建材秒知道
登录
建材号 > 能源科技 > 正文

中华人民共和国可再生能源法

落寞的哈密瓜
聪明的背包
2023-02-11 01:58:52

中华人民共和国可再生能源法

最佳答案
可爱的小天鹅
健康的抽屉
2025-07-25 11:28:06

第一章 总则第一条 为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,制定本法。第二条 本法所称可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。

水力发电对本法的适用,由国务院能源主管部门规定,报国务院批准。

通过低效率炉灶直接燃烧方式利用秸秆、薪柴、粪便等,不适用本法。第三条 本法适用于中华人民共和国领域和管辖的其他海域。第四条 国家将可再生能源的开发利用列为能源发展的优先领域,通过制定可再生能源开发利用总量目标和采取相应措施,推动可再生能源市场的建立和发展。

国家鼓励各种所有制经济主体参与可再生能源的开发利用,依法保护可再生能源开发利用者的合法权益。第五条 国务院能源主管部门对全国可再生能源的开发利用实施统一管理。国务院有关部门在各自的职责范围内负责有关的可再生能源开发利用管理工作。

县级以上地方人民政府管理能源工作的部门负责本行政区域内可再生能源开发利用的管理工作。县级以上地方人民政府有关部门在各自的职责范围内负责有关的可再生能源开发利用管理工作。第二章 资源调查与发展规划第六条 国务院能源主管部门负责组织和协调全国可再生能源资源的调查,并会同国务院有关部门组织制定资源调查的技术规范。

国务院有关部门在各自的职责范围内负责相关可再生能源资源的调查,调查结果报国务院能源主管部门汇总。

可再生能源资源的调查结果应当公布;但是,国家规定需要保密的内容除外。第七条 国务院能源主管部门根据全国能源需求与可再生能源资源实际状况,制定全国可再生能源开发利用中长期总量目标,报国务院批准后执行,并予公布。

国务院能源主管部门根据前款规定的总量目标和省、自治区、直辖市经济发展与可再生能源资源实际状况,会同省、自治区、直辖市人民政府确定各行政区域可再生能源开发利用中长期目标,并予公布。第八条 国务院能源主管部门根据全国可再生能源开发利用中长期总量目标,会同国务院有关部门,编制全国可再生能源开发利用规划,报国务院批准后实施。

省、自治区、直辖市人民政府管理能源工作的部门根据本行政区域可再生能源开发利用中长期目标,会同本级人民政府有关部门编制本行政区域可再生能源开发利用规划,报本级人民政府批准后实施。

经批准的规划应当公布;但是,国家规定需要保密的内容除外。

经批准的规划需要修改的,须经原批准机关批准。第九条 编制可再生能源开发利用规划,应当征求有关单位、专家和公众的意见,进行科学论证。第三章 产业指导与技术支持第十条 国务院能源主管部门根据全国可再生能源开发利用规划,制定、公布可再生能源产业发展指导目录。第十一条 国务院标准化行政主管部门应当制定、公布国家可再生能源电力的并网技术标准和其他需要在全国范围内统一技术要求的有关可再生能源技术和产品的国家标准。

对前款规定的国家标准中未作规定的技术要求,国务院有关部门可以制定相关的行业标准,并报国务院标准化行政主管部门备案。第十二条 国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域,纳入国家科技发展规划和高技术产业发展规划,并安排资金支持可再生能源开发利用的科学技术研究、应用示范和产业化发展,促进可再生能源开发利用的技术进步,降低可再生能源产品的生产成本,提高产品质量。

国务院教育行政部门应当将可再生能源知识和技术纳入普通教育、职业教育课程。第四章 推广与应用第十三条 国家鼓励和支持可再生能源并网发电。

建设可再生能源并网发电项目,应当依照法律和国务院的规定取得行政许可或者报送备案。

建设应当取得行政许可的可再生能源并网发电项目,有多人申请同一项目许可的,应当依法通过招标确定被许可人。第十四条 电网企业应当与依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内可再生能源并网发电项目的上网电量,并为可再生能源发电提供上网服务。第十五条 国家扶持在电网未覆盖的地区建设可再生能源独立电力系统,为当地生产和生活提供电力服务。

最新回答
老迟到的黄蜂
俏皮的钢笔
2025-07-25 11:28:06

工程院的减排路线图不仅可行,而且还可以说是最大程度保护了现有企业利益的情况下可达到的最低目标。而研究所的研究结论,也具有可行性,因为它们非常了解具体国情的专门能源研究机构。

在此基础上,我们水电的专业人士却可以发现,能源研究机构对于我国水电的减排作用,挖掘的还不够充分。我们认为:水电在未来的我国发电总量中的比重,决不应该仅占12%,而是要远高于目前的18%,甚至可以达到20%以上。

如果我们能够证明:我国的水电在未来发电能源中的比重,可以达到20%,那么能源研究所已有的预测结论,是不是就可以修正为:到2050年我国的“风电占比50%,太阳能占到23%,水电占到20%,核电6%和火电0%。”了呢?

进而我们可以发现2050年我国实现100%非化石能源发电的问题,基本上不必担心。因为,能源研究所的减排路线图是“风电占比50%,太阳能占到23%”,再加上我国巨大的水电潜力,完全可以“用更多的水电,取代火电”。

由于世界第三级青藏高原的存在,我国水电资源非常丰富,绝对是世界第一。目前,我国水电的装机(3.56亿千瓦)和年发电量(1.3万亿千瓦时)基本都占到了全球的四分之一以上,我国水电与世界第二之间的差距,至少都在3倍以上。

然而,目前 社会 上很多人(甚至包括一些研究能源问题的专家)都认为我国水电可开发潜力已经所剩无几了。这是因为,直到世纪之交,我国正式公布的水电可开发资源量也不过只有1.7万亿度/年。2006年的水电资源普查之后,更正后公布的数字为2.47万亿。几年之后,2016年的十三五规划就上升到了3万亿。

水电资源勘测的这种复杂性、困难性,往往使得可开发的资源量上升的空间很大。即便我们以十三五规划正式颁布的比较保守的3万亿/年来计算,我国目前(截至到2019年底)所开发利用的水电资源还不到44%。

如果我们能达到目前发达国家水电开发的(大约70%到90%的)平均水平,那么未来我国的水电,至少还有一半以上的开发潜力。初步估算,届时我国水电至少每年可以提供2.6万亿度的电能。

这个电量对我国能源的作用有多大?假设我国的用电达到峰值的时候,按照14亿人口,每人每年8000度电的需求,大约也就是每年11.2万亿度电。(目前我国各种用电峰值的研究预测,最高的也不过就是12万亿度左右)。

也就是说我国的水电(2.6万亿度的年发电量)将可以在未来我国用电最高峰的电力构成中,至少应该能提供20%以上的电能,远高于目前的18%。总之,我国的资源禀赋显示:未来我国水电所能发挥的作用,不仅不会比目前少,而且还要有所上升。

除了丰富的资源量,中国领先世界的水电技术也成为资源开发的坚实基础。

2004年,我国水电总装机容量突破1亿kW,超越美国成为世界第一。虽然我国的水能资源极为丰富,但我国水电开发建设的任务极其艰巨、繁重,因此我国水电开发的过程中所遭遇到的困难,所需要解决的难题,也几乎是前所未有的。

可以说,从我国改革开放加速水电开发建设时候起,我国的水电就已经开始了向世界水电 科技 制高点的攀登。目前,世界上最大的水电站是我国的三峡;最高的碾压混凝土坝(203m)是我国的黄登水电站;世界上最高的混凝土面板堆石坝(233m)是我国的水布垭水电站;最高的双曲拱坝(305m)是我国的锦屏一级水电站。我国正在建设的双江口水电站的堆石坝,高度将达到312m,建成后将成为全世界第一的高坝,刷新所有的世界纪录。

建设这些世界之最的水电站大坝,需要一系列尖端的工程技术支撑。可以说在所有这些工程技术方面,我国都已经走在了世界前列。在水电机组制造方面,目前不仅世界上单机容量70万kW的水轮发电机组绝大部分都安装在中国,而且单机容量达到80万kW和100万kW的水轮发电机组,也只有中国才有。

这种结合了现代 科技 的水电开发技术,使得我国的水电开发能力不断增强,可开发的资源量也不断的在扩展。加上我国现有的远距离、超高压、特高压输电技术,理论上我们的水电开发已经没有制约性的技术障碍。

总之,今天我国的水电已经是当之无愧的世界第一。无论从规模、效益、成就,还是从规划、设计、施工建设、装备制造水平上,都已经是绝对的世界领先。一般人可能想象不到,中国水电领先世界的程度,其实远超经常宣传的高铁、核电等行业。我国的高铁、核电等技术虽然已经非常先进,但是在国际市场上还是有竞争对手的。但是在水利水电领域的国际招标中,目前几乎所有具备实力的竞争者都是中国的公司。我国这种全行业的绝对领先,在我国 历史 上是否能绝后我们不知道,但肯定是空前的。

发达国家的水电开发程度,为何普遍都在70%到90%多,平均也有80%以上呢?其实,发达国家他们当年在开发水电的时候,国际上还没有什么碳减排的要求。然而,他们的水电,之所以都要开发到较高的程度的根本原因,主要在于 社会 现代化文明的发展,特别需要通过水电的开发来解决调控水资源的问题。

例如,美国著名的胡佛大坝、田纳西流域梯级水电开发的主要原动力,其实都是 社会 发展需要有效的调控水资源。所以,这些国家在满足了水资源的调控需求之后,往往就不再去进一步开发其它水电资源了。

而一些想靠开发水电解决能源问题的国家的水电开发程度,则普遍会更高些。例如:法国、瑞士等国的水电开发利用程度都超过了95%。总之,无论是哪种情况,国际 社会 的普遍经验说明,如果一个国家水电开发程度低于70%的话,那么这个国家的水资源调控问题,很难解决好。

因为,一个国家的水电开发程度往往都与水资源的开发程度成正比。所以,水电开发如果不能达到一定的程度,这个国家的水资源问题肯定也解决不好。目前,由于我国水电开发程度还不足44%,因此,我国的水资源调控的矛盾也就十分突出。

我国的国土面积和水资源总量都与美国差不多,但是,我国目前的水库蓄水总量只有9千多亿立方米,而美国是13.5万亿。我们大约还需要增加50%的水库总库容,才能达到美国那样的水资源调控水平。

然而,美国的人口还只是我国的1/5左右。也就是说,如果我们不能超过美国的水电开发程度的话,我国的水资源调控矛盾,绝对是无法解决好的。

总之,我们也可以这样说,即使我国不再需要用水电提供能源,但为了调控水资源我们也必须要把我国的水电开发程度提高到80%以上才行。否则,水资源的调控矛盾解决不好,我们建成小康 社会 的目标将难以实现。更何况目前我们还面临着巨大的减排压力,实现能源革命电力转型,最终兑现巴黎协定的减排承诺,已经迫在眉睫。

根据我国发改委能源研究所和国家可再生能源中心所发布的《我国2050高比例可再生能源发展情景暨路经研究》报告的预测结论:到2050年我国风电和太阳能发电的装机分别可达到24亿和27亿千瓦。

按照可能的年运行小时(风电2200多,太阳能1400多)估算。届时我国的风电大约每年可提供5万多亿度电能,太阳能也能提供接近4万亿度。有了这9万多亿的电能,再加上水电的2.6万亿,就已经超过了我国用电最高峰时的峰值11.2万亿度。

更何况届时我们还要有2亿多千瓦的生物质能可以发挥作用。也就是说,即使我们完全不考虑核电的作用,我国未来也可以用100%可再生能源的发电,来满足我国全部的用电需求。

不仅如此,水电还能够肩负起非水可再生能源发电调峰的重任。

众所周知,水电的可调节性肯定要比火电、核电都要好得多。所以,如果能源研究所的减排路线图切实可行,不存在解决不了的调峰矛盾,那么我们用水电替代其中火电的方案当然就更不会有问题了。

此外,我们还应该注意到:目前,尽管化学储能的技术无论从技术上还是成本上,确实都还难以满足商业化的要求,但是国内外的研究机构,为什么都还敢断言说2050年全球就实现100%的由可再生能源供电,无论在技术上还是经济上都是可行的呢?

笔者认为,其最重要的原因之一就在于可再生能源家族中含有功能特殊的水电。水电是最优质的可再生能源,可以为风、光等可再生能源的大量入网,提供重要的保障作用。目前,世界上所有能够实现百分之百由可再生能源供电的国家,基本上都离不开水电的有效调节。

大家知道,挪威因为水能资源丰富,一直都依靠水电保障全国99%以上的用电需求。今年年初,葡萄牙也完成了一个多月完全由可再生能源供电的成功尝试。葡萄牙高达52%的水电比重就是重要的支撑。

就连宣布了退出巴黎协定的美国的总统特朗普,在考察挪威,发现了水电的重要作用之后,也曾经表示过,他有可能会通过开发美国水电的潜力,重新考虑加入巴黎协定。这其实就是水电在未来的高比例可再生能源体系中,具有特殊的重要作用的一种体现。

当然,我们也必须承认,世界上的水能资源本身(总量有限)确实不能满足人类的能源电力需求,但是,由于科学开发的水电有很好的调节型,可以为大量的风、光等可再生能源的入网提供保障。这样一来,水、风、光互补发电,情况就大不一样了。

在现实中,风、光发电的间歇性与水电的季节性之间,通常有很强的互补关系。例如,我国四川省的凉山州,通过水、风、光互补,2016年凉山州除了满足自己的用电需求之外,给我国东部地区的送电超过1300亿度(这大约相当于当年上海市用电量的70%)。如果,未来的送电通道建设能有保障,预计2020年凉山外送电量可达2000亿度。也就是说通过水、风、光的互补发电,凉山州一个州所产生的可再生能源,除了满足自己的需要之外,还可以满足一个像上海这样大城市的全部用电需求。

目前欧洲很多的国家之所以能达到较高比例的可再生能源,也是因为欧洲的水电开发程度经高。而我国目前之所以还不得不以煤炭发电为主的根本原因之一,也正是由于我国的水电开发程度还不够高,水电的调节性能难以得到充分的发挥。

此外,在化学储能技术没有出现重大突破之前,水电家族中抽水蓄能电站的重要作用也不能忽视。为了给电网调峰,日本的抽水蓄能装机规模早就超过常规水电。假设到2050年化学储能的技术,仍然不能出现重大的突破,我们大不了再多建一些抽水蓄能。事实上,我国大量梯级开发的水电站(以及一些散落在全国各地的小水电)很多只要稍加改造,加装上能抽水的泵,都可以改造成混合式的抽水蓄能电站。

总之,仅从发电量来分析,我国到2050年实现完全由可再生能源供电,应该是完全可行的。再加上水电这种资源和它所具有的某些优质特性,在2050年实现百分之百的由可再生能源供电,无论在技术上还是经济上都是可行的。

1. 水库移民

很长时期以来,移民问题一直都是水电开发的主要制约因素,但其实移民的难点并非是由水电开发造成的。现实中凡是需要大量移民的大型水库水电站,其实都是有着重要的水资源调控功能的多功能水电站。而这些电站的最主要作用,可能并不是发电,而是水资源的调控。

例如三峡工程的首要目标是防洪和供水,而不是发电。如果仅仅是为了发电,三峡可以分别建成一系列的径流式水电站,这样几乎可以不用移民而产生等量发电。

没有了任何防洪、供水等水资源调控功能的三峡工程无法解决我国长江灾害的心腹大患,当然不能考虑。然而上百万的移民成本,全都要靠一个水电站的发电效益来解决,几乎也是无解的开发难题。

我国通过建立三峡基金,先后投入了一千多亿元解决了我国三峡建设的投资难题。理论上相当于国家出资建设了三峡水库,企业投资建设了三峡大坝和发电站。

现在回过头来看,这是国家参与大型水电开发的最成功范例。三峡水电的上网电价只有0.26元/度,比火电的平均上网电价要低近0.1元。三峡的年发电量大约为1000亿,这样一算三峡除了每年给国家的上交的利税和效益之外,仅这种隐性的电价补偿,就接近100亿(相当于对三峡基金的一种回报)。也就是说,大约发电十几年之后,国家对于三峡水库的投资,就相当于完全收回了。

然而,三峡水库所创造的效益又有多大呢?

三峡防洪供水的巨大效益仅仅通过一次防止特大洪灾就足以让我们刮目相看。2012年三峡水库所拦蓄的洪水峰值,已经超过了1998年。1998年我国长江特大洪水所造成的经济损失大约是2000多亿,死亡1600余人。

由于我们有了三峡水库的拦蓄,面对更大的洪峰,我们不仅不再需要百万军民的严防死守,而且也不再有任何人员的伤亡。可以说三峡当年防洪错峰所避免的洪灾损失,就已经超过了国家对三峡水库投资的数倍。只不过水利工程的经济效益,往往都是公益性的,你可以计算出来,但却无法实际收取到。

大型水电站的水库移民困难,其实是一种公益性开发的矛盾。让某一个企业自己依靠发电效益去解决,往往是非常困难的事情。如果采用三峡这种的国家参与开发的模式,问题就变得非常简单,容易。

世界上各国的大型水电开发项目,基本上都是国家行为。例如美国的大型水电全部都要由联邦政府的所属机构投资开发,从不容许商业开发者参与。

电力市场化改革之后,我国很多优质的项目即使依靠开发企业的电费收益,也能解决好移民的投资。但大多数具有水资源调控功能的大型水库电站的建设,都应该是公益性的。尽管这些项目的移民投资收益,几乎可以说是一本万利的。如果交给企业进行商业化的开发,可能就难以运作。

例如我国目前还争议巨大的龙盘水电站建设需要移民10万余人。这个重要的大型调蓄水库电站所创造的水资源调蓄能力几乎可以达到200亿/年。虽然其防洪功能还比不上三峡,但其供水的能力甚至可以超过三峡。

如果因为某个企业没有能力依靠电费解决移民搬迁的费用,就耽误了龙盘水电站的开发建设。那么就相当于今后上千年,我国的长江中下游每年汛期要增加200亿立方米洪水的压力,同时枯期还要减少了200亿水资源的供应。

同样的问题还体现在龙滩水电站二期扩建上。如果因为移民的费用无法由电费担负,就停止了龙滩二期的开发。那么我国南方的珠江流域,每年将要增加上百亿洪水的压力,同时枯水期又将减少上百亿水资源的供应。

每年几百亿的水资源保障,才是我们水库移民问题的本质。我们需要跳出水电商业化开发中移民难的惯性思维,避免丧失了我国水资源开发的大好时机。

2. 生态环保

除了移民问题,生态环保也一直被认为是水电开发的巨大障碍。

对于水电破坏生态的偏见,曾有很多文章专门介绍过,这是当年美苏争霸政治斗争留下的后遗症。1996年在联合国的可持续发展峰会上,也曾经一度因为当时的水电生态问题的过度炒作,否定了大型水电的可再生能源地位。但随后在2002年的峰会上,大会又一致同意做出了更正,恢复了大型水电的可再生能源地位。为什么会这样?因为,水电尤其是大型水电是当前人类 社会 替代化石能源第一主力。

仔细分析不难发现:所有水电破坏生态的问题,几乎无一不是局部的、针对某一特定物种的某种炒作。而水电实实在在所解决的,却是人类 社会 最大的生态难题——过量的使用化石能源所造成的气候变化。

因此,只要站在人类 社会 可持续发展的高度,几乎没有人敢否认,开发水电才是当前最重要的生态建设。当年的联合国峰会就是因为考虑到了气候变化,而立即纠正了对水电的偏见和误导宣传。

受到国际 社会 对水电误解的影响,我国以往的环保部门和环保人士也一度对水电开发的生态环境问题耿耿于怀。但是,改组后的生态环保部,已经开始担负了防止气候变化的职责。

前不久美国马里兰大学和我国国家发改委能源研究共同颁布的中国煤电退役报告非常明确地指出:我国若要实现《巴黎气候协定》中2摄氏度的减排承诺(2100年达到净零排放),就必须在2050至2055年退役全部的传统煤电;如果要实现1.5摄氏度的减排承诺(本世纪下半叶实现净零排放),就必须在2040至2045年间退役所有的传统煤电。

解决火电的碳排放问题,几乎是世界各国公认的兑现《巴黎气候协定》的最大难点。目前,世界各国都普遍认为,要实现《巴黎气候协定》的零碳目标,火电尤其是煤电只有退役一条路。

在今后20年的时间内,退役我国全部的煤电,大量的风、光发电入网,没有一定量的水电调节保障,怎么可能支撑起电力系统的正常运行。

可以确信在不远的将来,只要我国真的要兑现巴黎协定,我们负责这项工作的生态环保部,肯定会和当年的联合国可持续发展峰会一样,从根本上转变对水电的态度。因为水电在能源革命中的地位和作用是无可替代的重要。

3. 开发成本

随着我国水电开发的深入和向西部转移,资源的开发难度以及输电的距离都在增加。因此导致大部分即将开发的水电项目,普遍存在着还贷期上网电价过高的难题。

西部水电开发成本高的问题,其实也不应该是真正的发展障碍。由于目前企业投资核算的周期,最长也不能超过30年,所以我国西部深山中待开发的水电项目,几乎都存在着初期上网电价难以接受的难题。然而,只要还贷期一过,水电站的发电成本马上又变得非常低。

当前所谓西部水电开发的高成本障碍,其实只是一个算账方法的规则问题。这对于具体开发企业,虽然是无法逾越的难题,但对于一个国家来说,从政策上解决这种矛盾,应该说是轻而易举的简单。

从全生命周期来看,水电几乎是最经济的能源。目前,不仅我国的水电上网电价平均比火电低很多,而且全世界各国的电价,几乎都是水电多的国家的电价都比较低。

除此之外,随着 社会 的进步,很多发达国家都已经进入低利率甚至负利率的时代。而我们目前水电投资,还都是要以高达6%左右的贷款利率计算成本。可见,西部水电开发的高成本,其实只是形式上的、暂时的。而实质上,水电才是我们人类 社会 最经济的电力来源之一。

在新一轮的西部大开发中,如果我们仅仅因为资本收益的计算,不利于投资者的短期回报,而丧失了为 社会 提供最优质、最经济的电力的大好机遇,那无疑将是我们的巨大失误。总之,我们的 社会 主义市场经济应该更有利于保障 社会 的整体和长远利益,因此,通过建立专项基金或者利用财税手段,解决这类矛盾并非难事。

如上文所述,我国水电在新时期高质量的发展,不仅切实可行,而且还可以说是我国经济和 社会 可持续发展的必由之路。然而,当前由于我国 社会 舆论对能源电力转型的认识不到位,煤电退出 历史 舞台的问题,至今还没有被摆上议事日程。因此,目前我国严重的电力产能过剩,所导致的水电弃水的难题,依然制约着当前水电的发展。

这种状况只能是暂时的。一旦我们整个 社会 意识到以煤电的退出和可再生能源的大发展为标志的能源革命电力转型,是我国实现小康 社会 并兑现巴黎协定承诺的基本前提,电力转型的情况随时都可能会发生大变。水电作为我国可再生能源大发展的基础和保障,时刻要为这一天做好准备。总之,水电的特性就决定了,我国水电的高质量发展一定要和我国 社会 的进步和可持续发展同呼吸、共命运。

舒服的时光
纯情的芝麻
2025-07-25 11:28:06

风力发电属于可再生能源的一种。风能是可再生能源,同时也属于清洁能源。通过风能发电不仅可以减少能源的消耗,同时也会减少发电过程对环境的污染。

风能,作为无污染的可再生能源之一,的确具有巨大的发展潜力。与传统的煤炭发电相比,风力涡轮发电拥有许多优势,例如,风力发电减少了化石燃料的消耗并能减少电力输送环节的损耗,增强大型电网的独立性和弹性。

但是,风力本身所具有的间歇性、随机性和不可控性也给风电的运营造成了一定的困难:风速的不确定性导致了输出功率的不确定,从而难以进行风力发电量的预测、控制和调度。此外,电价波动、电网需求和风机的异步性,也对风机的启停规划造成很大的影响。

因此,风电厂调度研究目前面临的主要问题就是如何制定合理的长短期规划,提高风电分配、调度的效率,管理风力不确定性带来的风险。

建置

建置风力发电厂除了需要丰沛的风能与足够的资金外,还需要注意建置地点、土地的取得、维修的便利度、风力发电机的高度(对飞航安全可能造成威胁)、与供电区域的距离与法令等相关问题的产生。风力发电厂并不会产生废热,亦没有温室气体的问题,只需稳定风力即可顺利发电。

一般来说,平均风速较小(小于3m/s)的地区,因缺乏经济效益,较不适合设置风力发电厂。

由于风遇障碍物时会消耗其能量,所以风力发电厂最好设置在开阔区域以增加能量转换效率,此外,风向的稳定性亦十分重要,除可增加风能的取得外,更能延长风机的寿命。

凶狠的山水
体贴的蜻蜓
2025-07-25 11:28:06
风能概况

风能 英文名称:wind energy 定义1:近地层风产生的动能。 所属学科:大气科学(一级学科);应用气象学(二级学科) 定义2:空气流动所具有的能量。 所属学科:电力(一级学科);可再生能源(二级学科) 定义3:地球表面空气流动所形成的动能。风能是太阳能的一种转化形式。风速愈大,它具有的能量愈大。 所属学科:资源科技(一级学科);能源资源学(二级学科)

风能(wind energy)地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。据估算,全世界的风能总量约1300亿千瓦,中国的风能总量约16亿千瓦。

风能(wind energy)是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生 风能

电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有 94.1 百万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。 现代利用涡轮叶片将气流的机械能转为电能而成为发电机。在中古与古代则利用风车将搜集到的机械能用来磨碎谷物或抽水。 风力被使用在大规模风农场为全国电子栅格并且在小各自的涡轮为提供电在被隔绝的地点。 风能量是丰富、近乎无尽、广泛分布、干净与缓和温室效应。 我们把地球表面一定范围内。经过长期测量,调查与统计得出的平均风能密度的概况称该范围内能利用的依据,通常以能密度线标示在地图上。 人类利用风能的历史可以追溯到西元前,但数千年来,风能技术发展缓慢,没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视,比如:美国能源部就曾经调查过,单是德克萨斯州和南达科他州两州的风能密度就足以供应全美国的用电量。

风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面 风能

,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。风能就是空气的动能,风能的大小决定于风速和空气的密度。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。空气流动所形成的动能及为风能。风能是太阳能的一种转化形式。太阳的辐射造成地球表面受热不均,引起大气层中压力分布不均,空气沿水平方向运动形风。风的形成乃是空气流动的结果。

能源利用

风能利用形式主要是将大气运动时所具有的动能转化为其他形式的能量。风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了中国南北之间的气压梯度,使空气作水平运动。

风吹的方向

理论上风应沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹,但是地球在自转,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球气流向右偏转,南半球向左偏转,所以地球大气运动除受气压梯度力外,还受地转偏向里的影响。大气真实运动是这两力的合力。实际上,地面风不仅受这两个力的支配,而且在很大程度上受海洋、地形的影响,山隘和海峡能改变气流运动的方向,还能使风速增大,而丘陵、山地却磨擦大使风速减少,孤立山峰却因海拔高使风速增大。 因此,风向和风速的时空分布较为复杂。比如海陆差异对气流运动的影响,在冬季,大陆比海洋冷,大陆气压比海洋高,风从大陆吹向海洋;夏季相反,大陆比海洋热,风从海洋吹向内陆。这种随季节转换的风,我们称为季风。

海陆风的形成

所谓的海陆风也是白昼时,大陆上的气流受热膨胀上升至高空流向海洋,到海洋上空冷却下沉,在近地层海洋上的气流吹向大陆,补偿大陆的上升气流,低层风从海洋吹向大陆称为海风 风能

,夜间(冬季)时,情况相反,低层风从大陆吹向海洋,称为陆风。 在山区由于热力原因引起的白天由谷地吹向平原或山坡,夜间由平原或山坡吹向,前者称谷风,后者称为山风。这是由于白天山坡受热快,温度温度高于山谷上方同高度的空气温度,坡地上的暖空气从山坡流向谷地上方,谷地的空气则沿着山坡向上补充流失的空气,这时由山谷吹向山坡的风,称为谷风。夜间,山坡因辐射冷却,其降温速度比同高度的空气较快,冷空气沿坡地向下流入山谷,称为山风。 当太阳幅射能穿越地球大气层时,大气层约吸收2*10^16W的能量,其中一小部分转变成空气的动能。因为热带比亚热吸收较多的太阳辐射能,产生大气压力差导致空气流动而产生风。至于局部地区,例如,在高山和深谷,在白天,高山顶上空气受到阳光加热而上升,深谷中冷空气取而代之,因此,风由深谷吹向高山;夜晚,高山上空气散热较快,于是风由高山吹向深谷。另一例子,如在沿海地区,白天由于陆地与海洋的温度差,而形成海风吹向陆地;反之,晚上由陆地吹向海上。

经济性

利用风来产生电力所需的成本已经降低许多,即使不含其他外在的成本,在许多适当地点使用风力发电的成本已低于燃油的内然机发电了。风力发电年增率在2002 年时约25%,现在则是以38%的比例快速成长。2003年美国的风力发电成长就超过了所有发电机的平均成长率。自2004 年起,风力发电更成为在所有新式能源中已是最便宜的了。在2005 年风力能源的成本已降到1990年代时的五分之一,而且随着大瓦数发电机的使用,下降趋势还会持续。 偏远地区经济与观光发展

西班牙

位于西班牙东北方Aragon的La Muela,总面积为143.5平方公里。1980年起,新任市长看好充沛的东北风资源而极力推动风力发电。近20年来,已陆续建造450座风机(额定容量为237MW),为地方带来丰富的利益。当地政府并借此规划完善的市镇福利,吸引了许多人移居至此,短短5年内,居民已由4,000人增加到12,000人。La Muela已由不知名的荒野小镇变成众所皆知的观光休闲好去处。

法国

另法国西北方的Bouin原本以临海所产之蚵及海盐著名,2004年7月1日起,8座风力发电机组正式运转,这8座风机与蚵、海盐三项,同时成为此镇之观光特色,吸引大批游客从各地涌进参观,带来丰沛的观光收入。

台湾

台湾的苗栗县后龙镇好望角因位处滨海山丘制高点,早年就是眺望台湾海峡的好去 海陆风的形成

处,近几年外商在邻近区域,设置了21座高100米的风力发电机,形成美不胜收的景致。该公司在2003年,看中苗栗沿海冬天强劲东北季风,着手在后龙、竹南等地设立风力发电机,其中后龙成立了大鹏风力发电场,建置21座风机,发电总装置容量达4.2万瓩,是目前全台容量最大的风场,2006年6月竣工启用后,俨然成为观光新景点,吸引不少人前往探访。好望角位在半天寮顶端居高临下,向北可看到4、5座风机,往南也可望见3、4座风机,加上海线铁路从山下行经,面临宽阔的台湾海峡,风景相当引人入胜,也成为欣赏风力发电机最佳景点之一。

风的能量

地球吸收的太阳能有1%到3%转化为风能,总量相当于地球上所有植物通过光合作用吸收太阳能转化为化学能的50到100倍。 上了高空就会发现风的能量,那儿有时速超过160公里 (100 英哩160 km/h 100 mph)的强风。这些风的能量最后因和地表及大气间的摩擦力而以各种热能方式释放。 风的成因:因太阳照射极地和赤道的不均匀使得地表的不受热;地表温的速度较海面快;大气中同温层如同天花板的效应加速了气体的对流;季节/的变化;科氏效应;月亮的反射比率,形成了风。 风能可以通过风车来提取。当风吹动风轮时,风力带动风轮绕轴旋转,使得风能转化为机械能。而风能转化量直接与空气密度、风轮扫过的面积和风速的平方成正比。空气的质流穿越风轮扫过的面积,随着风速以及空气的密度而变化。举例来说,在15°C (59°F)的凉爽日子里,海平面空气密度为每立方米 1.22 公斤(当湿度增加时空气密度会降低)。当风以秒速8米吹过直径一百米的转轮时,每秒能够使1,000,000,000公斤的空气穿越风轮扫过的面积。 指定质量的动能与其速率之平方成正比。因为质流与风速呈线性增加,对风轮有效用的风能将会与风速的立方成正比;本例子中风吹送风轮的功率,大约为2.5百万瓦特。 因为风涡轮提取能量,空气减速,导致它对传播并且在风涡轮附近在某种程度上牵制它。 德国物理学家,阿尔伯特Betz, 1919年确定风涡轮可能提取至多将否则流经涡轮的横断面的59%能量。 不管涡轮的设计, Betz极限申请。

有风变化,并且平均值为一个被测量的地点单独不表明风涡轮可能导致那里的相当数量能量。 要估计风速风土学在一个特殊地点,概率分布作用经常适合到被观察的数据。 不同的地点将有不同的风速发行。 最频繁用于的发行模型塑造风速风土学是二参量 Weibull distribution 因为它能依照各种各样的发行形状,从高斯到指数。Rayleigh 塑造,例子,其中被密谋在右边反对实际被测量的数据集,是形状参量合计2 Weibull作用的一个具体形式和非常严密反映每小时风速的实际发行在许多地点。由于许多电能是由高风速所产生,可用的能量多来自瞬间大的风速.一大半可用的能量,却只有占运作时间的15%.所以无法像使用燃料的火力发电厂,可以依照用电需求来调整发电量. 由于风速并非常数,风力发电整年的发电量不是标示的发电率乘上所有的运转时间(一年内).实际产生的值与理论值(最大值)称为容量因子.安装良好的风力发电机,其容量因子可达35%.跟一般使用燃料的发电厂的涡轮机相比,标示1000kW的风力发电机,每年可发的电量最多到350kW.短时间的输出功率是难以预测,但每年发电量的变化应该几个百分比之内. 当储藏,如此的关于用唧筒抽水水力电气的储藏, 或其他形式的世代被用来 " 塑造 " 风力量 (借着保证持续的递送可信度),商业的递送代表大约 25% 的费用增加,屈从的有活力的商业表现。

风力的分级

风之强弱程度,通常用风力等级来表示,而风力的等级,可由地面或海面物体被风吹动之情形加以估计之。目前国际通用之风力估计,系以蒲福风级为标准。蒲福氏为英国海军上将,于 1805年首创风力分级标准。先仅用于海上,后亦用于陆上,并屡经修订,乃成今日通用之风级。实际风速与蒲福风级之经验关系式为: V= 0.836 * (B ^ (3/2)) B为蒲福风级数,V为风速(单位:米/秒) 一般而言,风力发电机组起动风速为2.5米/秒,脸上感觉有风且树叶摇动情况下,就已开始运转发电了,而当风速达28~34米/秒时,风机将会自动侦测停止运转,以降低对受体本身之伤害。

风电第一纸媒《风能世界》摘录:我国位于亚洲大陆东部,濒临太平洋,季风强盛,内陆还有许多山系,地形复杂,加之青藏高原耸立我国西部,改变了海陆影响所引起的气压分布和大气环流,增加了我国季风的复杂性。冬季风来自西伯利亚和蒙古等中高纬度的内陆,那里空气十分严寒干燥冷空气积累到一定程度,在有利高空环流引导下,就会爆发南下俗称寒潮,在此频频南下的强冷空气控制和影响下,形成寒冷干燥的西北风侵袭我国北方各省(直辖市、自治区)。每年冬季总有多次大幅度降温的强冷空气南下,主要影响我国西北、东北和华北,直到次年春夏之交才消失。 夏季风是来自太平洋的东南风、印度洋和南海的西南风,东南季风影响遍及我国东半壁,西南季风则影响西南各省和南部沿海,但风速远不及东南季风大。热带风暴是太平洋西部和南海热带海洋上形成的空气涡漩,是破坏力极大的海洋风暴,每年夏秋两季频繁侵袭我国,登陆我国南海之滨和东南沿海,热带风暴也能在上海以北登陆,但次数很少。 青藏高原地势高亢开阔,冬季东南部盛行偏南风,东北部多为东北风,其他地区一般为偏西风,夏季大约以唐古拉山为界,以南盛行东南风,以北为东至东北风。 我国幅员辽阔,陆疆总长达2万多公里,还有1800O多公里的海岸线,边缘海中有岛屿5000多个,风能资源丰富。我国现有风电场场址的年平均风速均达到 6米/秒以上。一般认为,可将风电场风况分为三类:年平均风速6米/秒以上时为较好;7米/秒以上为好;8米/秒以上为很好。可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。我国相当于 6米/秒以上的地区,在全国范围内仅仅限于较少数几个地带。就内陆而言,大约仅占全国总面积的 1/1OO,主要分布在长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区,包括山东、辽东半岛、黄海之滨,南澳岛以西的南海沿海、海南岛和南海诸岛,内蒙古从阴山山脉以北到大兴安岭以北, 新疆达板城,阿拉山口,河西走廊,松花江下游,张家口北部等地区以及分布各地的高山山口和山顶。 根据全国气象台部分风能资料的统计和计算,中国风能分区及占全国面积的百分比见下表。 表 中国风能分区及占全国面积的百分比 指标 丰富区 较丰富区 可利用区 贫乏区 年有效风能密度(W/m2) >200 200~150 <150~50 <50 年≥3m/s累计小时数(h) >5000 5000~4000 <4000~2000 <2000 年≥6m/s累计小时数(h) >2200 2200~1500 <1500~350 <350 占全国面积的百分比(%) 8 18 50 24 太阳辐射的能量到地球表面约有2%转化为风能,风能是地球上自然能源的一部分,我国风能潜力的估算如下: 风能理论可开发总量(R),全国为32.26亿千瓦,实际可开发利用量(R’),按总量的 l/ 10估计,并考虑到风轮实际扫掠面积为计算气流正方形面积的 O.785倍〔1米直径风轮面积为 O.52 Xπ= O.785(平方米)〕,故实际可开发量为: R’=O.785R/10=2.53(亿千瓦)。

爱听歌的香氛
健忘的金毛
2025-07-25 11:28:06
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源,其主要来源是人力和畜力的形式利用牛,骡,马,水磨和风磨粮食,和柴火。在右边的美国能源使用的两幅曲线图中,直到1900年的石油和天然气的重要性,和风能和太阳能在2010年发挥一样的重要性。

除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。像生物能和煤炭石油天然气,主要透过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。

木材

柴是最早使用的典型的生物质能源,烧柴在煮食和提供热力很重要,它可让人们在寒冷的环境下仍可生存。

役用动物

传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。

水能

磨坊就是采用水能的好例子。而水力发电更是现代的重要能源,尤其是中国、加拿大等满是河流的国家。

风能

人类已经使用了风力几百年了。如风车,帆船等。

太阳能

自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。

地热能

人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。

海洋能

海洋能即是利用海洋运动过程来生产的能源,海洋能包括潮汐能、波浪能、海流能、海洋温差能和海水盐差能等,一些沿海国家的海岸线,就很适合用来作潮汐发电。

生物能

生物质能是指能够当做燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和沼气(甲烷)牛粪等。

积极的高山
执着的小蚂蚁
2025-07-25 11:28:06
新能源电力系统及其特征

随着以风电、太阳能发电等新能源电力的开发利用,接入电网的新能源电力比重日益提高。众所周知,电力的基本特征是难以大规模储存,电力的生产与消费必须同步进行。电力系统通过统一的调度指挥,使电力的生产跟随负荷需求的变化,保证电能的实时供需平衡。对于传统的电力系统来说,电力调度中心根据用户负荷需求变化对发电单元发出调度指令,发电单元执行自动发电控制(Automatic Generation Control,AGC)调度指令改变发电负荷,满足用户负荷需求,维持电网安全稳定,保证电能质量。当发电侧的可调度容量难以达到负荷侧需求以及发生可能影响电网安全稳定的情况时,电力调度中心将采取切除用户负荷等措施,保证电网安全稳定运行。对于传统的火电、水电、核电、油/气发电而言,发电单元一般具有良好的可调度性能。发电机组在一定的容量范围内可以按照电网调度AGC指令变更发电功率。因此,在发电装机容量可满足用户最大负荷的前提下,整个电力系统是可调可控的。风电、太阳能发电区别于传统发电的一个重要特征在于它的随机波动性。由于产生电力的一次能源来自于自然界空气的流动与太阳光的辐射,不仅不可储存,而且受到季节、气候和时空等的影响,具有很强的随机波动性和间歇性,因此,对于具有一定装机容量的新能源发电单元来说,其实际出力首先取决于现时刻的风力、太阳光强度的约束。当风电、太阳能发电规模化接入电网后,电力系统就必须在随机波动的发电侧与随机波动的负荷侧之间实现电力的供需平衡,保持电网的安全稳定。

新能源电力的另外一个重要特征在于它的能量密度低。例如:当风速为3m/s时,其能量密度为20W/m2左右,而太阳能即使是在天气晴朗的正午,太阳垂直投射到地球表面的能量密度仅为1000W/m2左右,这样使得新能源发电设备的单机容量不可能过大。大量的小容量发电机组接入电网,使电力系统受控发电单元呈爆炸性增长趋势。截至2012年底,我国火电机组累计装机819.17GW,单机6MW及以上的火电机组总数约为6600台;同期,风电机组的装机总量仅为75.324GW,装机数量却达到了53764台,超过了火电机组数量的8倍。 按照我国风电装机2020年将达到200~300GW的预期,以目前风电的平均单机装机容量来计算,到时需要并入电网的风电机组数量将达到14万至21万台!随着新能源电力的规模化开发和电网中新能源电力比重的增加,使传统电力系统的基本特征发生了显著的变化,主要体现在以下几个方面:随机性、可控性、安全性、整体性、智能化。进而将推动电力系统的结构形态、运行控制方式以及规划建设与管理发生根本性变革,从而将逐步形成新一代电力系统,即新能源电力系统。

专一的未来
无私的哑铃
2025-07-25 11:28:06

郑明月

发展历程

罗杰斯公司(Rogers Corporation)是全球5G化工新材料供应商,旨在为世界提供电子、保护和连接化工新材料。公司有超过180年的材料科学经验,主要提供高能效电机驱动,新能源 汽车 和可再生能源电力的电子系统解决方案,用于移动设备,运输工具内饰,工业设备密封,振动和冲击防护和无线基础设施、 汽车 安全和雷达系统的高级连接和焊接的解决方案,业务主要应用于新能源、5G及安防等领域。罗杰斯其在相关领域的发展布局主要分为三个阶段:

第一阶段(1832-1958)为产生与初级发展阶段。罗杰斯成立于1832年,是纺织行业的材料生产商。1950年代后期,在世界范围内纤维材料开始得到应用,罗杰斯将纤维(天然和合成纤维,有机和无机纤维)与聚合物和化学物质结合在一起开发出纤维复合材料。由于纤维复合材料具有比强度高、比模量大、材料性能具有可设计性、抗腐蚀性和耐久性能好、热膨胀系数与混凝土的相近的特点。发展后期被广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。

第二阶段(1958-2009)新材料突破发展期。1958年罗杰斯推出PORON牌聚氨酯泡棉材料,并顺利进入欧洲,1960年在美国证券交易所上市,1970年开设Lurie研发中心,1988年与3M公司一起成立合资企业。1996年收购美国BISCO硅胶公司,2009年收购MTI Global Silicone(硅胶)部分股份,顺利布局硅胶业务。此外,为满足客户对RO4000高频电路板层压板的需求,罗杰斯在欧洲(比利时根特)建立新工厂。2009年,公司收购了MTI Global Inc.的有机硅业务,并向Solicore公司进行战略投资,当年推出了18种新产品,成功布局集成电路产业、化工新材料产业,为未来几年的未来增长机会奠定了基础。

第三阶段(2009-今)新改革与新发展阶段。2010年之后,罗杰斯密集收购了韩国的SK Utis公司、德国Curamik公司、eSorba Urethanes(聚氨酯)公司、SK UTIS公司、Curamik Electronics GmbH公司和Arlon circuit materials and engineered silicones公司,并与英国公司Himag Solutions Ltd.和日立化学公司签订战略协议,成功布局聚氨酯、智能电源管理设备(如绝缘栅双极晶体管(IGBT)模块)的直接铜键合(DCB)陶瓷基板产品、平面磁性产品、平面变压器技术和配电技术、高速数字(HSD)应用的印刷电路板(PCB)材料、通讯设备关键化工材料等领域,退出没有竞争优势的柔性电路材料市场。2010年全球印刷电路板产业规模为510美元左右,竞争进入白热化,材料企业进入大规模重组阶段,罗杰斯趁势而上,顺利进入相关利于,成为头部企业。2019年,进入5G商用元年,产业相关企业集中爆发,全球主要经济体加速推进5G商用落地。在政策支持、技术进步和市场需求驱动下,罗杰斯在化工材料领域也取得不错成绩。

2019年,罗杰斯由3600名员工,业务中先进连接材料及解决方案占比34.74%,弹性材料解决方案占比39.79%,电力电子材料及解决方案占比23.58%。公司总部位于美国亚利桑那州钱德勒,在美国亚利桑那州钱德勒布局研究和开发创新中心,在美国马萨诸塞州伯灵顿,德国埃申巴赫和中国苏州设有生产工厂,在美国和比利时设有制造和销售办事处,并在世界各地设有其他销售办事处。罗杰斯的使命是提供特种材料解决方案,以满足全球客户的需求。如今,罗杰斯公司为5G通信,电力电子,清洁技术,消费电子和运输市场中的原始设备制造商(OEM)提供了多种特种材料,其中包括高性能泡沫和高级电路材料。

公司发展战略分析

(一)市场驱动的组织

以市场为导向,专注于业务的增长。抓住当前市场的主要增长点,主要包括 汽车 行业中高级驾驶辅助系统(ADAS)的不断增加;电动和混合电动 汽车 (EV/HEV)等车辆的电气化以及在 汽车 行业采用新技术;电信行业的下一代无线基础设施;便携式电子产品;互联设备;航空航天和国防;公共交通和可再生能源等。

(二)创新引领发展

公司将大量资源向研发倾斜,以及满足下游客户需求对新产品的需求,以提高公司的运营和财务绩效。公司对战略选择和运营状况及时评估,不断改善业务结构,使企业的业务与客户不断变化的需求趋势保持一致。在重组企业完成后会进入一个崭新的材料领域,要求公司对已有企业的工程师进行研发能力和创新精神的集中提升,以适应企业的快速发展,占领市场的制高点。

(三)协同并购战略

通过内部投资和收购扩大了我们的能力,并努力确保为客户提供高质量的解决方案。我们将继续审查并重新调整我们的制造和工程足迹,以争取在全球范围内处于领先的竞争地位。公司的业务拓展主要只要依靠自主研发和协同并购,在并购过程中成功转型为5G化工新材料企业,业务布局无线基础设施(例如,功率放大器,天线和小型蜂窝), 汽车 (例如,ADAS,远程信息处理和散热)中的应用提供高性能和高可靠性的连接解决方案),航空航天和国防(例如天线系统,通信系统和相控阵雷达系统),连接设备(例如移动互联网设备和散热解决方案)和有线基础设施(例如计算和IP基础设施)市场,并实现全球研发、生产和销售布局。

(四)卓越的运营管理

公司的销售和市场营销方法基于市场趋势展开,战略则侧重于满足作为工程材料和组件制造商核心要素:高性能,高质量,全方位服务,成本控制,高效率,积极创新和先进技术。企业已经在各个地区建立或扩展了运营管理能力,满足客户的增长需要。

经验与启示

(一)客户优先,量身定制

作为工程材料和组件的制造商和供应商,企业的成功与否取决于产品创新和销售服务,包扩客户开发、制造和销售的能力。罗杰斯致力于与客户互动,材料和组件的设计作为客户产品开发过程的一部分,从而使企业的产品更具竞争力并确保客户黏性。产品研发的价值在很大程度上取决于客户的下游需求的程度。不能持续为下游客户研发新产品,未能按照下游客户要求进行产品设计并获得市场认,会对企业经营造成负面影响。

(二)预判产业方向,积极产能布局

企业在发展过程中瞄准市场前沿,预判产业方向,不断转型发展。由传统制造业企业向新材料前沿企业转型,是目前多数企业面临的难题。首先要立足自身基础,由纺织企业向纤维材料企业转型,成为纤维复合材料的优先布局企业。然后积累市场威信和财力,拓展业务范围,向聚氨酯泡棉材料和硅胶行业发展,实现多元布局。在印刷电路板和集成电路行业兴起之时,没能预先布局,但抓住市场整合的时机,预判发展方向,进行兼并重组成为头部企业。5G市场兴起,企业已是全球性的新材料集团,将已有产品进行适当改性和拓展,由于客户稳定,销售渠道顺畅,成为全球5G化工新材料主要供应商。

(三)优秀员工激励,与职工福利保障

一是股权补偿机制。公司按照实际贡献给予所有员工股权激励,按照三年评估期进行发放,对在评估期内因死亡,残疾或在某些情况下退休而终止雇佣的员工,根据其在评估期内受雇的天数获得按比例分配的报酬。二是员工福利保障。赞助涵盖某些雇员的各种设定福利退休金计划。提供定额给付养老金计划的资金明显提高,为对冲全球经济趋势以及金融市场状况有关的通胀因素。三是为美国员工提供各种定额给付退休金计划,并为退休人员赞助多个全额保险或自费医疗计划以及全额人寿保险计划。第四其他退休后福利计划,包括多个完全保险或自筹资金的医疗计划以及某些退休人员的人寿保险计划。

(四)知识产权先行,法律保护兜底

(作者单位:中国电子信息产业发展研究院材料工业研究所)