧根离子-:O2+2H2O+4e-=4OH-,负极电极反应:CH3OH-6e-+8OH-=CO32-+6H2O;
故答案为:CH3OH-6e-+8OH-=CO32-+6H2O;
②燃料电池,电池的一个电极通 入空气,另一个电极通入甲醇气体,电解质是氢氧化钠溶液,根据原电池原理,正极电极反应是O2得到电子生成氢氧根离子-:O2+2H2O+4e-=4OH-,负极电极反应:CH3OH-6e-+8OH-=CO32-+6H2O;电解一段时间后,当两极收集到相同体积(相词条件)的气体时(忽略溶液体积的变化及电极产物可能存在的溶解现象),200ml溶液中含有c(Cu2+)=0.5mol/L,c(H+)=2mol/L,c(Cl-)=2mol/L,c(SO42-)=0.5mol/L;
阳极氯气和阴极氢气相同,设阳极生成的氧气物质的量为x,阴极上也应生成氢气物质的量x
阳极电极反应为:2Cl --2e-=Cl2↑,4OH--4e-=2H2O+O2↑,
0.4mol 0.4mol 0.2mol 4x x
阴极电极反应为:Cu2++2e-=Cu,
0.1mol 0.2mol 0.1mol
2H++2e-=H2↑; 2H++2e-=H2↑;
0.4mol 0.4mol 0.2mol 2x x
依据电子守恒0.4+4x=0.2+0.4+2x
x=0.1mol
阳极上收集到氧气的物质的量0.1mol,质量为3.2g;
故答案为:3.2g;
2020年国考面试热点:生物质能遇瓶颈 专家呼吁!
面试热点相关背景
“一是高昂转化成本和低廉产品价值之间的矛盾,二是巨大市场需求和技术成熟度较低之间的矛盾,这两者是解决当前生物质转化利用技术发展的关键矛盾。”在日前召开的2019生物质能专委会学术年会上,中科院广州能源所所长马隆龙的这句话点出了当前生物质能面临的难题。在由暴发期进入瓶颈期的关键阶段,国内几乎所有与生物质能相关的顶尖专家齐聚济南,以学术年会的形式探讨“生物质能源将何去何从”的命题。专家们认为,在市场和政策加持下,生物质突破瓶颈还需在发力基础研究领域,并推动技术成熟以适应市场需求。
面试热点独家解析
生物质是通过光合作用产生的动植物、微生物及其产生的废弃物。利用生物质通过化学转化生成的生物柴油、生物乙醇、生物天然气等形态的能源便是生物质能源。专家们认为,生物质能源是全球继石油、煤炭、天然气之后第四大资源库,也是唯一可再生碳资源,是国际上替代化石能源的主要选项。
“前途是光明的,道路是曲折的。”在中国工程院院士、中国林科院林产化学工业研究所所长蒋剑春看来,以林业剩余物、木材废弃物、农业秸秆为代表的农林剩余物弃之为害,用之为宝,其转化为能源的潜力为4.6亿吨标准煤,但已利用量约为2200万吨标准煤,约占2018年中国能源消耗总量的0.47%。生物质“占比低”源于技术层面的挑战。
“由于生命的复杂性,生物质资源从微观和宏观层面具有天然的复杂性。”马隆龙的这句话也意味着,“组分多样和结构复杂使得生物质资源的利用技术挑战更高。”一般而言,生物质资源可通过热化学转化、生化转化、催化转化为燃气、沼气、乙醇、基础化学品等。但目前生物质资源多以肥料化、饲料化、燃料化为主(三者共73.4%)。因为生物质与石化原料化学组成差异较大,其含氧、含水较高,导致生物质转化技术对催化过程的催化剂、生化过程的微生物具有较高要求,大多数技术仍处于实验室研发及中试阶段,产业规模化程度较低。
蒋剑春和马隆龙的发言,指向一个观点:生物质利用技术总体处于集中攻关和实验示范阶段,即技术不成熟同时,技术集成度低,导致生物质不能大规模利用。而具有官方背景的国家发改委能源研究所可再生能源发展中心主任任东明则从政策、商业模式等层面解读生物质能面临的问题。他以农林生物质发电项目为例,这个项目存在着原材料供给保障难、相关财税补贴政策落地难等问题再以生物天然气项目为例,其存在着市场投资主体少,产业基础薄弱,商业模式不成熟等难题。
尽管面临着不少难题,但以“循环再生、清洁低碳”为卖点的生物质能源在“市场广阔,政策支持”的背景下,还是吸引着国内外众多科研力量。
我国是世界第一造纸大国,一度占全球28%份额,但我国造纸工业纤维资源对外依存度达到40%以上。缺口如何弥补?答案是农林剩余物利用。利用微生物或其产生的酶对制浆原料进行预处理后再与相应的机械处理相结合,这便是生物机械制浆技术。生物基材料与绿色造纸国家重点实验室主任陈嘉川带来的“基于造纸平台的农林废弃物纤维资源的绿色转化技术”在研制出专用生物酶制剂、生物反应器等核心技术之后,已经入产业化阶段山东省科学院能源所完成的“基于热解气化的生物质分质分级热化学转化技术”创造性发明了生物质复合式低焦油分级气化工艺和装置,克服了传统生物质气化技术存在的焦油含量高的行业难题。
技术层面的难题还需要加大研发去解决。中科院广州能源所所长马隆龙认为破解当前生物质难题的关键,是发展多元化利用,并推进技术创新。而这句话也成为与会专家们的共识。