建材秒知道
登录
建材号 > 能源科技 > 正文

干热岩是什么能源

聪慧的花生
陶醉的铅笔
2023-02-11 06:27:19

干热岩是什么能源?

最佳答案
敏感的苗条
爱笑的信封
2025-07-21 14:16:22

干热岩是地热能源,它一般在地下数千米的地方,可以用来发电。

干热岩发电的技术可以有效降低温室效应、酸雨对环境造成的影响,而且它的含量较大。除了可以用干热岩发电之外,风力、水里、火力都可发电。干热岩是一种新兴的地热能源,它一般都在地下数千米的地方,且温度都高于两百摄氏度,我国第一次发现大规模的可以利用的干热岩在青海。

干热岩可用于发电,这项技术的推广能有效的降低温室效应、酸雨对环境造成的影响,而且干热岩的含量较大,2019年时在日照、威海发现的干热岩富存区的资源量就等于数百亿吨的标准煤。目前除了可以用干热岩发电之外,我们还可以用风力、水里、火力、核能等自然资源进行发电。

干热岩

干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大, 绝大部分为中生代以来的中酸性侵入岩, 但也可以是中新生代的变质岩, 甚至是厚度巨大的块状沉积岩。

干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩体内部的温度。青藏高原在隆升过程中形成了一系列地热资源。从2014年时了解的干热岩地热资源区域分布看,青藏高原南部占中国大陆地区干热岩总资源量的20.5%,资源量巨大且温度最高。

青海地勘人员在共和盆地成功钻获温度高达153℃的干热岩。这是我国首次发现大规模可利用干热岩资源。该资源属清洁能源,可用于地热发电。

最新回答
威武的水壶
靓丽的魔镜
2025-07-21 14:16:22

干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大, 绝大部分为中生代以来的中酸性侵入岩, 但也可以是中新生代的变质岩, 甚至是厚度巨大的块状沉积岩。干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩体内部的温度。

中国首次发现大规模可利用干热岩资源于青海省共和盆地。青藏高原南部约占我国大陆地区干热岩总资源量的1/5。

2019年在山东省日照市和威海市的部分区域发现干热岩富存区,资源量总计相当于188亿吨标准煤。

害羞的洋葱
贪玩的月饼
2025-07-21 14:16:22
是的.目前已知的能源有:①太阳辐射能及其转换成的能,包括矿物燃料、风力、水力、植物燃料、海洋波浪、海水温差等;②地球本身蕴藏的能量,包括原子能和地热等;③地球与其他天体相互作用所产生的能量,如潮汐能。矿物燃料和植物燃料的燃烧是造成大气污染的主要原因。因此,采用无污染能源,是防止大气污染的重要措施。

无污染能源主要是太阳辐射能、风力、水力、地热、氢燃料、生物能以及海洋波浪、海流、海水温差、潮汐等能源。这些能源都蕴藏着巨大的能量,并逐步被开发利用。太阳每年辐射到地球上的总能量达6.0×1017千瓦小时。太阳能可以转换成热能、电能和化学能。马里共和国于1979年建成迪雷太阳能热电站,装机容量75千瓦。美国、日本、苏联、希腊等国也建有不同类型的太阳能电站。太阳能转化为热能使用较常见,利比亚约有三分之一居民用太阳灶,中国许多地方已采用太阳能供热。

在风力和水力方面,中国在2~3千年前就开始用风力和水力进行粮食加工,现在主要是把它们转换成电力使用。如1979年在浙江省泗礁岛上安装了容量18千瓦的风力发电装置;内蒙古草原上已先后装置了200多台100~250瓦的小型风力发电机组。苏联在1931年就建成了装机容量 100千瓦的风力发电装置。80年代初世界能源结构中,水力占 6%。中国水力资源蕴藏量居世界第一位。据1979年统计,中国已建成大型和小型水电站九万多座,装机容量634万千瓦。

地热利用方面,自意大利于1904年首先利用地热发电以来,中国、美国、菲律宾、苏联、日本、新西兰、墨西哥等国都建造了地热电站。1980年,各国地热电站总功率已达 380万千瓦,美国地热电站总装机容量达86万千瓦,单机容量达11万千瓦。中国至1979年先后建成7 座地热电站,西藏羊八井地热电站单机容量约7000千瓦。干热岩能源是地热能源的一部分,目前正在研究它的利用问题。有的地下热水和蒸汽含有硫化氢等有害物质,但和矿物燃料相比,有害物质较少。

在海洋能源利用方面,海洋蕴藏着巨大的能量,据估计,中国沿海年潮汐能有1.1亿千瓦,可利用的有3100~3500万千瓦。截至1979年底,中国建成 4座较大的潮汐电站,其中浙江省江厦电站装机容量3000千瓦。法国1966年建成一座功率为24万千瓦的潮汐电站。波浪发电装置,目前世界各国已有400多种。海水温差发电装置的容量已达到10万千瓦。

此外,氢是含能量很高的无污染燃料,是由其他能源制造的二次能源。它燃烧时和氧化合成水,不产生污染物。生物能是绿色植物通过光合作用固定的太阳能,可转化为气体或液体燃料,如用甘蔗、木薯、甜高粱生产酒精。

海底天然气水合物作为 21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。本世纪六十年代开始的深海钻探计划 (DSDP) 和随后的大洋钻探计划 (ODP) 在世界各大洋与海域有计划地进行了大量的深海钻探和海洋地质地球物理勘查,在多处海底直接或间接地发现了天然气水合物。到目前为止,世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。

无污染能源中,除水力的利用技术较为成熟外,其他几种能源在开发和利用上还存在着技术上的困难。矿物燃料贮量有限,而且在燃烧时排出大量污染物质,所以,无污染和少污染能源在能源总结构中将占越来越重要的地位。

舒心的乐曲
爱听歌的帽子
2025-07-21 14:16:22
地热是来自地球内部的一种能量资源。地球上火山喷出的熔岩温度高达1200℃~1300℃,天然温泉的温度大多在60 ℃以上,有的甚至高达100 ℃~140 ℃。这说明地球是一个庞大的热库,蕴藏着巨大的热能。这种热量渗出地表,于是就有了地热。地热能是一种清洁能源,是可再生能源。\x0d\x0a地热来源主要是地球内部长寿命放射性元素(主要是铀238 、铀235 、钍232 和钾40等)衰变产生的热能。地热在地球上有不同的呈现形式。按照其储存形式,地热资源可分为蒸汽型、热水型、地压型、干热岩型和熔岩型5大类。\x0d\x0a在离地球表面5000米深,15℃以上的岩石和液体的总含热量,据推算约为14.5×1025焦耳(J),约相当于4948万亿吨(t)标准煤的热量。地热资源按温度的高低划分为高中低三种类型。中国一般把高于150℃的称为高温地热,主要用于发电。低于此温度的叫中低温地热,通常直接用于采暖、工农业加温、水产养殖及医疗和洗浴等。\x0d\x0a

无聊的裙子
难过的枫叶
2025-07-21 14:16:22

地热能(geothermal energy)是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是导致火山爆发及地震的能量。火山、喷泉(geyser)、温泉(hot spring)和沸泥塘(boiling mud pots)都有力说明壳层及其下部存在着较大的热能储藏。这种热量渗出地表,于是就有了地热。地热能是一种清洁、是可再生能源,其开发前景十分广阔。著名地质学家李四光(1973)曾指出:“地球是一个大热库,地下热能的开发与利用,是件大事情,就像人类发现煤炭、石油可以燃烧一样,这是人类历史上开辟的一个新能源,也是地质工作的一个新领域。”

地热资源(geothermal resource),指能够经济地为人类所利用的地球内部的热资源,它来源于地球的熔融岩浆和放射性元素衰变时发出的热量。地热资源是一种十分宝贵的综合性矿产资源,其功能多,用途广,不仅是一种洁净的能源资源,可供发电、采暖等利用,而且是一种可供提取溴、碘、硼砂、钾盐、铵盐等工业原料的热卤水资源和天然肥水资源,同时还是宝贵的医疗热矿水和饮用矿泉水资源以及生活供水水源。

一、地热能来源和分布

(一)地热能的来源

地热能主要由地球内部的放射性物质衰变产生。地球中央是熔融的地核,其温度可达4000℃(7200℉),周围被半液态物质构成的地幔所包围(图4-52)。地幔上面覆盖的是地壳,平均约17km厚。地壳的温度随着深度增加而增加,深度每增加1km,温度约上升30℃。地壳底部(地幔上部)的温度较稳定,约为1000℃,地核内部温度增高迟缓。如果只考虑平均地温梯度,则可被充分利用的热能都储藏于地壳深部以下。然而,一些地带内的地幔熔岩(岩浆)沿着断层或裂缝运移到地表附近,在地表2~3km处形成“热点”,使得局部区域的地表附近富集大量的地热资源,如地球构造板块衔接处的地震、火山爆发地带。地球有六大构造板块:太平洋板块、欧亚板块、印度洋板块、非洲板块、美洲板块和南极洲板块。这些板块沿着扩张中心(即洋脊)向两边分离、生长,并向外移动,同时,板块之间沿着水平方向彼此相对移动、相互滑过或错动(图4-53)。在这些板块相互碰撞挤压的地方,巨大的力量可产生地震或隆升成山脉。在板块衔接处,热能通过地下岩浆迅速从地球内部向地表火山输送。因此,板块边缘成为高温地热田的主要分布地带。

图4-52 地球的层次结构

图4-53 地球六大板块及一些小的板块处相对运动状态(箭头指示板块运动方向)

(据意大利比萨地质及地球研究所,2004)

1—地热田分布;2—横切洋中脊的转换断层;3—俯冲带

(二)地热的类型及分布

世界范围内地热资源的分布具有明显的规律性。高温地热资源集中分布在相对狭窄的地壳活动地带,即全球板块的边界;而低温地热资源则广泛分布于板块内部,但在板块内部一些存在热点、热柱的地方也可能分布高温地热资源。

地热带划分为板缘(或板间)地热带和板内地热带两大类。板缘地热带是指沿板块边界展布的相对比较狭窄但延伸可达数千千米的高温地热带。板缘地热带因具有全球规模,而且首尾相接,故常常又被称为环球地热带,它的特点是:

(1)具明显的带状分布;

(2)地理位置上与环球地震活动带和活火山带重叠,或者位于年轻造山带的后缘;

(3)带内火山多喷出酸性或中酸性岩浆,这种岩浆来源较浅,且与壳内局部重熔活动有关,因而构成浅部水热活动的直接热源;

(4)水热活动的显示强度很高,水热爆炸、间歇喷泉以及绝大多数沸泉都出现在板缘地热活动带;

(5)热泉常常排出氯化钠型水,并常含有某些岩浆挥发组分;

(6)常出现经济价值很高的大型高温地热田。

板内地热带一般是指广泛分布于板块内部地带隆起区(褶皱山系、山间盆地)及地壳沉降区(主要是大型中新生代沉积盆地)规模相对较小的低温带。板内地热带属非火山型、无火山或岩浆热源。在板内无论是隆起区或沉降区,在构造破碎带或一些自流盆地内,都储存有丰富的中、低温地热能资源(150℃以下),地热田温度一般都低于当地沸点,多介于60~90℃之间。

二、地热系统

(一)地热系统的概念

地热系统是指高于或略高于正常地温梯度的区域,尤其是在板块边缘,地温梯度明显高于平均地温梯度。第一种地热系统,温度较低,经济深度内不超过100℃;第二种地热系统,温度跨度大,可超过400℃。

什么是地热系统?在这个系统中会发生什么?它可以被描述为“地壳中的流体,以整个地壳为散热器,利用地壳自身的蓄热和热量向上辐射的规律由下至上进行传导热量”。地热系统是由热源、热储和流体三个元素构成的,它们是传递热量的载体。热源是一个高温(600℃)的岩浆侵入体到达地表5~10km处,或者说到达低温系统。热储是指能存储循环流体中热量的热渗透性岩层。热储上覆非渗透性盖层,通过大气降水补给连接到表层的补给区,通过温泉或钻孔排泄流体。地热流体来源于大气降水,由于温度和压力的不同而呈现液态相或气态相。这种水常常伴有CO2、H2S等化学气体。图4-54简化地描述了理想的地热系统。

图4-54 理想的地热系统示意图(据意大利比萨地质及地球研究所,2004)

(二)地热系统的机制

地热系统的机制为热体的对流,图4-55描述了中温地热系统的机制。对流运动是由重力场中的流体加热和加热后的热膨胀产生的;流体对流中的热量是地热系统的驱动力。热的低密度流体上升,被来自系统边界的冷的高密度流体取代。在正常情况下,对流往往会增加系统上部的温度,降低下部的温度。这里所描述的现象似乎很简单,但是一个真实地热系统的模型重建是很难实现的。它需要许多学科的知识和丰富的经验,特别是高温系统的重建模型。地热系统发生在自然界中,由于地质、物理和化学性质的不同而产生不同类型的地热系统。

图4-55 地热系统模型(据意大利比萨地质及地球研究所,2004)

1—纯净水沸点的参考曲线;2—从补给点A到排泄点E的典型循环路线图

(三)人工地热系统

在所有要素中,热源是唯一的自然资源。其他两个要素可以人为提供有利的条件。例如,热储中提取的地热流体,被用于推动地热发电站涡轮机运行后,通过注水井重新回灌到热储中。这样的自然热储由人工回灌补给。多年来,回灌已经成为减少地热开发对环境影响的手段,应用于世界各地。

通过注入井进行人工回灌,还可以帮助补充和保持旧的或枯竭的地热田。例如,在美国加利福尼亚州的间歇泉,是世界上最大的地热田之一,20世纪80年代末由于流体减少导致产能急剧下降。第一个项目是1997年推出的东南间歇泉污水回收利用项目,将经过处理的废水输入到地下48km深的地热田中。该项目已使之前因缺少流体而废弃的发电厂重新被使用。第二个项目是圣罗莎的间歇泉补给项目,每天用热泵将4150×104L的三级废水通过一个66km的管道从圣罗莎和其他城市的污水处理厂运输到间歇泉,通过专门的钻孔注入热储中。干热岩(HDR)项目,1970年首次在美国新墨西哥州洛斯阿拉莫斯国家实验室进行。实验的流体和热储都是人工的。从钻井中抽出的高压水注入深部热的坚硬岩石中,引起沟通裂隙产生。流体渗入人工裂隙中并吸取围岩中的热量,这称作天然热储。然后,热储被第二个钻孔钻入,被用来提取热水。因此,该系统由以下部分组成:(1)水力压裂井;(2)人工热储层;(3)注水井—生产井系统。整个系统与地面工厂形成一个封闭的系统(Garnish, 1987)(图4-56)。

图4-56 干热岩的商业模式示意图(据辛力,2014)

三、地热资源的勘察

(一)地热资源勘查的内容

地热资源蕴藏于地下深处,地热资源的勘查内容主要包括以下五个方面:

(1)查明热储层岩性、空间分布、孔隙度、渗透性及其与常温含水岩层的水力联系。

(2)查明热储盖层的岩性、厚度变化情况以及区域地热增温率和地温场的平面分布特征。

(3)查明地热流体的温度、状态、物理性质及化学组分,并对其利用的可行性做出评价。

(4)查明地热流体动力场特征、补径排条件。

(5)在查明地热地质背景的前提下,确定温泉地热资源的形成条件和地热资源可开发利用的区域及合理开发利用深度;计算评价地热资源或储量,提出地热资源可持续开发利用的建议。

(二)地热资源勘查技术

从地热勘探技术来看,目前主要有:

(1)以地表浅孔测温、电法、重力勘探和微地震观测为代表的地球物理勘探法;(2)测定土壤中氡、汞、砷、硼、氦和二氧化碳含量异常的地球化学勘探法;(3)以断裂构造遥感解译和地热异常信息提取为主的遥感方法。

目前,地热资源勘探主要通过对地热生成的大地构造、水文地质等地质背景的研究,采用综合地球物理、地球化学和遥感等勘探方法圈定靶区,开展地热勘探工作。

1.地球物理勘探

地球物理勘探的作用是圈定地热田和确定开采地热流体的钻孔位置。目前,几乎所有的地球物理方法都被应用于地热勘探,着重点从探查含地热流体的地质和构造环境转移到探查流体本身。

电法勘探是一种较为简捷的方法,其目的是探测与地下水有成因关系的断裂构造的位置分布,圈定地下热水的分布范围,确定盖层厚度、热源位置及基岩岩性。电法勘探包括频率域探测法(如MT和CSAMT法等)、时间域法(如LOTEM法、TEM法及时间域IP法等)、直流电测深法和激发极化法等。

磁法勘探可分为航空磁测、地面高精度磁测等。它主要通过测量不同磁化强度的各种岩(矿)石在地磁场中所引起的磁异常,并研究这些磁异常的空间分布特征、规律及与地质体间的关系,从而做出地质解释。在沉积岩地区,磁异常一般是侵入岩体存在的反映,而侵入岩的存在又是地热形成的决定因素,是热能之源。

除电法和磁法外,其他地球物理方法还有如重力勘探、地震勘探和地热测井等。重力勘探是通过测量不同岩(矿)密度差异所引起的重力异常来达到寻找深大构造断裂、基岩坳陷中的凸起构造等地下热水存在的有利部位的目的。地震勘探是通过研究人工激发地震波的运动学和动力学特征来解决地质问题,这种方法弥补了时间域电法勘探在高阻屏蔽和深度上的限制。地热测井包括电阻率、自然电位、天然放射性等方法。地热测井从手段上还分为随钻测井、高深度数字测井等,该方法目前已跨出了纯地球物理勘探行列。

2.地球化学勘探

目前,地球化学研究形成了一套地热地球化学勘探的技术系列:在区域范围内,利用水系沉积物和土壤测量,可以快速发现和圈定地热远景区;在普查区内,在覆盖区用土壤测量,在露头良好(高温热水)区用岩石测量及水热蚀变研究,可以圈定热田范围;在热田范围内外,构造地球化学测量(包括Rn、Hg、210Po等)可以指示控制热水分布的浅部或深部构造,地层、岩体中含有的由铀(235U)经一系列衰变产生的氡(222Rn)可以沿着构造带、裂隙和地下水垂向运移并在地表富集形成氡异常,土壤汞量测量对浅部地下热水有很好的地面异常反映;在详查区内,通过土壤地球化学详查及测温测量能查明热水赋存的最有利地段;在热区内,利用地球化学温标,可以估算深部热水的温度,预测热储的可能温度,利用氢、氧同位素研究,可查明热水的补给来源、判断热源性质等。

3.遥感勘察

斯—玻定律表明:地表温度的微小变化可引起其对半球空间能量辐射出现明显变化。因此,地球深部热源以传导和对流方式传递到地球表面后形成的地表温度异常,可以很容易地被热红外探测器检测出来。基于多波段遥感数据的遥感地学解译和基于热红外遥感数据的地热异常信息提取是遥感技术勘探地热资源的基本研究思路与方法。

从区域角度来讲,喷气孔和热泉点所表现出来的地热异常,一般反映了浅部地热的存在和控热构造。埋藏较深的地下热水,通常是通过垂直裂隙系统以渗透或对流的方式传递到地表,形成比背景温度高的地热异常,这些地热资源受地质构造控制和地层岩石的物理性质影响。而通过对多波段遥感数据的地学解译,可获取研究区内断裂(包括隐伏断裂)、岩性、地貌等众多的构造、岩性及地理信息,这无疑为圈定地热资源勘探的有利区提供了技术参考。

然而,遥感技术在地热资源勘探中的成功应用应有以下前提条件:首先,地表必须有热异常存在,这种异常可以是直接出露于地表的温泉点或热喷气孔,也可以是通过热对流或热扩散方式在地表形成的高温热异常;其次,受地热影响引起的地面物体热变化在遥感图像上有显示,如泥火山、泥喷泉的出现,植被生态发生变化,耐高温植物的出现,受地热影响冰雪的局部融化等;最后,要具有较高温度分辨率的热红外探测器和较容易出现地热异常的成像季节、时间及良好的天气条件等。

(三)地热资源勘查技术综合应用

在地热资源勘查过程中,只有针对不同地热环境、不同勘查阶段,采用不同的勘探方法和不同方法的有效组合,才能达到合理投入、降低风险、提高经济效益的目的。例如,在高温地热区带和干热岩地区,要充分利用已有的航磁、航电、区域重力或水系沉积物测量资料,并同时适量投入重力、磁法等大比例尺精测剖面,开展面积性的浅层测温法、测氡法和磁法工作,适时投入钻探工程。而在中低温盆地地区,应加强研究储热盆地的构造特征、发展演化历史及其与储热性的关系,充分解译遥感、航磁、重力资料,可为评价优选储热靶区提供依据,该地热类型适合投入重磁精测剖面、电法及人工地震工作。

四、地热资源的利用

地热资源的利用包括发电和非发电利用两个方面。世界各国利用地热的经验表明,高温地热资源(在150℃以上)主要用于发电,地热发电后排出的热水可供直接利用;中低温地热资源(在150℃以下)则以直接利用为主。经典的Lindal图(Lindal, 1973)显示了不同温度的地热流体可能的用途(图4-57)。温度低于20°C的流体在非常特别的条件下或在热泵的应用程序中则很少使用。Lindal图强调地热资源利用的两个重要方面:(1)通过级联或结合使用可以提高地热项目的可行性;(2)资源的温度会限制可能的用途。现有的热加工工艺在某些情况下可以被改良,从而拓宽地热流体的应用领域。

(一)高温地热资源

根据地热资源的特点,高温地热资源主要用于发电。目前国内外对地热资源的利用技术主要有干蒸汽发电技术、地下热水发电技术、联合循环发电技术、干热岩地热发电技术等。

图4-57 地热流体利用图示(据Lindal, 1973)

1.干蒸汽发电技术

干蒸汽发电系统工艺简单,技术成熟,安全可靠,是高温地热田发电的主要形式。干蒸汽发电技术主要分为背压式汽轮机发电技术和凝汽式汽轮机发电技术。

背压式汽轮机发电技术是把干蒸汽从蒸汽井中引出,先加以净化,经过分离器分离出所含的固体杂质,然后使蒸汽推动汽轮发电机组发电,排汽放空或者送热给用户。大多用于地热蒸汽中不凝结气体含量很高的场合,或者综合利用于工农业生产和生活用水。

凝汽式汽轮机发电技术为了提高地热电站的机组输出功率和发电效率,做功后的蒸汽通常排入混合式凝汽器,冷却后再排出。在该系统中,蒸汽在汽轮机中能膨胀到很低的压力,所以能做出更多的功,该系统结构简单,适用于高温(160℃以上)地热田的发电。

2.地下热水发电技术

闪蒸蒸汽发电是将地热井口引来的地热水先送到闪蒸器中进行降压闪蒸,使其产生部分蒸汽,再引到常规汽轮机做功发电。汽轮机排出的蒸汽在混合式凝汽器内冷凝成水,送往冷却塔。分离器中剩下的含盐水排入环境或打入地下,或引入作为第二级低压闪蒸分离器中,分离出低压蒸汽引入汽轮机的中部某一级膨胀做功。这种电站设备简单,易于制造,可以采用混合式热交换器。缺点是设备尺寸大,容易腐蚀结垢,热效率较低。由于是直接以地下热蒸汽为工质,因而对于地下热水的温度、矿化度以及不凝气体含量等有较高的要求。

中间介质法地热发电是通过热交换器,利用地下热水来加热某种低沸点的工质,使之变为蒸汽,然后以此蒸汽推动汽轮机并带动发电机发电。在这种发电系统中采用两种流体,一种是以地热流体作热源,它在蒸汽发生器中被冷却后排入环境或打入地下;另一种是以低沸点工质流体作为工作介质(如氟利昂、异戊烷、异丁烷、正丁烷、氯丁烷等)。这种工质在蒸汽发生器内由于吸收了地热水放出的热量而汽化,产生的低沸点工质蒸汽送入汽轮机发电机组发电。做完功后的蒸汽由汽轮机排出,并在冷凝器中冷凝成液体,然后经循环泵打回蒸汽发生器再循环工作。

3.联合循环发电技术

联合循环发电技术就是将蒸汽发电和地热水发电两种系统合二为一,它最大的优点就是适用于高于150℃的高温地热流体发电,经过一次发电后的流体,在不低于120℃的工况下,再进入双工质发电系统,进行二次做功,充分利用了地热流体的热能,既提高了发电效率,又将经过一次发电后的排放尾水进行再利用,大大节约了资源。该系统从生产井到发电,再到最后回灌到热储,整个过程都是在全封闭系统中运行的,因此,即使是矿化程度很高的热卤水也可以用来发电,且不存在对环境的污染。同时,由于系统是全封闭的,即使在地热电站中也没有刺鼻的硫化氢味道,因而是100%的环保型地热系统。这种地热发电系统采用100%的地热水回灌,从而延长了地热田的使用寿命。

4.干热岩地热发电技术

干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。

开发干热岩资源的原理是从地表往干热岩中打一眼井(注入井),封闭井孔后向井中高压注入温度较低的水,产生了非常高的压力。在岩体致密无裂隙的情况下,高压水会使岩体大致垂直最小地应力的方向产生许多裂缝。若岩体中本来就有少量天然节理,这些高压水使之扩充成更大的裂缝。当然,这些裂缝的方向要受地应力系统的影响。随着低温水的不断注入,裂缝不断增加、扩大,并相互连通,最终形成一个大致呈面状的人工干热岩热储构造。在距注入井合理的位置处钻几口井并贯通人工热储构造,这些井用来回收高温水、汽,称之为生产井。注入的水沿着裂隙运动并与周边的岩石发生热交换,产生了温度高达200~300℃的高温高压水或水汽混合物。从贯通人工热储构造的生产井中提取高温蒸汽,用于地热发电和综合利用。利用之后的温水又通过注入井回灌到干热岩中,从而达到循环利用的目的。

(二)中低温地热资源

中低温地热资源可用于居民与工厂直接供热。这些热储通常含承压的地下热水。这些热水被带到地面,那里有一个热交换器将地热能转换成另外一种液体。接着冷却的地热能液体通过回注井被泵入回地下。被加热的液体主要是用于循环供暖、温室和水产养殖业。

地下热水用来采暖,不仅节约燃料,还可避免环境污染。地下热水可用于轻纺工业,不仅可以满足特殊工艺的需要,还可以提高产品的质量,节约大量煤炭、电力和软化水用食盐。地下热水有时还含有某些特殊的微量组分或气体成分以及少量的放射性物质,在一些热矿泉附近还常常积有矿泉泥,它们对人体的生理机能有益或有一定医疗作用。因地制宜地将地下热水用于建设温室繁育良种、养鱼、灌溉农田、繁殖饲料和绿肥,发展农村生产和经济,为农林牧副渔业服务,有十分重要的意义(图4-58)。

(三)地热资源梯度利用

地热资源开发存在热能利用率较低、资源浪费大等问题,直接利用方式具有50%~70%的热利用效率,而地热发电仅为5%~20%,剩余的热能则伴随地热水回灌到地下或者直接排放到自然环境中,不但浪费资源而且造成热污染,如何高效综合利用地热资源已成为国内外关注的热点。

图4-58 地热在室内供暖中的应用

(据意大利比萨地质及地球研究所,2004)

地热资源梯度利用是指结合地区需求,根据地热流体不同温度进行地热逐级利用。高温地热水首先用来发电,之后被用作工业烘干、农业育秧养殖、建筑供暖等,最后较低温度地热水用来洗浴。经过一系列的利用,尾水达到20℃左右,这样就最大程度地利用了地热资源,因此梯度利用技术拥有广阔的前景(图4-60)。

五、地热资源的发展

(一)地热资源发展存在的问题

1.可持续发展问题

随着地热资源利用领域的拓宽和社会需求的增加,地热资源给人们的生活带来越来越多的好处,但是人们对地热资源的综合利用价值和产业化开发利用的意义认识不足,将地热混同于一般的矿产资源或水资源。一些地热资源丰富的地区未能建立有自己特点的地热产业,使宝贵的地热资源开发停留在低层次、低效益的水平上,且资源浪费现象严重,相当一部分地区天然的温泉没有充分利用,被白白浪费;一些开发商对地热资源的特点认识不清,造成地热资源得不到合理开发和有效保护。

地热资源是在特定的地质、构造、水文地质条件和水文地球化学环境条件下形成的,由于埋藏深,补给途径远,再生能力弱,其资源量是有限的,并非取之不竭。要保持其资源的长期连续稳定开采,应做到有计划合理开发利用,并防止盲目无序随意开采造成资源浪费和环境地质问题的发生,否则就会造成资源的快速枯竭。

为实现可持续开发利用的目的,在开发中,要采取行之有效的措施,建立资源利用中心的高教低耗体系,要积极推广应用高新技术与设施,提高地热开发的科技含量,发展节约型、效益型的开发利用模式,努力提高地热利用率,减少资源浪费,使地热创造更高的社会、环境、经济效益。

图4-59 地热资源的梯度利用(据意大利比萨地质及地球研究所,2004)

2.环境保护问题

地热资源的开发利用可能产生的环境问题是多方面的,主要有水污染、热污染、空气污染、土壤污染、地面沉降等。

(1)地热开发利用过程中,必然向大气和水体排放大量的热量,造成周围的空气或水体温度上升,影响了周围环境和生物的存活生长,破坏了水体的生态平衡。

(2)地热资源的开发利用过程中,热流体中所含的各种有害气体和悬浮物将排入大气中,造成空气污染。

(3)含盐量较高的地热水排入农田将侵蚀土地、破坏植被,会造成严重的土壤板结和盐碱化,同时地热水中不同程度地含有氧、铀及钍等放射性元素,对人体健康有不同程度的危害。

(4)长期地热流体开采而不回灌,将导致地面的沉降和水平位移。

所以,地热开发利用过程中引起的环境问题是不容忽视的,只要正确认识这些问题,给予必要的重视,且积极、认真地研究,采取各种有效的技术措施,严格监测和防治,是可以解决和控制的。

(二)地热资源发展前景

随着传统不可再生能源应用危机显现,寻求新的能源成为缓解能源危机的重要措施。地下储藏的地热能是巨大的(表4-8)。

表4-8 全球范围内的地热潜力表(据国际地热协会,2001)

随着地热资源应用,地热产业规模化发展与地热能源的梯级应用成为其发展的主要趋势。推动地热产业规模化,有助于提高地热能源应用效率;通过梯度应用形式,可以实现最大限度的地热能源应用,减少环境污染问题。

在2010年世界地热大会中,提出了增强型地热系统,推动增强型地热系统。实现地热资源循环应用成为地热资源发展的重要趋势。增强型地热系统又被称为干热岩地热,其原理为:由地表面向干热岩打井眼,封闭井孔后向井内注入温度较低的水,高压水让岩体产生较多裂缝,随着低温水增加,裂缝逐渐发展并扩大,最终形成一个大型人工干热储结构,采取这种方式实现热循环应用。此外,浅层地热能的存在较为普遍,加强浅层地热能开发,实现规模化浅层地热能应用,具有广阔的发展前景,如我国北方大部分城镇在冬季需要供暖,供暖天数在120天以上,煤炭消耗量巨大,通过开发浅层地热能,可以有效降低煤炭应用量,实现综合效益。

现实的金针菇
繁荣的画笔
2025-07-21 14:16:22
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。\x0d\x0a据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。\x0d\x0a联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。\x0d\x0a一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。\x0d\x0a新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

含蓄的犀牛
开朗的冬日
2025-07-21 14:16:22
地热

地热能是蕴藏在地球内部的热能,是一种清洁低碳、分布广泛、资源丰富、安全优质的可再生能源,通常分为浅层地热能、水热型地热能、干热岩型地热能。地热能开发利用具有供能持续稳定、高效循环利用、可再生的特点,可减少温室气体排放,改善生态环境,在未来清洁能源发展中占有重要地位。

地热能的用途包括发电、建筑物供暖、洗浴疗养、种植养殖、烘焙等。其中150℃以上的高温地热主要用于发电,发电后排出的热水可进行梯级利用;90℃~150℃的中温和25℃~90℃的低温地热以直接利用为主,多用于工业、种植、养殖、供暖制冷、旅游疗养等方面;25℃以下的浅层地温,可利用地源和水源热泵供暖、制冷。

目前,我国地热能利用呈现出浅层地热能利用快速发展、水热型地热能利用持续增长、地热能勘探开发利用装备较快发展的趋势。值得注意的是,我国的干热岩型地热能资源勘查开发尚处于起步阶段。干热岩地热能是未来地热能发展的重要领域。

海 洋 能

海洋能是一种蕴藏在海洋中的可再生能源,包括潮汐能、波浪引起的机械能和热能。海洋能同时也涉及一个更广的范畴,包括海面上空的风能、海水表面的太阳能和海里的生物质能。

我国拥有18000公里的海岸线和总面积达6700平方公里的6960座岛屿。这些岛屿大多远离陆地,因而缺少能源供应。因此要实现我国海岸和海岛经济的可持续发展,必须大力发展我国的海洋能资源。

潮汐能指在涨潮和落潮过程中产生的势能。潮汐能的强度和潮头数量和落差有关。通常潮头落差大于3米的潮汐就具有产能利用价值。潮汐能主要用于发电。

浪能指蕴藏在海面波浪中的动能和势能。浪能主要用于发电,同时也可以用于输送和抽运水、供暖、海水脱盐和制造氢气。

海洋热能指由于海洋表层水体和深层水体温度差引起的热能。除了发电,海洋热能还可以用于海水脱盐等。

煤 层 气

煤层气,俗称“瓦斯”、煤层甲烷,指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源。加快煤层气(煤矿瓦斯)开发利用,对保障煤矿安全生产、增加清洁能源供应、减少温室气体排放具有重要意义。

通常,煤矿瓦斯抽采浓度高于8%的瓦斯,可用于发电、民用或工业生产。煤层气热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13千克汽油、1.21千克标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后几乎不产生任何废气,是很好的化工原料、发电和居民生活燃料。

从世界范围来看,全球埋深浅于2000米的煤层气资源约为240万亿立方米。据统计,我国煤层气地质资源量位居世界第三,居于俄罗斯、美国之后,占世界煤层气总量的12%。

当前,煤层气清洁高效利用的形式比较多,但常见的有瓦斯发电、工业用气、集中供热、机械动力、汽车动力、家庭炊事等。简而言之,凡是用天然气的地方,都可以用煤层气作为替代。

陶醉的大船
悦耳的网络
2025-07-21 14:16:22

地热能利用技术分析

地热能是指蕴藏在地壳中能够为人类经济地开发利用的热资源。地热能可分为浅层地温能、常规地热能和干热岩地热能。那么,下面是我为大家整理的地热能利用技术分析,欢迎大家阅读浏览。

一、地热能的概念和优点

第一,地热能的基本概念

地热能是指蕴藏在地壳中能够为人类经济地开发利用的热资源。地热能可分为浅层地温能、常规地热能和干热岩地热能。200米以浅的称为浅层地温能,200米至3000米的称为常规地热能,3000米至10000米的称为干热岩地热能。常规地热能的高温部分和干热岩资源供地热发电利用,常规地热能的低温部分和浅层地温能用作供暖和其他热利用。

第二,地热能的主要优点与其他可再生能源比较

地热能利用的优点是其利用系数最大。中国科学院院士汪集旸指出,地热发电利用系数是0.73,平均一年工作6400小时以上,生物质、水力、潮汐、风力发电和太阳能发电的利用系数分别是0.52、0.42、0.23、0.21和0.14,在同样装机容量下,地热能发电年发电量是风力发电的3.5倍,是太阳能发电的5倍。

二、我国地热能分布及重庆地热资源状况

第一,我国地热能分布

我国是以中低温为主的地热资源大国,全国地热资源潜力接近全球的8%。据国土资源部初步评价,我国浅层地热能资源量相当于95亿吨标准煤,年可利用量约3.5亿吨标准煤常规地热能资源量相当于8530亿吨标准煤,年可利用量约6.4亿吨标准煤干热岩地热能理论资源量相当于860万亿吨标准煤,约为2013年全国能源消费总量的20多万倍。高温(>150℃)对流型地热资源,主要分布在西藏、腾冲现代火山区及台湾地区中温(90~150℃)、低温(<90℃)对流型地热资源,主要分布在沿海一带如广东、福建、海南等省区中低温传导型地热资源,分布在华北、松辽、四川、鄂尔多斯等地的大中型沉积盆地之中。

第二,重庆市地热资源

根据《重庆市地热资源总体规划报告》,全重庆市地热资源总量为3.3×1017千焦,可采水量约为4.64亿立方米/年(约127万立方米/天)。

重庆市浅层地温能资源150米以浅的可利用资源量约为1.26亿千瓦,100米以浅的可利用资源量约为0.77亿千瓦涪陵区、黔江区、万州区、一小时经济圈150米以浅的可利用资源量分别约为7.33万千瓦、221万千瓦、881万千瓦、7220万千瓦涪陵区、黔江区、万州区、一小时经济圈100米以浅的可利用资源量分别约为472万千瓦、142万千瓦、567万千瓦、4640万千瓦。

重庆市钻孔深度取150米则地埋管地源热泵能满足制冷面积约为12.6亿平方米建筑的空调冷负荷,钻孔深度取100米则地埋管地源热菜能满足制冷面积约为7.7亿平方米建筑的空调冷负荷。涪陵区、黔江区、万州区、一小时经济圈150米以浅的可利用资源量分别能满足制冷面积约为7340万平方米、2210万平方米、8810万平方米、7.22亿平方米建筑的空调冷负荷涪陵区、黔江区、万州区、一小时经济圈100米以浅的可利用资源量分别能满足制冷面积约为4710万平方米、1420万平方米、5670平方米、4.64亿平方米建筑的`空调冷负荷。

三、地热能利用途径

地热能利用分为地热发电和地热直接利用两种途径。

第一,地热发电

地热发电是利用地下热水和蒸汽为动力源,把热能在汽轮机中转变为机械能,带动发电机发电的发电技术,适用于高温地热资源的开发利用,可分为蒸汽型和热水型地热发电两大类。

其一,蒸汽型地热发电

蒸汽型地热发电主要应用在温度高于150摄氏度的干热岩资源地热田,把蒸汽田中的干蒸汽直接引入汽轮发电机组发电,发电方式简单。干蒸汽地热资源较少,且多存于较深的地层,开采难度大,发展受到限制。

其二,热水型地热发电

热水型地热发电主要利用高温热水,温度范围为150摄氏度-100摄氏度,主要有闪蒸地热发电和中间介质法地热发电两种方式。闪蒸地热发电是将高温高压热水抽至地面,部分热水会沸腾并“闪蒸”成蒸汽,蒸汽送至汽轮机做功中间介质法地热发电就是通过热交换器利用热水来加热某种低沸点的工质,使之变为蒸汽,推动气轮机做功发电,该种发电方式能有效利用中低温地热资源,适合温度为低于100摄氏度的地热资源发电。

重庆市地热资源主要以热水型中低温为地热资源主,地下数百米至三千余米的地热水温基本在25至62摄氏度,重庆市推广地热发电还有待相关技术的进一步成熟和投资成本的下降。

第二,地热能直接利用

主要是用于工业加工、建筑采暖制冷、农业温室、农田灌溉、洗浴医疗、旅游等领域。

其一,建筑物采暖制冷。主要是利用地源热泵技术,将土壤、地表或者地下水体中的热量进行转换,供建筑物采暖制冷。如重庆大剧院采用江水源热泵机组,以嘉陵江水作为热源和冷源,实现全年替代常规能源量1502吨标煤,年减排二氧化碳3710吨、二氧化硫30吨、粉尘15吨,年节约运行费用152万元,具有较好的节能效益。

其二,地热能农用技术。主要集中在地热温室种植和水产养殖方面,地热灌溉、地热孵化禽类、地热烘干蔬菜、地热加温沼气池等也在发展之中。

其三,地热能医疗利用技术。地热流体温度较高、含有特殊的化学与其他成分、生物活性离子及放射性物质,对人体器官功能具有医疗、调节作用,可利用地热进行水疗、气疗和泥疗。

其四,地热用于旅游娱乐。温泉与旅游相结合,是我国地热利用发展较快的领域。

四、重庆市地热资源利用状况及问题

第一,利用现状

重庆市地热利用以温泉旅游、地源热泵利用为主。2015年,全市已运营温泉旅游项目33个,预计温泉游客接待量将达2500万人次,地热水开采利用相当节约标准煤8万吨左右,减排二氧化碳、二氧化硫、氮氧化物和悬浮质粉尘分别为23万吨、1600吨、570吨和770吨,节省燃料成本近4000万元,节省治理费用1700万元。

2011年至2015年全市建筑中热泵系统应用面积达到380万平方米,其中水源热泵系统应用面积达到300万平方米,地源热泵系统应用面积达到80万平方米。

第二,存在的问题

其一,投资成本较高。重庆地区地下岩石多,且成片,钻井费用高,目前地热利用工程的投资较大。

其二,老城区建设密度大,地下管网分布复杂,对老城区的空调进行热泵技术改造,施工难度较大,技术要求高。

其三,重庆市地热资源开发利用的基础工作有待加强。一是全市统一的地热资源信息系统需要建立二是需要政府出台地源热泵资源开采区规划及指导意见。

五、相关政策介绍

第一,《关于促进地热能开发利用的指导意见(国能新能〔2013〕48号)》提出,到2015年,全国地热供暖面积达到5亿平方米,地热发电装机容量达到10万千瓦,地热能年利用量达到2000万吨标准煤,到2020年,地热能开发利用量达到5000万吨标准煤中央财政重点支持地热能资源勘查与评估、地热能供热制冷项目、发电和综合利用示范项目按照可再生能源电价附加政策要求,对地热发电商业化运行项目给予电价补贴政策。

第二,《重庆市地热资源管理办法(重庆市人民政府令第256号)》规定,地热资源探矿权、采矿权及其配套开发的经营性土地使用权,应按照国家有关规定通过招标、拍卖或者挂牌方式出让开采地热资源应当依法缴纳采矿权使用费、采矿权价款、矿产资源补偿费和资源税地热资源实行限量开采。

第三,《重庆市可再生能源建筑应用示范工程专项补助资金管理暂行办法(渝财建[2007]427号)》规定,对利用可再生能源热泵机组的空调,按机组额定制冷量每千瓦补贴800元对利用可再生能源提供生活热水的高温热泵机组,按机组额定制热量每千瓦补贴900元。