电解水制氢气优点
水电解制氢有上百年的历史了,是一个成熟的技术。目前水电解制氢的最大挑战是能耗,目前获得1标准立方氢气的综合电耗在5.2-6度,所以水电解制氢是所有制氢中成本最高的。由于电解水的主要成本由电价决定,所以电价是制约发展的主要因素。目前最好的办法是利用可再生能源的来制氢,把电网无法消纳的电来制氢,这样电的成本就很低,制得的氢气作为能源使用,整个过程没有碳排放。
第二个制约的因素是设备成本,大型水电解制氢设备的成本相对于其他方式也偏高。
第三个因素是设备大型化,目前能制造出来的单台最大为1000立方,应用于能源来说还是太小。设备大型化后可以降低设备制造成本。
其他的因素就是市场应用,水电解在氢气作为能源前只有用于特殊工业应用,没有市场支撑导致技术研发进步缓慢,单体制造成本下降困难。
水电解的优点是,技术成熟,工艺简单,气体纯度高,是目前唯一一种能与可再生能源衔接制氢方式。
氢能属于可再生能源,氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,二次能源。工业上生产氢的方式很多,常见的有水电解制氢、煤炭气化制氢、重油及天然气水蒸气催化转化制氢等,但这些反应消耗的能量都大于其产生的能量。
可再生能源(英语:RenewableEnergy)为来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。
因为直接用可再生能源发电导致电网的调峰压力非常大,巨大。弃风弃光弃水问题很严重。储能是提高电网调节能力的最佳手段之一。目前应用最多的是抽水蓄能,其次也有储热、电化学电池、压缩空气的各种技术路线。
本质上电制氢也是储能的一种。在电网下调峰能力不足的时候(即出现弃电的时候),将弃电部分用来制氢,或者在夜间负荷低的时候,用低价电制氢,在需要的时候,不管是发电还是直接燃烧,取用储存的能量。
用氢作为能源发电,两步过程中能量难免会有损失,但是其实仔细琢磨一下,还是可行的,主要是得采用廉价易得的电能来电解之制氢,像大规模的太阳能、风能都是很好的清洁能源。
提高电解制氢的效率后,能量从太阳能转移到氢能源里。由于氢气能量密度大,移动性好,不受天气影响,所以用氢气作为汽车的驱动能源还是很不错的选择,清洁环保。这其中最主要的还是得提高制氢的效率和氢转化为电和动力的效率。
可再生能源制氢的用处
可再生能源制氢有它的优势,采用了可再生能源,以风光水等等可再生能源为载体,以氢气作为一个二次能源的载体,在能源转型中可以和电力互为补充,以实现工业、建筑、电力、交通运输等产业互联。
目前广泛使用的氢源主来自化石燃料、电解水和化工副产氢。此外,生物质制氢、核能制氢和光催化制氢正在研究,还没达到工业化应用的水平。可再生能源制氢只能选择电解水制氢,化石燃料制氢和化工副产氢都是有碳排放的。
我们来看看目前我国氢气生产的来源:
我国制氢原料中以碳排放最高的煤制氢为主,占比高达62%,其次为天然气重整制氢占比为19%,电解水制氢占比最少,仅为1%。
绿氢”的生产途径有哪些
我国目前氢能产业仍处于初期阶段,氢气主要以“灰氢”为主,在生产过程中会有大量的CO2排放,并不能算是清洁能源。最终阶段的氢气是“绿氢”,这类氢气是通过使用可再生能源(例如太阳能、风能、核能等)制造的氢气。
目前较为成熟的生产方式是:可再生能源发电进行电解水制氢:主要是利用风光发电制氢,在生产“绿氢”的过程中,能够实现完全的无碳化。水电解制氢主要原理为水分子在直流电的作用下被解离生成氧气和氢气,分别从电解槽阳极和阴极析出。根据电解槽隔膜材料不同,可以分为碱性水电解(AE)、质子交换膜(PEM)水电解以及高温固体氧化物水电解(SOEC)。
正在开展研究的未来可能的氢能生产方式有: 1,液氨制氢, 主要原理是利用液氨和钠单质反应生成氨基化钠,然后氨基化钠将分解成为氮气、氢气以及钠单质。2,生物制氢,生物法制氢是把自然界储存于有机化合物中的能量通过产氢细菌等生物的作用转化为氢气。生物制氢是微生物自身新陈代谢的结果。具体包括:光解水制氢,暗发酵制氢,光发酵制氢几种方式3,太阳能制氢,目前太阳能制氢技术实现的主要途径有光化学制氢、光催化法制氢、人工光合作用制氢等。4,核能制氢,核能制氢就是利用核反应堆产生的热作为制氢的能源,通过选择合适的工艺,实现高效、大规模的制氢;同时减少甚至消除温室气体的排放。
电解水制氢一公斤需要56度电。
电解水制氢1公斤耗电约56度左右。所以水解制氢成本取决于电价。2.1公斤氢气的热值约当于33KWh(度)电,氢燃料电池电堆发电效率一般在40%~60%区间工作。
“电解水制氢需要消耗大量电能,目前电解水制氢每制取1公斤氢气要消耗56千瓦时的电,经济性问题较大,需要继续降低成本。”在李毅中看来,“灰氢”变“蓝氢”的关键是二氧化碳的捕集、储存还有利用,应抓紧研发攻关和产业化。
电的信息:
“氢源是最需要高质量保证供应的环节,应着力寻求降低可再生能源制氢的制造、使用成本,形成低成本、长寿命、成规模的水电解制氢流程,同时也希望国家和产业本身在政策法规、标准上,积极创造良好环境”。
薛贺来认为,对氢气的管理也亟待“松绑”,专门用于加氢站加注的氢气是否可以摘掉“危化品”的帽子,获得政策支持。
工业尾气中的氢回收提纯利用。李毅中说,若干工业尾气中含有一定数量的氢可供回收,氢气是石油化工的宝贵资源,用氢气来加氢精制、加氢炼化可以提高产品的质量和效率。
1、用碱性电解槽制氢
碱性电解槽主要由电源、电解槽、电解液、阴极、阳极和隔膜组成。电解液为氢氧化钾溶液(KOH),浓度为20%~30%;隔膜主要由石棉构成,主要起分离气体的作用,而两个电极主要由金属合金构成。
它的主要工作原理是:在阴极,水分子被分解成氢离子(H+)和氢氧根离子(OH-)。氢离子得到电子产生氢原子,进而产生氢分子(H2);离子(OH-)在阳极和阳极之间电场力的作用下穿过多孔隔膜,到达阳极,在那里失去电子生成水分子和氧分子。
电解槽内的导电介质为氢氧化钾水溶液,两极室的隔板为航天电解设备的优质隔膜,与端板一体的耐腐蚀、传质良好的栅电极形成电解槽。对两极施加直流电后,水分子立即在电解槽的两极发生电化学反应,在阳极产生氧气,在阴极产生氢气。反应式如下: 阳极:2OH--2e → H2O+1/2O2↑ 阴极:2H2O +2e →2OH- +H2↑ 总反应式:2H2O → 2 H2↑ +O2↑
2. 高分子薄膜电解槽制氢
聚合物膜电解槽(PEM)制氢,有些地方也称为固体聚合物电解质(SPE),用于水电解制氢。这个原理不需要电解液,只需要纯水,比碱性电解槽更安全。电解槽效率可达85%以上。然而,由于在电极处使用铂和其他贵金属,因此薄膜材料也是昂贵的材料。 PEM电解槽目前难以大规模投入使用。
其主要工作原理是:向膜电极组件供给去离子水,在阳极侧发生氧、氢离子和电子反应;电子通过电路转移到阴极,氢离子以水合(H+XH2O)的形式通过离子交换膜到达阴极;
制氢技术
化石能源制氢技术相对成熟,可满足大规模用氢需求;制氢技术正在转向可再生能源制氢。
工业制氢技术主要包括以煤、天然气、石油等为原料催化重整制氢,氯碱、钢铁、焦化、生物质气化或垃圾填埋气等工业副产品制氢生物制氢,利用电网供电或未来直接利用可再生能源电解水制氢;处于实验室阶段但潜力巨大的有光催化分解水、高温热化学裂解水、微生物催化等先进制氢技术。
催化重整、工业副产品和生物质制氢是目前氢气的主要来源,但存在二氧化碳排放问题。通过电解可再生能源的水产生的氢气可以获得零排放的氢气。电解制氢可分为碱性电解(AEC)、固体聚合物电解(SPE)和固体氧化物电解(SOEC)。