大众汽车在希腊建样板岛,利用再生能源为电动汽车充电
大众正在与希腊政府合作,将位于爱琴海南部的阿斯提帕莱亚岛(Astypalea)变成零排放交通的 "示范岛"。该计划要求提供包括电动汽车、电动滑板车和电动自行车在内的共享服务。据大众公司称,岛上总共将有1000辆电动汽车取代约1500辆内燃机汽车。
大众表示,商用车和市政车辆也将实现电动化。将在岛上安装Elli充电站网络,共有230个私人和公众可访问的充电点。
一般来说,岛屿是可再生能源的良好试验田,因为它们与大陆电网隔绝,基础设施需求也更容易管理。Astypalea是一个相对容易的测试案例。它的总面积只有约40平方英里,常住人口只有1300人。公共交通也很有限,因此对共享服务的需求更大。
示范使用可再生能源充电的电动汽车是大众公司采取整体减排方法的一个策略。大众正在仔细检查其ID汽车的整个供应链,以寻找削减碳排放的可能性,同时也一直致力于密切控制电池供应链。
该岛屿项目也与雷诺公司开展的项目相似,雷诺公司在法国和葡萄牙沿海建立了两个 "智能岛",岛上也有电动汽车车队和由可再生能源驱动的充电基础设施。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
中国没有浮岛航母,只是在装备展上有模型。
中国冀东发展集团在今年7月底的国防科学成就展会上首次展出了中国自主研发的首个大型海上浮体(VLSFs)。该
“浮体”由多个小浮体模块儿组成,这些小模块儿可以在海上实现重组、拼接,从而形成一个大型或超大型浮体平台,可用于旅游开发、浮式码头、军事基地甚至海
上机场使用。到目前为止,中国仍未言明要兴修任何海上浮体,但是北京的国防成就展会在一定程度上暗示中国对高端国防概念饶有兴致,尤其是在南海问题上展示
中国硬实力方面。
海洋超大型浮体可以沿海岛或岛屿群为依托,由多个半潜式基本结构模块拼接成总长为2400至3200米的超大型主体结构,码头、浮式船坞、可再生能源装置等功能结构模块可根据需要拼接在主体结构模块上,形成军民两用基地。
超大型人工浮岛前后可以在适当位置设置辅助动力系统,保证超大型人工浮岛岛体时速达到6~8节左右。
桁架式超大型海上平台技术,是一种全新概念的海上浮体结构型式,该技术水平世界领先、产品用途十分广泛,属于新型海洋工程装备产业,将使中国率先掌握“超大型海上平台”工程化的核心技术,把握战略先机。
由
于超大型人工浮体基地可以通过拖船或者自身配备的推进装置在海上移动,因此具备极强的军事价值。据悉,这种海洋超大型浮体长度数千米,它以模块化方式相互
连接,可根据需要海上拼装,集空港和海港等功能于一体,可作为浮式码头,后勤基地和机场使用,为我国海洋资源开发,海洋国土建设和海洋权益维护提供全新的
发展思路。
风是一种潜力很大的新能源,人们也许还记得,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。
利用风力发电的尝试,早在本世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。
目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。
1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。
怎样利用风力来发电呢?
我们把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)
风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)
由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。
铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。
发电机的作用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。
多大的风力才可以发电呢?
一般说来,3级风就有利用的价值。但从经济合理的角度出发,风速大于每秒4米才适宜于发电。据测定,一台55千瓦的风力发电机组,当风速每秒为9.5米时,机组的输出功率为55千瓦;当风速每秒8米时,功率为38千瓦;风速每秒为6米时,只有16千瓦;而风速为每秒5米时,仅为9.5千瓦。可见风力愈大,经济效益也愈大。
在我国,现在已有不少成功的中、小型风力发电装置在运转。
我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。
近些年来,随着新西兰经济的发展,能源消费量逐步增长。从1974年的393PJ增加到2003年的748. 3PJ。其中,煤的产量虽然2003年达到了历史最高位的69. 3PJ,但总体而言比较稳定国内石油供应20世纪80年代末产量相对较大,超过60PJ,近年又逐年下降。进口石油数量越来越大,2003年占新西兰能源总供应量的35%,由于油价高涨,对进口石油依赖度的增加给新西兰经济的发展带来了一定压力。水能和地热资源是新西兰能源供应的稳定来源,而近些年其他新能源(包括风能、沼气、工业废料和木材)的供应量稳步增长,成为新西兰能源供应的有效补充。
新西兰十分重视新能源的开发利用。新西兰拥有丰富的地热资源,是世界上地热资源开发利用占能源生产比例最高的国家之一。新西兰80%的地热资源集中在Waikato地区,北岛的Rotorura地区也有丰富的地热能。新西兰建立了7个地热能站,5个在Waikato地区,其中最大的Wairakei地热能站建于1950年,年生产能力140兆瓦。目前,新西兰地热能的利
用率仍然较低,进一步开发利用的空间很大。风力发电是新两兰新能源的重要来源之一。目前新西兰有8个大的风场,主要集中在北岛的南部地区。近儿年,新西兰开始重视太阳能的利用。新西兰能源部长PeteHodgson先生近期表示,政府将通过立法的形式,要求新建房屋必须安装太阳能热水器装置,这一指令为这个太阳能产业的发展提供了一个良好的机会。
作为"京都议定书"的签约国,新西兰承担着减排温室气体的责任。但是发达的牛羊畜牧业所带来的大量二氧化碳气体排放,使得新西兰政府不得不越来越重视可再生能源的研发与推广应用。由于目前新西兰的电力价格极为便宜,而目前可再生能源价格较高,加之是纯粹的市场运作体制,政府对新技术应用的干预能力非常薄弱,因此,如何在开发和利用新能源以满足日益增长的能源需求的同时,又要达到"京都议定书"的要求,是摆在新西兰政府与研发机构面前的主要问题。其次,如何加大可再生能源技术的研究力度以降低应用成本以及制定有效的可再生能源投资政策,也是新西兰政府和研究机构目前需要解决的主要问题之一。