什么是可再生能源?其类型有哪些
可再生能源(英语:Renewable Energy)为来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。
可再生资源包括气候资源、生物资源、水资源和土地资源四类。
一次能源可以进一步分为再生能源和非再生能源两大类型。再生能源包括太阳能、水力、风力、生物质能、波浪能、潮汐能、海洋温差能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,会自动再生,是相对于会穷尽的不可再生能源的一种能源。中国已经下令所有输电公司要把所有可再生能源发电设施接入电网,以结束大量清洁能源闲置的瓶颈。
新能源发电就是利用现有的技术,通过上述的新型能源,实现发电的过程。
新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能等。
此外,还有氢能等;而已经广泛利用的煤炭、石油、天然气、水能、核裂变能等能源,称为常规能源。
能源按其来源可以分为下面四类:
第一类是来自太阳能。除了直接的太阳辐射能之外,煤、石油、天然气等石化燃料以及生物质能、水能、风能、海洋能等资源都是间接来自太阳能。
第二类是以热能形式储藏于地球内部的地热能,如地下热水、地下蒸汽、干热岩体等。
第三类是地球上的铀、钍等核裂变能源和氘、氚、锂等核聚变能源。
第四类是月球、太阳等星体对地球的引力,而以月球引力为主所产生的能量,如潮汐能。
与广泛使用的常规能源(如煤、石油、天然气、水能等)相比,新能源是指在新技术基础上开发利用的非常规能源,包括风能、太阳能、海洋能、地热能、生物质能、氢能、核聚变能、天然气水合物能源等。 新能源发电是指把新能源转换为电能的过程。风力发电和太阳能发电作为技术成熟、具有规模化开发和商业化应用的新能源发电方式,发展速度居于新能源前列,其主要特点有:可再生、分布广、低污染;能量密度低、单机容量小;间歇性、周期性、随机性、波动性;大量采用电力电子技术;有分散和集中开发两种典型的接入电网方式。名词解释: 可再生能源:在自然界中可以不断再生并有规律地得到补充或重复利用的能源。例如太阳能、风能、水能、生物质能、潮汐能等非化石能源。
清洁能源:消耗后不产生或很少产生污染物的可再生能源、低污染的化石能源(如天然气),以及采用清洁能源技术处理后的化石能源(如清洁煤、清洁油)。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指太阳能、风能、地热能、氢能等。
发电是指利用动力发电装置将水能、石化燃料(煤、油、天然气)的热能、核能等等的原始能源转换为电能的生产过程。
发电用以供应国民经济各部门与人民生活之需。
现在发电依然使用化石燃料为主要的发电形式,但化石燃料的资源不多,日渐枯竭,人类已渐渐较多的开始使用太阳能、风能、地热能、海洋能等能源来发电。
常见的发电方式:
1、水力发电:水力发电的基本原理是利用水位落差,配合水轮发电机产生电力,也就是利用水的位能转为水轮的机械能,再以机械能推动发电机,而得到电力。科学家们以此水位落差的天然条件,有效的利用流力工程及机械物理等,精心搭配以达到最高的发电量,供人们使用廉价又无污染的电力。
2、火力发电:火力发电指利用可燃物(中国多为煤)燃烧时产生的热能,通过发电动力装置转换成电能的一种发电方式。火力发电厂的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
3、核能发电:核能发电的核心装置是核反应堆。核反应堆按引起裂变的中子能量分为热中子反应堆和快中子反应堆。
4、风力发电:把风能转变为电能是风能利用中最基本的一种方式。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
5、地热发电:地热发电是利用地下热能发电的,与火力发电类似。
6、人力发电:能产生力的东西皆能发电,像水力和风力似的,人力也能发电。因此产生了手摇和脚踏之类的发电机,将人在运动中产生的能量转换成电能。
发电即利用发电动力装置将水能、化石燃料(煤炭、石油、天然气等)的热能、核能以及太阳能、风能、地热能、海洋能等转换为电能。
20世纪末发电多用化石燃料,但化石燃料的资源不多,日渐枯竭,人类已渐渐较多的使用可再生能源(水能、太阳能、风能、地热能、海洋能等)来发电。
扩展资料:
发电动力装置按能源的种类分为火电动力装置、水电动力装置、核电动力装置及其他能源发电动力装置。火电动力装置由锅炉、汽轮机和发电机(惯称三大主机)及其辅助装置组成。
水电动力装置由水轮发电机组、调速器、油压装置及其他辅助装置组成。核电动力装置由核反应堆、蒸气发生器、汽轮发电机组及其他附属设备组成。
到20世纪80年代末,主要的发电形式是水力发电、火力发电和核能发电。其他能源发电形式虽然有多种,但规模都不大。3种主要形式所占的地位因各国能源资源的构成不同而异。世界上以火力发电为主,其发电量在总发电中所占比重为70%以上。
日、德的火电所占比重在60%以上。挪威、瑞典、瑞士、加拿大等国则以水力发电为主,其中挪威、瑞士的水力发电量均占总发电量的90%左右,加拿大超过70%,瑞典也超过60%。芬兰和南斯拉夫则水电与火电各占一半。法国以核电为主,其发电量占总发电量的70%以上。
参考资料来源:百度百科——发电
目前几种主要的分布式发电形式及特点:生物质发电:生物质发电是利用生物质,例如:秸秆、垃圾、沼气、农林废弃物等,直接燃烧将生物质能转化为电能的一种发电方式。它是一种可再生能源发电,其发电成本低,容易控制,环保综合利用效果好。但电能转换的效率低,生物质燃料的获取、存储和稳定的供给较困难。生物质发电的容量和规模受到限制。燃料电池发电:燃料电池是一种在恒温状态下,直接将存储在燃料和氧化剂中的化学能高效、环境友好地转化为电能的装置。其优点是:效率高、能快速跟踪负荷的变化、清洁无污染、占地少。微型燃气轮机发电:以天然气、甲l烷、汽油、柴油为燃料的超小型燃气轮机发电技术。其发电效率较高且体积小、质量轻、污染小、运行维护简单。
电能不是可再生能源,是一种二次能源。
电能是由煤炭、水力、天然气、石油等一次能源转换来的,是经过加工后,由一次能源转化而成的二次能源。而可再生资源是指不需要人力参与便会自动再生,取之不尽、用之不竭的能源,所以电能不是可再生资源。
电能是指使用电以各种形式做功的能力,既是一种经济、实用、清洁且容易控制和转换的能源形态,又是电力部门向电力用户提供由发、供、用三方共同保证质量的一种特殊产品,它同样具有产品的若干特征,如可被测量、预估、保证或改善。
电能形式
日常生活中使用的电能,主要来自其他形式能量的转换,包括水能(水力发电)、热能(火力发电)、原子能(核电)、风能(风力发电)、化学能(电池)及光能(光电池、太阳能电池等)等。
电能也可转换成其他所需能量形式,如热能、光能、动能等等。
电能可以靠有线或无线的形式,作远距离的传输。
氢能利用形式有以下几种:
一、交通
近年来,我国政府给予了大量补贴和优惠政策,鼓励燃料电池车的发展。目前国内商用燃料电池车保有量达2000~3000辆,其中有1000辆在运行。由全球环境基金(GEF)、联合国开发计划署(UNDF)和我国科技部(MOST)支持的“中国燃料电池公共汽车商业化示范项目”自2003年起已陆续开展三期。全国已有十几个城市开通了燃料电池公共汽车示范线。
二、发电
可再生能源发电目前在我国所有电力供应中占比虽不大,但随着人们对环保的重视以及可再生能源技术的成熟,越来越多的可再生能源电力即将投用。然而,可再生能源电力供应的一大弊端是不稳定,需要配备电厂,目前以煤电作为补充较为普遍。未来煤电比例将会越来越低,以氢能燃气轮机发电来弥补可再生能源发电将成为一种解决方案。
三、建筑的热电联供
建筑供热是氢能利用的重要方向,未来建筑供热用氢占比将大于发电用氢。
四、高质量的热源
主要用于蓝宝石、单晶硅、特种钢等的生产。
五、基本化工原料
除了传统用途,如制造合成氨、石油加氢精制之外,一些新的利用方向值得关注。例如,在减排CO2方面,可以利用现场生成的CO2,以及富CO2气体,和氢气反应生成甲醇并进一步向化学链下游发展。
盖世汽车讯 据外媒报道,美国马萨诸塞大学阿默斯特分校(the University of Massachusetts Amherst)的科学家们研发了一款设备,可以利用一种天然蛋白质,再利用空气中的水分发电。科学家们表示,该项新技术可能会对可再生能源、气候变化以及医学的未来产生重大影响。
(图片来源:马萨诸塞大学阿默斯特分校)
马萨诸塞大学阿默斯特分校电子工程师Jun Yao和微生物学家Derek Lovley研发了一款名为“空气发电机”(Air-gen)的设备,配备了由微生物地杆菌属(Geobacter)产生的导电蛋白质纳米线。该空气发电机通过自然存在于大气中的水蒸气产生电流,将电极与蛋白质纳米线连接在一起。
Yao表示:“我们真的是在利用稀薄空气发电,而且该空气发电机可以全天候提供清洁能源。” 30多年来,Lovely一直致力于研发基于生物技术的先进电子材料,他补充表示:“这是迄今为止,蛋白质纳米线最令人惊讶和兴奋的应用。”
Yao的实验室研发的该项技术无污染、可再生且成本低,甚至可以在撒哈拉沙漠等湿度极低的地方发电。Lovley表示,与包括太阳能和风能在内的其他形式的可再生能源相比,该技术具有显著优势,因为与其他可再生能源不同,空气发电机无需阳光或风,甚至“可以在室内工作。”
研究人员解释表示,该空气发电机只需要不到10微米厚的蛋白质纳米线薄膜,薄膜的底部位于一个电极上,而更小的一个电极只覆盖了位于其上的纳米线薄膜的一部分。该薄膜可以从大气中吸收水蒸气,蛋白质纳米线具有导电性,加上其表面的化学性,以及薄膜内纳米线之间的细孔,为两个电极之间产生电流创造了条件。
研究人员表示,目前该空气发电机只能为小型电子设备提供动力,希望很快可以实现商业化。下一步,他们计划研发一种小型空气发电机“补丁”,可以为健康和健身设备以及智能手表等可穿戴设备提供电力,消除对传统电池的需求。此外,他们还希望开发出适用于手机或电动汽车的空气发电机,消除周期性充电需求。
Yao表示:“最终目标是打造大规模系统。例如,该技术可以嵌入到墙漆中,为家庭提供电力;或者研发独立的空气发电机供电,不再依靠电网电力;一旦能够让该蛋白质纳米线实现工业化规模生产,就可以打造大型系统,为可持续能源生产做出重大贡献。”
为了继续发挥Geobacter的生物学功能,Lovley的实验室最近研发了一种新型微生物菌株,可以更迅速、更低价地量产蛋白质纳米线。“我们将大肠杆菌变成了蛋白质纳米线,利用该项可扩展的新型工艺,蛋白质纳米线供应不再是研发此类应用的瓶颈。”
研究人员表示,空气发电机反映了不同寻常的跨学科合作。Lovley在30多年前,在Potomac河的泥浆中发现了Geobacter微生物,后来,其实验室发现了该微生物有制造出导电蛋白质纳米线的能力。在加入马萨诸塞大学阿默斯特分校之前,Yao曾在哈佛大学工作多年,曾在该校利用硅纳米线设计了电子设备。现在,他们两人合作,研究是否能够利用Geobacter微生物制成的蛋白质纳米线打造有用的电子设备。
Yao实验室的博士生Xiaomeng Liu在研发传感器设备时,发现了一件意想不到的事。“我看到,当该纳米线以特定的方式与电极接触时,设备就会产生电流。我发现,将其暴露在一定湿度的空气下很有必要,而蛋白质纳米线会吸收水分,从而在整个设备上造成了电压梯度。”
除了空气发电机,Yao的实验室还在利用该蛋白质纳米线研发其他应用。Yao表示:“这只是以蛋白质为基础的电子设备新时代的开始。”
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。