建材秒知道
登录
建材号 > 能源科技 > 正文

数据中心的数据中心的可再生能源

淡定的早晨
超帅的胡萝卜
2023-02-11 17:56:47

数据中心的数据中心的可再生能源

最佳答案
故意的戒指
默默的镜子
2025-07-16 17:17:19

数据中心内的能源消耗,总体而言是非常有效的。随着虚拟化和云计算的增长,数据中心的整体能源使用效率才会有所改善。能源浪费最严重的阶段其实是制造能源的时候。

无论是煤、煤气或燃油为数据中心提供能源,大量能源损失都发生在其产生阶段。大多数化石燃料系统也都位于远离市区的地方。更先进点,更小型的能源制造设备可以改善这种情况。高温燃料电池采用一系列碳氢化合物燃料,将其分解为氢,然后从空气中获取氧,用于创造电能,并产生热量与水分。

关键在于尽可能多的捕捉输出。燃料电池产生的热能可以被用于为寒冷的空间提供供暖,甚至为水加热。手机燃料电池所产生的纯净水有助于缓解位于缺水地区数据中心的用水紧张。可再生资源如太阳能与风能同样可以用来进行电解水,为燃料电池制造氢。然后可能建立一个真正可再生的连续数据中心主电源系统。这种方法不一定是制造电能的最便宜方式,和那些交钱就能获得能源的方法相比,但它确实一个为数据中心长期供电的有效手段。

最新回答
认真的鼠标
尊敬的往事
2025-07-16 17:17:19

1月12日,国际环保组织绿色和平发布报告称,互联网企业具有极强的低碳转型潜力,应在节能减排方面发挥作用,力争在2030年实现100%采用可再生能源目标。同时,可再生能源发电成本下降,低碳转型也将成为企业控制电力成本的重要手段。

云计算中心资料图。新华社 图

中国互联网 科技 产业具有极强低碳转型潜力

1月12日,国际环保组织绿色和平发布了《迈向碳中和:中国互联网 科技 行业实现100%可再生能源路线图》研究报告,认为随着中国2060年前实现碳中和目标的提出, 科技 行业转向100%可再生能源已成为必然趋势。

碳中和是指企业、团体或个人测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。我国已明确提出争取二氧化碳排放于2030年前达到峰值,2060年前实现碳中和的目标。

报告指,在中国2030年前碳达峰的大背景下,预计“十四五”期间,碳达峰压力及目标将分解到具体产业。中国互联网 科技 行业规模仍在高速扩张、碳排放持续增长,如果不采用可再生能源,仅依靠提升节能技术将难以实现碳中和目标。

报告解释,互联网 科技 企业碳排放主要来自电力使用,其中数据中心、云计算中心等大型互联网基础设施的电力使用为主要能耗来源。企业100%使用可再生能源,意味着其用电均来自风能、太阳能、水能等对环境无害或危害极小的能源。

据南都此前报道,复旦大学经济学院教授、复旦大学能源经济与战略研究中心主任吴力波则提出,数据中心等大型互联网基础设施的能耗很高,2018年我国数据中心的用电总量已经超过了整个上海市全 社会 的用电总量,达1500亿千瓦左右,占中国全 社会 用电量的2.35%。吴力波测算,如果按照现在的趋势发展,到2030年数据中心能耗最高可以达到1.4万亿千瓦,占全 社会 能耗的20%。

报告称,全球约41家率先设立长期100%可再生能源目标的 科技 企业,其中约20%已经实现了100%可再生能源目标,另外的约50%企业将实现100%可再生能源目标设置在2030年前,44%企业在2019年达到了60%或以上的可再生能源利用。

而目前在中国,仅有秦淮数据集团一家互联网 科技 企业设立了在2030年实现100%可再生能源目标。绿色和平项目主任叶睿琪表示:“数据中心、云计算领域的脱碳发展是中国实现碳中和的重要一环。中国互联网 科技 产业具有极强的低碳转型潜力,应该成为实现中国碳达峰、碳中和目标的排头兵。”

参考国际情况及中国在2060 年前实现碳中和的雄心,报告建议,互联网 科技 企业应结合自身业务发展的需求,将目标定为在2030年前达到100%使用可再生能源,最晚不应晚于2050年。

绿色电力成为企业减排、控制成本重要手段

要实现100%使用可再生能源目标,企业应当如何做?报告介绍,随着中国可再生能源市场的发展,企业采购可再生能源的方式越来越多样化。市场化绿电交易、“绿色电力证书”认购、分布式和集中式可再生能源电站投资等已成为主要方式。

市场化绿电交易指不依靠政策强制要求,用户自愿从供应商处购买可再生能源转化成的电能,即绿色电力。例如,2019 年,某互联网企业位于河北张家口的数据中心通过采购当地的风电与太阳能发电,实现数据中心40%由可再生能源供电。

2017年,国家发展改革委、财政部、国家能源局三部委发布了《关于试行可再生能源绿色电力证书核发及自愿认购交易制度的通知》,绿色电力证书市场在中国正式启动。每张绿色电力证书(简称“绿证”)相当于1000度电。企业购买了证书后可视为采购了相应的绿色电力,资金将用于支持发电方相应的度电补贴。

此外,企业还可以在屋顶或园区内建设分布式可再生能源发电项目,如分布式光伏和分散式风电,直接获取和使用绿色电力。例如,2020年,某企业位于上海的数据中心在墙体外立面增设太阳能电板,每年可减少消纳传统火电9万千瓦时,相当于减少二氧化碳排放 63.3 吨。报告显示,投资建设分布式项目的收益率为8%,投资大型风电、光伏等集中式项目的收益率为9%-12%。

时尚的宝贝
生动的大树
2025-07-16 17:17:19

2021年12月8日,国家发改委、国家能源局等四部门对外发布《贯彻落实碳达峰碳中和目标要求 推动数据中心和5G等新型基础设施绿色高质量发展实施方案》(以下简称《方案》),提出到2025年,数据中心和5G基本形成绿色集约的一体化运行格局,数据中心运行电能利用效率和可再生能源利用率明显提升。

《方案》对未来几年数据中心如何实现绿色集约化发展指明了方向。但实际落实中,波动性强的可再生能源如何同需要持续用能的数据中心结合?在西部省份自身也要符合能源“双控”的大背景下,数据中心要实现“东数西算”还需要哪些障碍要克服?带着这些问题,《中国能源报》专访了国际环保组织绿色和平东亚地区气候与能源项目经理叶睿琪。2021年5月,绿色和平发布了《中国数字基础设施脱碳之路:数据中心与5G减碳潜力与挑战(2020-2035)》报告,对中国数据中心与5G等数字基础设施的能耗与碳排放趋势做出预测。

问:相较于对节能技术与指标的重视程度,数字基础设施产业整体仍未大规模应用可再生能源。在行业实践中,目前已有5G或数据中心应用光伏加储能的商业项目,据贵机构观察,扩大可再生能源在数据中心的应用,在技术上、政策上分别需要克服哪些难题?

叶睿琪:为了推动数据中心行业迈向碳达峰与碳中和,扩大数据中心行业的可再生能源应用规模,我们建议可以从两方面着手:

一方面,进一步升级激励约束机制,正如近日中央经济工作会中所指出的,加速实现“能耗双控”向碳排放总量和强度“双控”转变。在管理数据中心能耗时,从考核数据中心的能耗使用总量与强度过渡至考核数据中心的二氧化碳排放总量与强度,加上数据中心的可再生能源采购与使用总量。同时,还需要进一步完善相关考核体系,将数据中心可再生能源使用比例作为考核指标之一,统筹数据中心的规模化发展与绿色低碳转型。

另一方面,进一步完善数据中心产业使用可再生能源的市场机制,从全国可再生能源市场化交易现状来看:一是需要加速将绿色电力交易试点、省间可再生能源现货交易试点向全国推广;二需要是进一步提高可再生能源电力在特高压通道中的比例,推进可再生能源的跨省跨区交易;三是落实分布式市场化交易机制,以推动本地化分布式可再生能源如分布式光伏与风电的交易。

问:绿色和平曾建议,完善数字基础设施产业使用可再生能源的考核体系,将“双控”目标与新建数据中心的审批政策挂钩,将数据中心可再生能源使用比例作为考核指标之一。据贵机构掌握的情况,国内已经有这样做的区域了么?

叶睿琪:目前,北京市发改委已经明确将数据中心可再生能源使用比例作为规模以上新建或改扩建的数据中心项目考核指标之一。根据北京市《关于进一步加强数据中心项目节能审查的若干规定》,“项目节能报告中应当包括可再生能源利用方案。新建及改扩建数据中心应当逐步提高可再生能源利用比例,鼓励2021年及以后建成的项目,年可再生能源利用量占年能源消费量的比例按照每年10%递增,到2030年实现100%(不含电网既有可再生能源占比)。”

除此之外,多数省市针对数据中心可再生能源使用以方向性鼓励性政策居多,尚未提出具体量化目标,比如根据上海市经济信息化委与市发展改革委《关于做好2021年本市数据中心统筹建设有关事项的通知》,“新建数据中心项目要加大分布式供能、可再生能源使用量的占比,鼓励采用余热回收利用措施,为周边建筑提供热源,提高能源再利用效率。”

问:西部地区电力、能源资源丰富,可承接数据备份及部分高延时业务。国家也在推行“东数西算”,可是在地方能耗“双控”的大前提下,西部省份接收数据中心的积极性会否受到影响?

叶睿琪:正如近日中央经济工作会中所明确,“要科学考核,新增可再生能源和原料用能不纳入能源消费总量控制,创造条件尽早实现能耗“双控”向碳排放总量和强度“双控”转变,加快形成减污降碳的激励约束机制,防止简单层层分解。”

虽然目前部分约束激励政策还有待衔接,未来,随着能耗“双控”向碳排放总量和强度“双控”转变,可以预测西部地区将更积极地为数据中心产业发展提供良好的可再生能源资源。

同时,随着《全国一体化大数据中心协同创新体系算力枢纽实施方案》的进一步落实,包括贵州、内蒙古、甘肃、宁夏等地在内的全国一体化算力网络国家枢纽节点将成为数据中心产业发展的重点区位。

可爱的电灯胆
包容的手套
2025-07-16 17:17:19
工信部、国家机关事务管理局、国家能源局近日联合印发《关于加强绿色数据中心建设的指导意见》(下简称《意见》),明确提出要建立健全绿色数据中心标准评价体系和能源资源监管体系,到2022年,数据中心平均能耗基本达到国际先进水平。

《意见》指出,引导大型和超大型数据中心设计电能使用效率值不高于1.4;力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。

基本原则

政策引领、市场主导。充分发挥市场配置资源的决定性作用,调动各类市场主体的积极性、创造性。更好发挥政府在规划、政策引导和市场监管中的作用,着力构建有效激励约束机制,激发绿色数据中心建设活力。

改造存量、优化增量。建立绿色运维管理体系,加快现有数据中心节能挖潜与技术改造,提高资源能源利用效率。强化绿色设计、采购和施工,全面实现绿色增量。

创新驱动、服务先行。大力培育市场创新主体,加快建立绿色数据中心服务平台,完善标准和技术服务体系,推动关键技术、服务模式的创新,引导绿色水平提升。

主要目标

建立健全绿色数据中心标准评价体系和能源资源监管体系,打造一批绿色数据中心先进典型,形成一批具有创新性的绿色技术产品、解决方案,培育一批专业第三方绿色服务机构。到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的电能使用效率值达到1.4以下,高能耗老旧设备基本淘汰,水资源利用效率和清洁能源应用比例大幅提升,废旧电器电子产品得到有效回收利用。

重点任务

(一)提升新建数据中心绿色发展水平

1. 强化绿色设计

加强对新建数据中心在IT设备、机架布局、制冷和散热系统、供配电系统以及清洁能源利用系统等方面的绿色化设计指导。鼓励采用液冷、分布式供电、模块化机房以及虚拟化、云化IT资源等高效系统设计方案,充分考虑动力环境系统与IT设备运行状态的精准适配;鼓励在自有场所建设自然冷源、自有系统余热回收利用或可再生能源发电等清洁能源利用系统;鼓励应用数值模拟技术进行热场仿真分析,验证设计冷量及机房流场特性。引导大型和超大型数据中心设计电能使用效率值不高于1.4。

2. 深化绿色施工和采购

引导数据中心在新建及改造工程建设中实施绿色施工,在保证质量、安全基本要求的同时,最大限度地节约能源资源,减少对环境负面影响,实现节能、节地、节水、节材和环境保护。严格执行《电器电子产品有害物质限制使用管理办法》和《电子电气产品中限用物质的限量要求》(GB/T 26572)等规范要求,鼓励数据中心使用绿色电力和满足绿色设计产品评价等要求的绿色产品,并逐步建立健全绿色供应链管理制度。

(二)加强在用数据中心绿色运维和改造

1.完善绿色运行维护制度

指导数据中心建立绿色运维管理体系,明确节能、节水、资源综合利用等方面发展目标,制定相应工作计划和考核办法;结合气候环境和自身负载变化、运营成本等因素科学制定运维策略;建立能源资源信息化管控系统,强化对电能使用效率值等绿色指标的设置和管理,并对能源资源消耗进行实时分析和智能化调控,力争实现机械制冷与自然冷源高效协同;在保障安全、可靠、稳定的基础上,确保实际能源资源利用水平不低于设计水平。

2.有序推动节能与绿色化改造

有序推动数据中心开展节能与绿色化改造工程,特别是能源资源利用效率较低的在用老旧数据中心。加强在设备布局、制冷架构、外围护结构(密封、遮阳、保温等)、供配电方式、单机柜功率密度以及各系统的智能运行策略等方面的技术改造和优化升级。鼓励对改造工程进行绿色测评。力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。

3. 加强废旧电器电子产品处理

加快高耗能设备淘汰,指导数据中心科学制定老旧设备更新方案,建立规范化、可追溯的产品应用档案,并与产品生产企业、有相应资质的回收企业共同建立废旧电器电子产品回收体系。在满足可靠性要求的前提下,试点梯次利用动力电池作为数据中心削峰填谷的储能电池。推动产品生产、回收企业加快废旧电器电子产品资源化利用,推行产品源头控制、绿色生产,在产品全生命周期中最大限度提升资源利用效率。

(三)加快绿色技术产品创新推广

1. 加快绿色关键和共性技术产品研发创新

鼓励数据中心骨干企业、科研院所、行业组织等加强技术协同创新与合作,构建产学研用、上下游协同的绿色数据中心技术创新体系,推动形成绿色产业集群发展。重点加快能效水效提升、有毒有害物质使用控制、废弃设备及电池回收利用、信息化管控系统、仿真模拟热管理和可再生能源、分布式供能、微电网利用等领域新技术、新产品的研发与创新,研究制定相关技术产品标准规范。

2. 加快先进适用绿色技术产品推广应用

加快绿色数据中心先进适用技术产品推广应用,重点包括:一是高效IT设备,包括液冷服务器、高密度集成IT设备、高转换率电源模块、模块化机房等;二是高效制冷系统,包括热管背板、间接式蒸发冷却、行级空调、自动喷淋等;三是高效供配电系统,包括分布式供能、市电直供、高压直流供电、不间断供电系统ECO模式、模块化UPS等;四是高效辅助系统,包括分布式光伏、高效照明、储能电池管理、能效环境集成监控等。

(四)提升绿色支撑服务能力

1. 完善标准体系

充分发挥标准对绿色数据中心建设的支撑作用,促进绿色数据中心提标升级。建立健全覆盖设计、建设、运维、测评和技术产品等方面的绿色数据中心标准体系,加强标准宣贯,强化标准配套衔接。加强国际标准话语权,积极推动与国际标准的互信互认。以相关测评标准为基础,建立自我评价、社会评价和政府引导相结合的绿色数据中心评价机制,探索形成公开透明的评价结果发布渠道。

2.培育第三方服务机构

加快培育具有公益性质的第三方服务机构,鼓励其创新绿色评价及服务模式,向数据中心提供咨询、检测、评价、审计等服务。鼓励数据中心自主利用第三方服务机构开展绿色评测,并依据评测结果开展有实效的绿色技术改造和运维优化。依托高等院校、科研院所、第三方服务等机构建立多元化绿色数据中心人才培训体系,强化对绿色数据中心人才的培养。

(五)探索与创新市场推动机制

鼓励数据中心和节能服务公司拓展合同能源管理,研究节能量交易机制,探索绿色数据中心融资租赁等金融服务模式。鼓励数据中心直接与可再生能源发电企业开展电力交易,购买可再生能源绿色电力证书。探索建立绿色数据中心技术创新和推广应用的激励机制和融资平台,完善多元化投融资体系。

保障措施

(一)加强组织领导。工业和信息化部、国家机关事务管理局、国家能源局建立协调机制,强化在政策、标准、行业管理等方面的沟通协作,加强对地方相关工作的指导。各地工业和信息化、机关事务、能源主管部门要充分认识绿色数据中心建设的重要意义,结合实际制定相关政策措施,充分发挥行业协会、产业联盟等机构的桥梁纽带作用,切实推动绿色数据中心建设。

(二)加强行业监管。在数据中心重点应用领域和地区,了解既有数据中心绿色发展水平,研究数据中心绿色发展现状。将重点用能数据中心纳入工业和通信业节能监察范围,督促开展节能与绿色化改造工程。推动建立数据中心节能降耗承诺、信息依法公示、社会监督和违规惩戒制度。遴选绿色数据中心优秀典型,定期发布《国家绿色数据中心名单》。充分发挥公共机构特别是党政机关在绿色数据中心建设的示范引领作用,率先在公共机构组织开展数据中心绿色测评、节能与绿色化改造等工作。

(三)加强政策支持。充分利用绿色制造、节能减排等现有资金渠道,发挥节能节水、环境保护专用设备所得税优惠政策和绿色信贷、首台(套)重大技术装备保险补偿机制支持各领域绿色数据中心创建工作。优先给予绿色数据中心直供电、大工业用电、多路市电引入等用电优惠和政策支持。加大政府采购政策支持力度,引导国家机关、企事业单位优先采购绿色数据中心所提供的机房租赁、云服务、大数据等方面服务。

(四)加强公共服务。整合行业现有资源,建立集政策宣传、技术交流推广、人才培训、数据分析诊断等服务于一体的国家绿色数据中心公共服务平台。加强专家库建设和管理,发挥专家在决策建议、理论指导、专业咨询等方面的积极作用。持续发布《绿色数据中心先进适用技术产品目录》,加快创新成果转化应用和产业化发展。鼓励相关企事业单位、行业组织积极开展技术产品交流推广活动,鼓励有条件的企业、高校、科研院所针对绿色数据中心关键和共性技术产品建立实验室或者工程中心。

(五)加强国际交流合作。充分利用现有国际合作交流机制和平台,加强在绿色数据中心技术产品、标准制定、人才培养等方面的交流与合作,举办专业培训、技术和政策研讨会、论坛等活动,打造一批具有国际竞争力的绿色数据中心,形成相关技术产品整体解决方案。结合“一带一路”倡议等国家重大战略,加快开拓国际市场,推动优势技术和服务走出去。

结语

据悉,在数据中心当前的后期运营,能耗是最大成本,占比超过50%。降低能耗效率(PUE)值,一直是业界相关部门关心的重点。

工信部在2017年4月发布的《关于加强“十 三五”信息通信业节能减排工作的指导意见》中指出:“十二五”期间新建大型数据中心的能耗效率(PUE)要普遍低于1.5;到2020年,新建大型、超大型数据中心的能耗效率(PUE)值必须达到1.4 以下。

去年3月,工信部首次公布的《全国数据中心应用发展指引》中称:全国超大型数据中心平均PUE(平均电能使用效率)为1.50,大型数据中心平均PUE为1.69。而根据“十三五规划”,到2020年,新建大型云计算数据中心PUE值将不得高于1.4。

如今,三部门联手针对绿色数据中心建设进一步提出了明确的指导意见。在这样的大背景下,数据中心运营商如何运用新技术、新架构降低能源降耗,实现数据中心的绿色发展,将成为行业的关注热点,与此同时,节能降耗的大趋势之下,也将带来更多的市场机遇。

寂寞的蛋挞
健忘的路灯
2025-07-16 17:17:19
世界能源委员会1995年对能源效率的定义为:减少提供同等能源服务的能源投入。对于能耗居高不下的数据中心,研究提高能源效率具有深远的社会效益和经济效益。除了能源效率之外,数据中心还有多项其他性能指标,按照国际标准组织ISO的定义统称为关键性能指标,或称为关键绩效指标,研究这些指标对于数据中心同样具有十分重要的意义。

在已经颁布的数据中心性能指标中最常见的是电能使用效率PUE。在我国,PUE不但是数据中心研究、设计、设备制造、建设和运维人员最为熟悉的数据中心能源效率指标,也是政府评价数据中心工程性能的主要指标。

除了PUE之外,2007年以后还出台了多项性能指标,虽然知名度远不及PUE,但是在评定数据中心的性能方面也有一定的参考价值,值得关注和研究。PUE在国际上一直是众说纷纭、莫衷一是的一项指标,2015年ASHRAE公开宣布,ASHRAE标准今后不再采用PUE这一指标,并于2016年下半年颁布了ASHRAE 90.4标准,提出了新的能源效率;绿色网格组织(TGG)也相继推出了新的能源性能指标。对PUE和数据中心性能指标的讨论一直是国际数据中心界的热门议题。

鉴于性能指标对于数据中心的重要性、国内与国际在这方面存在的差距,以及在采用PUE指标过程中存在的问题,有必要对数据中心的各项性能指标,尤其是对PUE进行深入地研究和讨论。

1.性能指标

ISO给出的关键性能指标的定义为:表示资源使用效率值或是给定系统的效率。数据中心的性能指标从2007年开始受到了世界各国的高度重视,相继推出了数十个性能指标。2015年之后,数据中心性能指标出现了较大变化,一系列新的性能指标相继被推出,再度引发了国际数据中心界对数据中心的性能指标,尤其是对能源效率的关注,并展开了广泛的讨论。

2.PUE

2.1PUE和衍生效率的定义和计算方法

2.1.1电能使用效率PUE

TGG和ASHRAE给出的PUE的定义相同:数据中心总能耗Et与IT设备能耗之比。

GB/T32910.3—2016给出的EEUE的定义为:数据中心总电能消耗与信息设备电能消耗之间的比值。其定义与PUE相同,不同的是把国际上通用的PUE(powerusage effectiveness)改成了EEUE(electricenergy usage effectiveness)。国内IT界和暖通空调界不少专业人士对于这一变更提出了不同的看法,根据Malone等人最初对PUE的定义,Et应为市电公用电表所测量的设备总功率,这里的Et就是通常所说的数据中心总的设备耗电量,与GB/T32910.3—2016所规定的Et应为采用电能计量仪表测量的数据中心总电能消耗的说法相同。笔者曾向ASHRAE有关权威人士咨询过,他们认为如果要将“power”用“electricenergy”来替代,则采用“electricenergy consumption”(耗电量)更准确。显然这一变更不利于国际交流。虽然这只是一个英文缩写词的变更,但因为涉及到专业术语,值得商榷。

ISO给出的PUE的定义略有不同:计算、测量和评估在同一时期数据中心总能耗与IT设备能耗之比。

2.1.2部分电能使用效率pPUE

TGG和ASHRAE给出的pPUE的定义相同:某区间内数据中心总能耗与该区间内IT设备能耗之比。

区间(zone)或范围( boundary)可以是实体,如集装箱、房间、模块或建筑物,也可以是逻辑上的边界,如设备,或对数据中心有意义的边界。

ISO给出的pPUE的定义有所不同:某子系统内数据中心总能耗与IT设备总能耗之比。这里的“子系统”是指数据中心中某一部分耗能的基础设施组件,而且其能源效率是需要统计的,目前数据中心中典型的子系统是配电系统、网络设备和供冷系统。

2.1.3设计电能使用效率dPUE

ASHRAE之所以在其标准中去除了PUE指标,其中一个主要原因是ASHRAE认为PUE不适合在数据中心设计阶段使用。为此ISO给出了设计电能使用效率dPUE,其定义为:由数据中心设计目标确定的预期PUE。

数据中心的能源效率可以根据以下条件在设计阶段加以预测:1)用户增长情况和期望值;2)能耗增加或减少的时间表。dPUE表示由设计人员定义的以最佳运行模式为基础的能耗目标,应考虑到由于数据中心所处地理位置不同而导致的气象参数(室外干球温度和湿度)的变化。

2.1.4期间电能使用效率iPUE

ISO给出的期间电能使用效率iPUE的定义为:在指定时间测得的PUE,非全年值。

2.1.5电能使用效率实测值EEUE-R

GB/T32910.3—2016给出的EEUE-R的定义为:根据数据中心各组成部分电能消耗测量值直接得出的数据中心电能使用效率。使用EEUE-R时应采用EEUE-Ra方式标明,其中a用以表明EEUE-R的覆盖时间周期,可以是年、月、周。

2.1.6电能使用效率修正值EEUE-X

GB/T32910.3—2016给出的EEUE-X的定义为:考虑采用的制冷技术、负荷使用率、数据中心等级、所处地域气候环境不同产生的差异,而用于调整电能使用率实测值以补偿其系统差异的数值。

2.1.7采用不同能源的PUE计算方法

数据中心通常采用的能源为电力,当采用其他能源时,计算PUE时需要采用能源转换系数加以修正。不同能源的转换系数修正是评估数据中心的一次能源使用量或燃料消耗量的一种方法,其目的是确保数据中心购买的不同形式的能源(如电、天然气、冷水)可以进行公平地比较。例如,如果一个数据中心购买当地公用事业公司提供的冷水,而另一个数据中心采用由电力生产的冷水,这就需要有一个系数能使得所使用的能源在相同的单位下进行比较,这个系数被称为能源转换系数,它是一个用来反映数据中心总的燃料消耗的系数。当数据中心除采用市电外,还使用一部分其他能源时,就需要对这种能源进行修正。

2.1.8PUE和EEUE计算方法的比较

如果仅从定义来看,PUE和EEUE的计算方法十分简单,且完全相同。但是当考虑到计算条件的不同,需要对电能使用效率进行修正时,2种效率的计算方法则有所不同。

1)PUE已考虑到使用不同能源时的影响,并给出了修正值和计算方法;GB/T32910.3—2016未包括可再生能源利用率,按照计划这一部分将在GB/T32910.4《可再生能源利用率》中说明。

2)PUE还有若干衍生能源效率指标可供参考,其中ISO提出的dPUE弥补了传统PUE的不足;EEUE则有类似于iPUE的指标EEUE-Ra。

3)EEUE分级(见表1)与PUE分级(见表2)不同。

4)EEUE同时考虑了安全等级、所处气候环境、空调制冷形式和IT设备负荷使用率的影响。ASHRAE最初给出了19个气候区的PUE最大限值,由于PUE已从ASHRAE标准中去除,所以目前的PUE未考虑气候的影响;ISO在计算dPUE时,要求考虑气候的影响,但是如何考虑未加说明;PUE也未考虑空调制冷形式和负荷使用率的影响,其中IT设备负荷率的影响较大,应加以考虑。

2.2.PUE和EEUE的测量位置和测量方法

2.2.1PUE的测量位置和测量方法

根据IT设备测点位置的不同,PUE被分成3个类别,即PUE1初级(提供能源性能数据的基本评价)、PUE2中级(提供能源性能数据的中级评价)、PUE3高级(提供能源性能数据的高级评价)。

PUE1初级:在UPS设备输出端测量IT负载,可以通过UPS前面板、UPS输出的电能表以及公共UPS输出总线的单一电表(对于多个UPS模块而言)读取。在数据中心供电、散热、调节温度的电气和制冷设备的供电电网入口处测量进入数据中心的总能量。基本监控要求每月至少采集一次电能数据,测量过程中通常需要一些人工参与。

PUE2中级:通常在数据中心配电单元前面板或配电单元变压器二次侧的电能表读取,也可以进行单独的支路测量。从数据中心的电网入口处测量总能量,按照中等标准的检测要求进行能耗测量,要求每天至少采集一次电能数据。与初级相比,人工参与较少,以电子形式采集数据为主,可以实时记录数据,预判未来的趋势走向。

PUE3高级:通过监控带电能表的机架配电单元(即机架式电源插座)或IT设备,测量数据中心每台IT设备的负载(应该扣除非IT负载)。在数据中心供电的电网入口处测量总能量,按照高标准的检测要求进行能耗测量,要求至少每隔15min采集一次电能数据。在采集和记录数据时不应该有人工参与,通过自动化系统实时采集数据,并支持数据的广泛存储和趋势分析。所面临的挑战是以简单的方式采集数据,满足各种要求,最终获取数据中心的各种能量数据。

对于初级和中级测量流程,建议在一天的相同时间段测量,数据中心的负载尽量与上次测量时保持一致,进行每周对比时,测量时间应保持不变(例如每周周三)。

2.2.2EEUE的测量位置和测量方法

1)Et测量位置在变压器低压侧,即A点;

2)当PDU无隔离变压器时,EIT测量位置在UPS输出端,即B点;

3)当PDU带隔离变压器时,EIT测量位置在PDU输出端,即C点;

4)大型数据中心宜对各主要系统的耗电量分别计量,即E1,E2,E3点;

5)柴油发电机馈电回路的电能应计入Et,即A1点;

6)当采用机柜风扇辅助降温时,EIT测量位置应为IT负载供电回路,即D点;

7)当EIT测量位置为UPS输出端供电回路,且UPS负载还包括UPS供电制冷、泵时,制冷、泵的能耗应从EIT中扣除,即扣除B1和B2点测得的电量。

2.2.3PUE和EEUE的测量位置和测量方法的差异

1)PUE的Et测量位置在电网输入端、变电站之前。而GB/T32910.3—2016规定EEUE的Et测量位置在变压器低压侧。数据中心的建设有2种模式:①数据中心建筑单独设置,变电站自用,大型和超大型数据中心一般采用这种模式;②数据中心置于建筑物的某一部分,变电站共用,一般为小型或中型数据中心。由于供电局的收费都包括了变压器的损失,所以为了准确计算EEUE,对于前一种模式,Et测量位置应该在变压器的高压侧。

2)按照2.2.2节第6条,在计算EIT时,应减去机柜风机的能耗。应该指出的是,机柜风机不是辅助降温设备,起到降温作用的是来自空调设备的冷空气,降温的设备为空调换热器,机柜风机只是起到辅助传输冷风的作用,因此机柜风机不应作为辅助降温设备而计算其能耗。在GB/T32910.3征求意见时就有人提出:机柜风机的能耗很难测量,所以在实际工程中,计算PUE时,EIT均不会减去机柜风机的能耗。在美国,计算PUE时,机柜风机的能耗包括在EIT中。

3)PUE的测点明显多于GB/T32910.3—2016规定的EEUE的测点。

2.3.PUE存在的问题

1)最近两年国内外对以往所宣传的PUE水平进行了澄清。我国PUE的真实水平也缺乏权威调查结果。GB/T32910.3—2016根据国内实际状况,将一级节能型数据中心的EEUE放宽到1.0~1.6,其上限已经超过了国家有关部委提出的绿色数据中心PUE应低于1.5的要求,而二级比较节能型数据中心的EEUE规定为1.6~1.8,应该说这样的规定比较符合国情。

2)数据中心总能耗Et的测量位置直接影响到PUE的大小,因此应根据数据中心建筑物市电变压器所承担的荷载组成来决定其测量位置。

3)应考虑不同负荷率的影响。当负荷率低于30%时,不间断电源UPS的效率会急剧下降,PUE值相应上升。对于租赁式数据中心,由于用户的进入很难一步到位,所以数据中心开始运行后,在最初的一段时间内负荷率会较低,如果采用设计PUE,也就是满负荷时的PUE来评价或验收数据中心是不合理的。

4)数据中心的PUE低并非说明其碳排放也低。完全采用市电的数据中心与部分采用可再生能源(太阳能发电、风电等),以及以燃气冷热电三联供系统作为能源的数据中心相比,显然碳排放指标更高。数据中心的碳排放问题已经引起国际上广泛地关注,碳使用效率CUE已经成为数据中心重要的关键性能指标,国内对此的关注度还有待加强。

5)GB/T32910.3—2016规定,在计算EIT时,应减去机柜风机的耗能。关于机柜风机的能耗是否应属于IT设备的能耗,目前国内外有不同的看法,其中主流观点是服务器风机的能耗应属于IT设备的能耗,其原因有二:一是服务器风机是用户提供的IT设备中的一个组成部分,自然属于IT设备;二是由于目前服务器所采用的风机基本上均为无刷直流电动机驱动的风机(即所谓EC电机),风机的风量和功率随负荷变化而改变,因此很难测量风机的能耗。由于数据中心风机的设置对PUE的大小影响很大,需要认真分析。从实际使用和节能的角度出发,有人提出将服务器中的风机取消,而由空调风机取代。由于大风机的效率明显高于小风机,且初投资也可以减少,因此这种替代方法被认为是一个好主意,不过这是一个值得深入研究的课题。

6)国内相关标准有待进一步完善。GB/T32910.3—2016《数据中心资源利用第3部分:电能能效要求和测量方法》的发布,极大地弥补了国内标准在数据中心电能能效方面的不足;同时,GB/T32910.3—2016标准颁布后,也引起了国内学术界和工程界的热议。作为一个推荐性的国家标准如何与已经颁布执行的强制性行业标准YD 5193—2014《互联网数据中心(IDC)工程设计规范》相互协调?在标准更新或升级时,包括内容相似的国际标准ISOIEC 30134-2-2016在内的国外相关标准中有哪些内容值得借鉴和参考?标准在升级为强制性国家标准之前相关机构能否组织就其内容进行广泛的学术讨论?都是值得考虑的重要课题。ASHRAE在发布ASHRAE90.4标准时就说明,数据中心的标准建立在可持续发展的基础上,随着科学技术的高速发展,标准也需要不断更新和创新。

7)PUE的讨论已经相当多,事实上作为大数据中心的投资方和运营方,更关心的还是数据中心的运行费用,尤其是电费和水费。目前在数据中心关键性能指标中尚缺乏一个经济性指标,使得数据中心,尤其是大型数据中心和超大型数据中心的经济性无法体现。

2.4.PUE的比较

不同数据中心的PUE值不应直接进行比较,但是条件相似的数据中心可以从其他数据中心所提供的测量方法、测试结果,以及数据特性的差异中获益。为了使PUE比较结果更加公平,应全面考虑数据中心设备的使用时间、地理位置、恢复能力、服务器可用性、基础设施规模等。

3.其他性能指标

3.1.ASHRAE90.4

ASHRAE90.4-2016提出了2个新的能源效率指标,即暖通空调负载系数MLC和供电损失系数ELC。但这2个指标能否为国际IT界接受,还需待以时日。

3.1.1暖通空调负载系数MLC

ASHRAE对MLC的定义为:暖通空调设备(包括制冷、空调、风机、水泵和冷却相关的所有设备)年总耗电量与IT设备年耗电量之比。

3.1.2供电损失系数ELC

ASHRAE对ELC的定义为:所有的供电设备(包括UPS、变压器、电源分配单元、布线系统等)的总损失。

3.2.TGG白皮书68号

2016年,TGG在白皮书68号中提出了3个新的能源效率指标,即PUE比(PUEr)、IT设备热一致性(ITTC)和IT设备热容错性(ITTR),统称为绩效指标(PI)。这些指标与PUE相比,不但定义不容易理解,计算也十分困难,能否被IT界接受,还有待时间的考验。

3.2.1PUE比

TGG对PUEr的定义为:预期的PUE(按TGG的PUE等级选择)与实测PUE之比。

3.2.2IT设备热一致性ITTC

TGG对ITTC的定义为:IT设备在ASHRAE推荐的环境参数内运行的比例。

服务器的进风温度一般是按ASHRAE规定的18~27℃设计的,但是企业也可以按照自己设定的服务器进风温度进行设计,在此进风温度下,服务器可以安全运行。IT设备热一致性表示符合ASHRAE规定的服务器进风温度的IT负荷有多少,以及与总的IT负荷相比所占百分比是多少。例如一个IT设备总负荷为500kW的数据中心,其中满足ASHRAE规定的服务器进风温度的IT负荷为450kW,则该数据中心的IT设备热一致性为95%。

虽然TGG解释说,IT设备热一致性涉及的只是在正常运行条件下可接受的IT温度,但是IT设备热一致性仍然是一个很难计算的能源效率,因为必须知道:1)服务器进风温度的范围,包括ASHRAE规定的和企业自己规定的进风温度范围;2)测点位置,需要收集整个数据中心服务器各点的进风温度,由人工收集或利用数据中心基础设施管理(DCIM)软件来统计。

3.2.3IT设备热容错性ITTR

TGG对ITTR的定义为:当冗余制冷设备停机,或出现故障,或正常维修时,究竟有多少IT设备在ASHRAE允许的或建议的送风温度32℃下送风。

按照TGG的解释,ITTR涉及的只是在出现冷却故障和正常维修运行条件下可接受的IT温度,但是ITTR也是一个很难确定的参数。ITTR的目的是当冗余冷却设备停机,出现冷却故障或在计划维护活动期间,确定IT设备在允许的入口温度参数下(<32℃)运行的百分比,以便确定数据中心冷却过程中的中断或计划外维护的性能。这个参数很难手算,因为它涉及到系统操作,被认为是“计划外的”条件,如冷却单元的损失。

3.3.数据中心平均效率CADE

数据中心平均效率CADE是由麦肯锡公司提出,尔后又被正常运行时间协会(UI)采用的一种能源效率。

CADE提出时自认为是一种优于其他数据中心能源效率的指标。该指标由于被UI所采用,所以直到目前仍然被数量众多的权威著作、文献认为是可以采用的数据中心性能指标之一。但是笔者发现这一性能指标的定义并不严谨,容易被误解。另外也难以测量和计算。该指标的提出者并未说明IT资产效率如何测量,只是建议ITAE的默认值取5%,所以这一指标迄今为止未能得到推广应用。

3.4.IT电能使用效率ITUE和总电能使用效率TUE

2013年,美国多个国家级实验室鉴于PUE的不完善,提出了2个新的能源效率——总电能使用效率TUE和IT电能使用效率ITUE。

提出ITUE和TUE的目的是解决由于计算机技术的发展而使得数据中心计算机配件(指中央处理器、内存、存储器、网络系统,不包括IT设备中的电源、变压器和机柜风机)的能耗减少时,PUE反而增加的矛盾。但是这2个性能指标也未得到广泛应用。

3.5.单位能源数据中心效率DPPE

单位能源数据中心效率DPPE是日本绿色IT促进协会(GIPC)和美国能源部、环保协会、绿色网格,欧盟、欧共体、英国计算机协会共同提出的一种数据中心性能指标。GIPC试图将此性能指标提升为国际标准指标。

3.6.水利用效率WUE

TGG提出的水利用效率WUE的定义为:数据中心总的用水量与IT设备年耗电量之比。

数据中心的用水包括:冷却塔补水、加湿耗水、机房日常用水。根据ASHRAE的调查结果,数据中心基本上无需加湿,所以数据中心的用水主要为冷却塔补水。采用江河水或海水作为自然冷却冷源时,由于只是取冷,未消耗水,可以不予考虑。

民用建筑集中空调系统由于总的冷却水量不大,所以判断集中空调系统的性能时,并无用水量效率之类的指标。而数据中心由于全年制冷,全年的耗水量居高不下,已经引起了国内外,尤其是水资源贫乏的国家和地区的高度重视。如何降低数据中心的耗水量,WUE指标是值得深入研究的一个课题。

3.7.碳使用效率CUE

TGG提出的碳使用效率CUE的定义为:数据中心总的碳排放量与IT设备年耗电量之比。

CUE虽然形式简单,但是计算数据中心总的碳排放量却很容易出错。碳排放量应严格按照联合国气象组织颁布的计算方法进行计算统计。

激昂的世界
炙热的小馒头
2025-07-16 17:17:19

数据中心作为经济社会运行不可或缺的关键基础设施,是公认的高耗电行业。

据前瞻产业研究院分析,过去十年间,我国数据中心整体用电量以每年超过 10% 的速度递增,其耗电量在 2020 年突破 2000 亿千瓦时,约占全社会用电量的 2.71%,2014-2020 年,数据中心耗电量占比逐年升高。数据中心供电结构中,火电占比超过 70%,会产生相对大量的温室气体和其他污染物。

PUE (Power Usage Effectiveness,电能利用效率) 是衡量数据中心能源使用效率的重要指标。PUE 越接近于 1,代表数据中心对于电能的利用越有效率。截至 2019 年年底,全国超大型数据中心平均 PUE 为 1.46,大型数据中心平均 PUE 为 1.55。这与《关于加快构建全国一体化大数据中心协同创新体系的指导意见》建议的 1.3 以下相比,尚有一段距离。

可见,限‌电对于数‌据中心产业影响挺大的。顺应碳中和发展趋势,逐步降低碳排放,是数据中心亟需做出的改变。

数据中心降碳,可双管齐下

数据中心如何才能提升能源效率,为降碳做出贡献?主流的数据中心降碳举措可分为 IT 和 非 IT 基础设施两个方面。

非 IT 基础设施方面,常见的有数据中心选址靠近绿色清洁能源、尽量使用可再生能源、采用液冷技术取代风扇散热、数据中心余热回收再利用等等。这其中最为有效的不外乎在数据中心乃至公司运营范围内 100% 使用可再生能源,但这绝非易事——苹果用了 5 年时间才实现公司运营范围内 100% 可再生能源利用。

而在 IT 基础设施方面,企业可立即采用诸多举措来提升能源效率:通过分布式和虚拟化技术将“僵尸”服务器连接起来,最大程度减少 IT 设备空闲;实现服务器和存储的虚拟化与池化,从而大幅提升硬件利用率;通过采用更高能效的芯片产品,结合芯片的自适应电源管理功能来有效管理芯片用电,等等。

其中,虚拟化和超融合基础设施 (HCI) 有望引领数据中心能效的提升。

虚拟化已十分普遍,超融合基础设施也在近年来逐渐成为主流。作为一种融合的、统一的 IT 基础架构,超融合包含了数据中心常见的元素:计算、存储、网络以及管理工具。超融合以软件为中心,结合 x86 或 ARM 架构的硬件替代传统架构中的专用硬件,从而解决传统架构中管理复杂、难以扩展等问题。

相比传统架构,超融合将架构由三层缩减至两层,不仅可以大幅度节省机房空间,还能进一步整合计算资源,从而提升机房能效。超融合架构自带计算虚拟化和分布式存储,取代了传统物理环境和传统虚拟环境,对数据中心降碳的影响显著。

经过通用场景下的对比计算,从传统物理环境到传统虚拟环境,仅是虚拟化这一层即可带来 20%-80% 的节能;而从传统虚拟环境进一步过渡到超融合架构,通过将分布式存储融合到计算侧,可再带来高达 31% 的能耗节省。以下为计算详情(以下为理论值,不同负载情况下物理服务器能耗会有有所不同,不同服务器也会表现不同,同时不考虑交换机等因素)。

计算虚拟化:节能 20%-80%,虚拟化程度越高越节能

计算虚拟化是从 IT 基础设施层面提升能效的关键。它实现了 IT 基础设施从物理架构到虚拟化的跃升,减少物理服务器的数量、增加 IT 资源的利用率,让数据中心得以使用更少的基础设施即可运行更大的工作负载。IDC 报告指出,数据中心中计算、存储、网络层虚拟化程度越高,所带来的碳影响就越小。

以 4 台物理服务器搭配 1 台存储系统的配置为例,通过用虚拟化取代原有的物理机,能实现约为 20% 到 80% 的能耗节省(取决于虚拟机部署的密度)。

传统物理环境 vs. 传统虚拟环境

(以 4 台物理服务器搭配 1 台存储系统为例)

如图所示,此场景中两种架构的最大差异在于对计算资源的利用率不同:在相同的硬件条件下,计算资源的利用率越高,能获得的节能优势就越大。虚拟化架构通过高度利用 CPU 资源(此场景预设的 CPU 超分比例为 1:4,通常属于中到重度计算需求使用),可将平均每计算核心耗能降低约 74%。

在实际使用场景中,虚拟机部署密度的不同,也会带来不同的节能效果:

高密度虚拟机场景下(1 : 20,1 台物理服务器支撑 20 台虚拟机),平均每台服务器(虚拟机)耗能为 321 W/Hr,相比物理服务器降低约 80%;

低密度虚拟机场景下(1:5,1 台物理服务器支撑 5 台虚拟机),平均每台服务器(虚拟机)耗能 1284 W/Hr,相比物理服务器降低约 20%。

若进一步将 CPU 超分比例提高,物理环境和虚拟环境的耗能差距将会更大。

存储与计算节点融合部署:再节能约 31%

超融合基础设施将计算与存储服务模块融合部署在同一物理服务器(物理节点),完全舍弃了传统集中存储的需求,能够在虚拟化降低能耗的基础上,进一步为数据中心节能。

以相同的硬件配置为例(4 台物理服务器搭配 1 台存储系统),超融合架构通过去除传统集中存储硬件,可将平均每计算核心耗能再降低约 31%。

传统虚拟环境 vs. 超融合

(以 4 台物理服务器搭配 1 台存储系统为例)

请点击输入图片描述

以上场景所设定的硬件配置为 4 台物理服务器搭配 1 台存储系统,若单纯增加物理服务器的数量而存储系统保持不变,则两种架构的能耗会趋于接近。不过,计算资源(物理服务器)的增加,通常意味着对存储资源(性能与容量)的需求也会随之提升,所以从实际部署的场景来看,传统虚拟化架构的计算资源增加与相应的存储资源提升,整体的能耗与超融合架构相比仍存在不小的差距。

过时的秋天
故意的曲奇
2025-07-16 17:17:19
大数据和物联网将如何影响数据中心

如今,大数据正在不断拓展和扩大。据科学日报2013年的报道,全世界范围内所有数据的90%都是在过去两年中产生的。凡尔纳环球公司技术服务总监豪尔赫?巴尔塞尔斯指出,全球各地有25亿个互联网用户,在美国就有大约2.5亿个用户,特别是在过去的十年,用户的数量和水平呈现爆炸式增长。

从我们的Fitbits到手机摄像头,所有连接到互联网的各种类型的设备数量庞大,这些设备所产生的数据和未来的潜力导致计算和存储的需求呈指数增加。大数据和物联网将如何影响数据中心?这是巴尔塞尔斯在将要召开的数据中心全球会议和博览会上演讲的主题。本次会议将包括许多专题会议,将会涉及数据中心的管理者和经营者面对的问题,以及数据中心的新技术。大量的计算和存储需求产生更多的电力需求巴尔塞尔斯说,他说其演讲主题重点是围绕数据中心的管理者和经营者所问的问题。比如“我们现在的电力基础设施能否处理所有产生的数据呢?我们能提供足够的电力吗?”。这还将引出了下一个问题:“你知道你的数据中心现在获得的电力,那么在5年或10年或15年以后呢,那时该如何应对?“为了支持计算和存储今天的需求,“我们的数据中心需要质量可靠、高效节能的,采用可再生能源的充足电力。”他说。不断增长的数据需求导致更大的电力需求和成本。凡尔纳全球公司位于冰岛凯夫拉维克的数据中心,已经建立了围绕可再生能源接入,可靠和具有成本效益的电源策略。探讨电力因素对数据中心影响,巴尔塞尔斯对此具有独特的视角。

电力的底线巴尔塞尔斯表示,从财务的角度来看电力是很重要的。当数据中心管理者展望未来计划的成本,在如何计算电力定价时,却不知道未来会发生什么。电力成本在今天的数据中心设施的位置产生巨大的影响。当客户着眼于市场的发展趋势时,其共同点就是“电力的价格”。巴尔塞尔斯说。需求改变位置“你看目前人们不在大都市地区建设新的数据中心。在过去的十年中,数据中心都尽量远离人口中心,向偏远地区地区发展。比如美国西北太平洋地区的华盛顿州、俄勒冈、甚至美国犹他州,”他说。“而全球数据中心位于北欧地区,包括冰岛。”他举例说,Facebook在瑞典建设和数据中心,其电网是超级可靠的。而谷歌公司在芬兰建设的数据中心,从2015年开始,其电力来自可再生能源。(根据此前DCK的报道:谷歌公司在芬兰的哈米纳数据中心将在2015年主要采用风能发风,谷歌公司与一个陆上风电场供电公司签署了补充协议,因此该数据中心将采用100%的可再生能源发电。)这种供电可靠性在美国当前却不可用。“例如,海湾地区的电力并不是持续的。其可靠性不高。”巴尔塞尔斯说。北方气候的另一个好处是较低的散热需求。“在数据中心的总体成本中,冷却成本占到发电成本的30%到40%。”他说,“数据中心正在寻找那些终年有凉爽的气候的地点。”这减少了降低服务器的进气温度所需要产生的冷空气(无论是通过传统的冷却方式,或通过蒸发冷却)。实用的可靠性我们日前依赖的全天候的电力基础设施并不是都那么可靠。巴尔塞尔斯说人们往往很快忘记供电可靠性的问题。他引用了桑迪飓风和2003年美国东北电网导致大面积停电的事例。“2003年的事故导致5000万人受灾。我们这么快就忘记了,”他说。“电力的可靠性是一个让人关注的问题,不只是在美国,在全世界也是如此。”

繁荣的书包
自由的宝贝
2025-07-16 17:17:19

2月17日,国家发展改革委、中央网信办、工业和信息化部、国家能源局四部门联合印发通知,宣布将在京津冀、长三角等8地启动建设国家算力枢纽节点,规划10个数据中心集群。

继“南水北调”“西电东送”“西气东输”等工程之后,又一个国家重大战略工程拉开了序幕。

毕竟,在碳中和目标确定的背景下,数据中心减碳压力明显。国家发改委人士公开表示,加大数据中心在西部布局,将大幅提升绿色能源使用比例,就近消纳西部绿色能源,同时通过技术创新、以大换小、低碳发展等措施,持续优化数据中心能源使用效率。

促进东西部协同联动

所谓“东数西算”,“数”指数据,“算”是算力,即对数据的处理能力。“东数西算”是通过构建数据中心、云计算、大数据一体化的新型算力网络体系,将东部算力需求有序引导至西部,优化数据中心建设布局,促进东西部协同联动。

分析人士认为,“东数西算”工程的本质,在于解决目前各类数字经济业态蓬勃发展所需要的算力需求与我国算力增长速度之间不匹配的矛盾。

国家发改委高技术司相关负责人表示,目前,我国数据中心规模已达500万标准机架,算力达130EFLOPS(每秒一万三千亿亿次浮点运算)。随着数字技术向经济 社会 各领域全面持续渗透,全 社会 对算力需求仍十分迫切,预计每年仍将以20%以上的速度快速增长。

同时,我国数据中心大多分布在东部地区,西部地区数据中心上架率仍处在较低水平。《2021年中国数据中心市场报告》显示,目前全国整体上架率为50.1%,华东、华北、华南约在65% 68%,华中为39%,而西部地区的西北和西南分别为 34%和41%,低于平均水平。

然而,由于土地、能源等资源日趋紧张,在东部大规模发展数据中心难以为继,需要通过技术和空间的重新配置来缓解这种矛盾。

从工程推进节奏来看,数据中心的布局调整呈梯次推进。一方面,对于后台加工、离线分析、存储备份等对网络要求不高的业务,可率先向西转移,由西部数据(内蒙古、贵州、甘肃、宁夏)中心承接。另一方面,对于网络要求较高的业务,比如工业互联网、金融证券、灾害预警、远程医疗、视频通话、人工智能推理等,可在京津冀、长三角、粤港澳大湾区等东部枢纽布局,确保算力部署与土地、用能、水、电等资源的协调可持续。

西部地区的能源潜力

值得注意的是,数据中心的布局之所以向西部转移,首先在于数据中心迫切的减碳需求。

作为能耗和碳排放贯穿其全生命周期的能耗“巨兽”,近年来,数据中心能耗和碳排放增长迅速。

据生态环境部环境规划院专家测算,2021年,全国数据中心能源消耗达到2166亿千瓦时,较2020年增加44%,占全 社会 用电量的2.6%左右;二氧化碳排放量约1.35亿吨,较2020年增加3915万吨,占全国二氧化碳排放量的1.14%左右。

同时,上述专家预测,“十四五”“十五五”期间,在钢铁、水泥、化工、有色等行业逐步实现碳达峰并进入平台期时,数据中心成为二氧化碳排放持续增长的少数行业。

到2025年,全国数据中心能源消耗总量将达到3500亿千瓦时,约占全 社会 用电量的4%,电能利用率(PUE)1.30;二氧化碳排放2.1亿吨,占全国二氧化碳排放量的比例接近2%,碳排放强度(CUE)为0.76。到2030年,全国数据中心能源消耗总量5915亿千瓦时,占全 社会 用电量5%以上,电能利用率(PUE)降到1.30以下;二氧化碳排放约3.4亿吨,占全国二氧化碳排放量的比例接近3%。

另一方面,我国西部地区资源充裕,特别是可再生能源丰富,具备发展数据中心、承接东部算力需求的潜力。据了解,西部地区可再生能源资源占全国资源总量的70%以上。其中,风力资源占85%以上,太阳能资源占90%左右。

更重要的是,数据中心的算力及负荷需求将大幅提升绿色能源使用比例,缓解我国可再生能源资源与用电负荷的时空矛盾。

尽管目前我国弃风、弃光率不断下降,风光消纳不断向好,但从区域分布来看,西部尤其是西北部地区仍是消纳“洼地”。

全国新能源消纳监测预警中心公布的数据显示,2021年,全年光伏利用率达98%,风电利用率达96.9%,但其中青海地区的风电利用率为89.3%,光伏利用率为86.2%;新疆和蒙西的风电利用率分别为92.7%及91.10%。

国家发改委人士表示,下一步,还将强化能源布局联动,加强数据中心和电力网一体化设计,推动可再生能源发电企业向数据中心供电。支持数据中心集群配套可再生能源电站。

西部证券研报显示,通过“东数西算”能够将高耗电的数据中心放置在西部具有丰富风、光、水电资源的地区,不仅能够实现减碳目标,也能够拉动新能源及配套设施的建设需求。