建材秒知道
登录
建材号 > 能源科技 > 正文

水能的优点和缺点~

可爱的草莓
舒心的菠萝
2023-02-10 22:30:19

水能的优点和缺点~

最佳答案
沉默的香烟
唠叨的蚂蚁
2025-07-27 17:37:36

优点:可再生、无污染。开发水能对江河的综合治理和综合利用具有积极作用,对促进国民经济发展,改善能源消费结构,缓解由于消耗煤炭、石油资源所带来的环境污染有重要意义,因此世界各国都把开发水能放在能源发展战略的优先地位。

缺点:水能分布受水文、气候、地貌等自然条件的限制大。水容易受到污染,也容易被地形,气候等多方面的因素所影响。

1、生态破坏:大坝以下水流侵蚀加剧,河流的变化及对动植物的影响等。不过,这些负面影响是可预见并减小的。如水库效应。

2、需筑坝移民等,基础建设投资大,搬迁任务重。

3、降水季节变化大的地区,少雨季节发电量少甚至停发电。

4、下游肥沃的冲积土减少。

扩展资料:

世界上水能分布也很不均。据统计,已查明可开发的水能,我国占第一位,以下为俄罗斯、巴西、美国、加拿大、扎伊尔。

世界上工业发达的国家,普遍重视水电的开发利用。有些发展中国家也大力开发水电,以加快经济发展的速度。

世界上水能比较丰富,而煤、石油资源少的国家,如瑞士、瑞典,水电占全国电力工业的60%以上。水、煤、石油资源都比较丰富的国家,如美国、俄罗斯、加拿大等国,一般也大力开发水电。

美国、加拿大开发的水电已占可开发水能的40%以上。水能少而煤炭资源丰富的国家,如德国、英国,对仅有的水能资源也尽量加以利用,开发程度很高,已开发的约占可开发的80%。

参考资料来源:百度百科-水能

最新回答
灵巧的鞋子
潇洒的大树
2025-07-27 17:37:36

要说过去几个月,话题度比较高的应该是全球范围内的能源危机和能源转型大趋势,从大国抛售原油库存到全球新能源的大力发展,新能源 汽车 的火爆,都离不开一个词能源。

那刚刚过去的2021年全球各国能源消费量和能源形势如何呢,一起看看吧。

7月4日,英国石油公司发布了《bp世界能源统计年鉴2022》,报告对全球能源生产、消费做了系统的回顾。

《bp年鉴》中显示, 2021年全球一次能源需求同比增长31EJ,增长5.8%,已经超过2019年的水平,创 历史 最大涨幅 。其中占比最高的依然是石油、天然气和煤炭,其中让人眼前一亮的是可再生能源中 风能、太阳能增长幅度成为所有能源中最高的,达到15% 。

全球能源转型的步伐逐步加快, 可再生能源在一次能源消费中的占比逐步加大 。

01

非化石能源加速发展

首先来看一下可再生能源,近几年可再生能源的发展犹如坐上了高速列车一般,发展速度迅猛。

可再生能源中占比最大的是风能和太阳能,占可再生能源的79.1% 。近年来,得益于全球光伏项目和风力发电项目的持续推进,太阳能和风能发电量持续增长。去年一年 太阳能发电量涨幅为19% ,其中太阳能利用最多的是中国,美国和德国。 风能发电量去年一年增长15.8% ,风能利用最多的是中国,其次是美国。

在可再生能源消费国中,中国是最多的,其次是美国。其中可再生能源涨幅最大的国家是中国,其次是澳大利亚和土耳其。

接下来看一下核能和水利发电。全球核能的利用达到了25.31EJ,增幅为3.8%,依然低于2019年水平。相比于其他新能源不断增加的趋势, 水力发电不增反降1.4% 。

02

化石能源占主体

在《bp年鉴》中显示 石油占全球能源一次消费的30.95% ,依然是能源消费中比重最大的一部分,与2020年相比变化不大。

石油价格一直以来是能源行业关心的话题,此次《bp年鉴》显示2020年布伦特原油全年平均价格41.84$/桶,而2021年全年平均价格为70.91$/桶, 价格增长了69.47% 。

其中,天然气在一次能源消费中占24.42%,增长幅度为5.3%;煤炭占比26.9%,增长幅度为6%。

水力发电和可再生能源在全球一次能源消费中占比达到了13.47%,基本与2020年13.45%持平,其中水利发电不增反降,可再生能源增幅拉齐了这一比率。

数据显示, 化石能源(石油、天然气和煤炭)依然是主要能源 ,占比高达82%,这个数据与2019年相比下降了只有1个百分点。

过去一年, 全球石油产量每天增加138万桶,总体产量增长了1.5% 。在主要产油国中增幅最大的是加拿大和伊朗,并且巴西、伊拉克和沙特阿拉伯产量略有下降。

接下来,一起来看一下主要产油国的产量状况。美国年产石油7.11亿吨,成为原油产量最多的国家,这得益于油价上涨之后,美国重新开启部分因为疫情停产的页岩油的开采。其次是俄罗斯和沙特阿拉伯,产量分别为5.36亿吨和5.16亿吨,这三个国家的石油产量总量占了全世界石油产量42.21亿吨的41.75%。

03

能源格局继续变化

去年,全球各国一次能源消耗量的对比显示, 中国成为全球能源消耗最大的国家 (10 EJ),其次是美国。同时,年鉴中还列出了全球石油天然气贸易量,显示中国成为全球进口原油、天然气最多的国家。疫情和国际能源局势动荡之下, 中国成了全球最大经济体 。

这也不难解释,自疫情以来中国实行强有力的管控措施,经济的持续增长拉动了能源需求增长。

总体来看, 全球能源需求正在增长,渐渐从疫情中好转过来 。

2022年以来,能源安全的矛盾日渐突出,人类正面临近50年来最大的挑战和不确定性。

由于长期以来石油行业投资不足造成的全球石油供应短缺,及疫情和地缘政治因素等造成能源市场动荡,原油价格暴涨,更进一步凸显了能源安全的重要性,由此引起的人类关于能源“安全性”“经济性”和“低碳化”的思考。

与此同时,各国都在寻求稳定能源供应的方法,大国也在寻求共同商讨石油增产的可能,都在为能源稳定供应努力。

目前,全球都在寻求能源净碳化,期望实现零碳排放, 可再生能源项目的不断推进就显得越来越重要 。

缥缈的柚子
暴躁的镜子
2025-07-27 17:37:36

太阳能光伏效应,简称光伏(PV),又称为光生伏特效应(Photovoltaic),是指光照时不均匀半导体或半导体与金属组合的部位间产生电位差的现象。

光伏被定义为射线能量的直接转换。在实际应用中通常指太阳能向电能的转换,即太阳能光伏。它的实现方式主要是通过利用硅等半导体材料所制成的太阳能电板,利用光照产生直流电,比如我们日常生活中随处可见的太阳能电池。

光伏技术具备很多优势:比如没有任何机械运转部件;除了日照外,不需其它任何"燃料",在太阳光直射和斜射情况下都可以工作;而且从站址的选择来说,也十分方便灵活,城市中的楼顶、空地都可以被应用。自1958年起,太阳能光伏效应以太阳能电池的形式在空间卫星的供能领域首次得到应用。时至今日,小至自动停车计费器的供能、屋顶太阳能板,大至面积广阔的太阳能发电中心,其在发电领域的应用已经遍及全球。

太阳能是一种快速增长的能源形式,太阳能市场在过去十年中也取得了长足发展。据资料,按年均太阳能系统装机容量计算,全球太阳能市场复合年均增长率达47.4%,从 2003 年的598MW 增长至2007年的2826MW。预测到2012年,年均太阳能系统装机容量可能进一步增至9917MW,而整个太阳能行业的销售额可能从2007年的 172亿美元增长至2012年的395亿美元。这种增长势头在很大程度上要归功于全球快速增加的市场需求、日益提高的上网电价和各种政府鼓励措施。

在世界的一些主要国家中,尤其是德国、意大利、西班牙、美国、法国和韩国,联邦政府、州政府和地方政府机构纷纷以退税、税收抵免和其他激励措施的形式向太阳能产品的最终用户、经销商、系统集成商和制造商提供补贴和经济鼓励,以促进太阳能在并网应用中的使用,降低对其他能源的依赖。然而拥有巨大政治游说能力的传统公共电力企业也可能试图改变所在市场的相关立法,这也可能对太阳能的发展和商业应用造成相对不利的影响。

但总体来说,由于全球许多石油和天然气生产地区政治和经济局势的不稳定性,多国政府都在采取积极措施,以减少对国外能源的依赖。太阳能提供了一种极具吸引力的发电方案,而且不会对国外能源形成严重的依赖性。除此之外,日益突出的环境问题和与矿物燃料发电相关的气候变化风险形成政治动因,促使政府实施旨在减少二氧化碳及其他气体排放量的温室气体减排战略。太阳能及其他可再生能源有助于这些环境问题的解决。

世界各国政府实施了多种激励政策,以促进太阳能及其他可再生能源的开发和应用。许多欧洲国家、一些亚洲国家、澳大利亚、加拿大和美国的多个州省以及一些拉美国家都颁布了可再生能源政策。以客户为中心的财务激励措施包括资本成本退税、强制光伏上网电价和税收抵免。资本成本退税政策提供一笔资金,用于冲抵消费者在太阳能系统中的前期投资。强制光伏上网电价政策要求,公用电力公司依据产生的千瓦时数向用户支付他们通过太阳能系统产生的电力,而价格在一定时期内是有保障的。这些都鼓励了光伏产业的发展。

而在我国,长期困扰我国光伏产业发展的瓶颈问题,即产业链结构中原材料和市场均在海外的问题也得到了政策扶助。上半年由于欧洲各国,尤其是西班牙在太阳能领域的政策发生重大转变,引起全球光伏市场急剧萎缩,进而导致全球光伏企业一季度的经营状况普遍不理想。为了扭转这种境地,我国下决心上马一大批光伏发电项目,解决了"销售市场"的问题,在很大程度上稳定了光伏产业的内需,理性的产量预期逐渐形成。前段时间财政部也制定了《关于加快推进太阳能光电建筑应用的实施意见》和《太阳能光电建筑应用财政补助资金管理暂行办法》。《意见》对太阳能产业形成了两大积极信息,一是产业政策的扶持,不仅仅中央财政安排专门资金,对符合条件的光电建筑应用示范工程予以补助,以部分弥补光电应用的初始投入。而且出台相关财税扶持政策的地区将优先获得中央财政支持。二是"太阳能屋顶计划"对于下游需求的刺激等或将形成相对乐观的预期,即拓展了太阳能产业的发展空间,下游需求必将有所改善。

太阳能发电是新兴的可再生能源技术,已实现产业化应用的主要是太阳能光伏发电和太阳能光热发电。太阳能光伏发电具有电池组件模块化、安装维护方便、使用方式灵活等特点,是太阳能发电应用最多的技术。太阳能光热发电通过聚光集热系统加热介质,再利用传统蒸汽发电设备发电,近年来产业化示范项目开始增多。

中国政府持续出台支持光伏产业发展的政策,尤其是在受到美国和欧盟的双反挤压之际,相应的扩大了国内的装机市场,保护国内产业的可持续发展。

针对大型光伏发电标杆上网电价,《意见稿》针对四类地区给出了四个不同的上网电价,分别为0.75、0.85、0.95、1元/千瓦时。

我国2012 年新增光伏装机5.04GW,累计建设容量达7.97GW,其中大型光伏电站4.19GW,分布式光伏系统3.78GW。目前我们判断2013 年新增装机可能在8.5GW左右。

中国太阳能光伏建案的备案量随着年底的到来而激增。2015年11、12月间,中国河北、山西、山东等三个华北地区省份新增的光伏备案量达到2GW,共有约120个专案申请,多是分布式或农业光伏专案,且有部分与扶贫政策结合。[2]

光伏发电

近10年来,全球太阳能光伏电池年产量增长约6倍,年均增长50%以上。2010年,全球太阳能光伏电池年产量1600万千瓦,其中我国年产量1000万千瓦。并网光伏电站和与建筑结合的分布式并网光伏发电系统是光伏发电的主要利用方式。2010年,全球光伏发电总装机容量接近4000万千瓦,主要应用市场在德国、西班牙、日本、意大利,其中德国2010年新增装机容量700万千瓦。随着太阳能光伏发电规模、转换效率和工艺水平的提高,全产业链的成本快速下降。太阳能光伏电池组件价格已经从2000 年每瓦4.5美元下降到2010年的1.5美元以下,太阳能光伏发电的经济性明显提高。

光热发电

光热发电也称太阳能热发电,尚未实现大规模发展,但经过较长时间的试验运行,开始进入规模化商业应用。美国、西班牙、德国、法国、阿联酋、印度等国已经建成或在建多座光热电站。到2010年底,全球已实现并网运行的光热电站总装机容量为110万千瓦,在建项目总装机容量约1200万千瓦。

到2007年年底,全国光伏系统的累计装机容量达到10万千瓦(100MW),从事太阳能电池生产的企业达到50余家,太阳能电池生产能力达到290万千瓦(2900MW),太阳能电池年产量达到1188MW,超过日本和欧洲,并已初步建立起从原材料生产到光伏系统建设等多个环节组成的完整产业链,特别是多晶硅材料生产取得了重大进展,突破了年产千吨大关,冲破了太阳能电池原材料生产的瓶颈制约,为我国光伏发电的规模化发展奠定了基础。2007年是我国太阳能光伏产业快速发展的一年。受益于太阳能产业的长期利好,整个光伏产业出现了前所未有的投资热潮。太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。

根据《可再生能源发展“十二五”规划》,到2015年,我国力争使太阳能发电装机容量达到21GW(百万千瓦)预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。未来十几年,我国太阳能装机容量的复合增长率将高达25%以上。

国家能源局发布《太阳能发电发展“十二五”规划》称,“到2015年底,太阳能发电装机容量达到2100万千瓦(即21GW)以上,年发电量达到250 亿千瓦时。”

根据《规划》,“十二五”时期新增太阳能光伏电站装机容量约1000万千瓦,太阳能光热发电装机容量100万千瓦,分布式光伏发电系统约1000万千瓦,光伏电站投资按平均每千瓦1万元测算,分布式光伏系统按每千瓦1.5万元测算,总投资需求约2500亿元。

光伏扶贫

编辑

2015年以来,安徽省肥东县累计争取、投入财政资金855万元实施光伏扶贫,为全县5个贫困村、225户贫困户以及80户“三无”特困户新建集体(家庭)分布式光伏发电站310座。

优点

①无枯竭危险;

②安全可靠,无噪声,无污染排放外,绝对环保(无公害);

③不受资源分布地域的限制,安装在建筑屋面同时美观的优势;

④无需消耗燃料和架设输电线路即可就地发电供电;

⑤能源质量高(目前实验室最高转化率已经达到47%以上);

⑥使用者从感情上容易接受且非常喜爱;

⑦建设周期短,获取能源花费的时间短;

⑧从国家安全角度讲,光伏发电可以实现家庭自己供给,避免战争带来的毁灭打击。

缺点

①太阳能的利用设备必须具有相当大的面积。

②太阳能的应用受气候、昼夜的影响。

③技术限制,导致能源利用率不高,效率低下,且设备投资较高。

④使用太阳能蓄电的蓄电池也会带来很大污染。

清秀的小蜜蜂
完美的小鸽子
2025-07-27 17:37:36

R.Curtis(英)、J.Lund(美)、B.Sanner(德)、L.Rybach(瑞士)、G.Hellström(瑞典)

徐巍(译)郑克棪(校)

摘要:1995年在意大利佛罗伦萨举行的世界地热大会上,一篇论文引起了世界地热界对地热热泵增长状况的广泛关注。随着降低建筑能耗压力的增加,以及减少建筑物二氧化碳排放指标的提高,安装地热热泵的趋势正在逐渐兴起。应用地热热泵的国家数量也不断上升,其中一些国家并没有传统意义上的地热资源,但现在他们有了生气勃勃的地热热泵项目。另外,还有一些国家正在探索其应用潜力。从小的家庭安装到大功率的系统安装,各种型号的地热热泵都在增加。这篇文章主要对近10年这些高效率、长寿命、低污染的可再生能源系统的发展和安装进行评价。

1 介绍

地热热泵是世界上发展最快的可再生能源利用技术之一,在过去的10年里,大约30个国家平均增长速率达到10%。它主要的优点是可以利用平常的地温或地下水的温度(5~30℃)就可以运行,而这些资源全世界各个国家都可以获得。在1995年的佛罗伦萨世界地热大会上,人们尝试着总结了当时的这项技术状况和发展水平,到2005年,地热热泵已经进一步提升为新能源和可替代能源的重要角色。它们尤其已经被作为一种高效的可再生供热装置,而且更重要的是它们在减少二氧化碳方面得到认可。来自加拿大的一篇文章中提到:“当前在市场上不可能有任何其他的单项技术比地热热泵在减少温室气体排放和导致全球变暖效应方面的潜力更大。”这句话同当前流行的一种认识相一致:热泵作为供热装置可以减少全球6%以上的二氧化碳排放量,它是目前市场上可获得的减少二氧化碳排放量最大的单项技术之一。这样的说法正好适合当前提倡的把更多的注意转移到可再生热能的利用上来,就像现在提倡可再生电能一样。2005年9个欧洲组织和贸易协会共同提倡采用可再生能源进行供热和制冷的行动。三个主要的技术被提到:生物能、太阳能和地热能。过去10年已经进行的工作,说明正确设计的热泵系统,无论是对单孔安装还是多孔安装,都可以确保从地下汲取的热能是真正可再生和永久可持续的。最近,世界能源组织公布了多种可再生技术的生命周期分析,对于加热技术,地热热泵的生命期二氧化碳排放量是第二低,仅次于木屑。

在这篇文章里,我们简短介绍了地热热泵技术,提出当前流行的一些综合信息。读者会发现2005年世界地热大会论文集第14章收集了比以前大会论文集更多的关于地热热泵的论文,反映了它在世界范围内的快速增长。尽管地热热泵有比较高的应用潜力,但在一个国家或地区的优势条件取决于当地的经济生存能力、应用能力和增长率。我们介绍了几个不同地理区域和国家的发展情况。一些地区已经安装了很多的地热热泵,而且显示了不断增长的趋势,有些地区才刚刚开始。开发利用较好的国家有美国、北欧、瑞士、德国,尤其是瑞典。刚开始开发利用的国家包括英国和挪威。其他有大量装机的国家还有加拿大和奥地利,法国、荷兰也显示了比较快的增长速度。中国、日本、俄罗斯、英国、挪威、丹麦、爱尔兰、澳大利亚、波兰、罗马尼亚、土耳其、韩国、意大利、阿根廷、智利、伊朗等国开始意识到地热热泵技术。论文集第一部分里许多国家介绍了他们的开发利用状况。

2 装机

尽管许多国家都开始对热泵产生兴趣,但热泵的增长主要还是发生在美国和欧洲。据不完全统计,目前全世界范围内的装机容量可能接近10100MWt,年均利用的能量大约59000TJ(16470GWh)。实际安装的机组数量大约900000个。表1列举了地热热泵利用率最高的几个国家。

表1 利用地热热泵领先的国家

3 地热热泵系统

热泵系统利用相对不变的地下温度来为家庭、学校、政府和公共建筑供热、制冷和提供生活热水。输入少量的电能驱动压缩机后,可以产生相当于输入能量4倍的能量。这样的机器使热能从低温区流向高温区,实际上是一台能倒流的制冷机。“泵”说明已经做功,温差称为“抬升”,抬升越大,输入的能量越多。该项技术并不是一项新技术,1852年Lord Kelvin提出了这个概念,20世纪40年代Rober Webber修改成地热热泵,60、70年代获得商业推广。图1是典型的水-气型热泵系统。这样的热泵在北美应用很广泛,但在北欧家庭供暖市场主要利用水-水热泵。

热泵有两种基本的配置:土壤偶极系统(闭路系统)和地下水系统(开路系统),地下系统可以水平或垂直安装,取用井水或湖水。系统的选择依赖安装地点的土壤和岩石类型,能否经济施工水井或现场已有水井,还需场地条件。图2是这些系统的示意图。如前面的水-气型热泵所示,对于热水加热系统,家用热水交换器可以在夏天利用回灌的热量,冬天利用输出的热量来加热生活用水,水-水型热泵一般只能通过转换供热模式到生活热水模式,将输出温度提高到最大来加热生活热水。

图1a 制冷循环中的水-气型地热热泵

图1b 供暖循环中的水-气型地热热泵

图2a 密闭环路热泵系统

图2b 开放环路热泵系统

在土壤偶极系统里,一条封闭的管路被水平的或者垂直的埋在地下,防冻液通过塑料管循环,或者在冬天从地下获得热量,或者在夏天将热量灌入地下。开放环路系统利用地下水或湖水直接通过热交换器后灌入另一眼井(或者河渠、湖里,或者直接用于灌溉),主要按照当地法规执行。

其他种类的热泵系统正在兴起,如竖井和本次大会上提到的一种新类型。这些系统效率很高,但大多需要更加精细的水文地质信息和比闭路系统更加专业的设计。

热泵机组的效率在供暖模式通过运行系数COP来表示,在制冷模式下用能量效率比(EER)来表示,它是输出能量与输入能量(电能)之比,目前的设备基本在3和6之间变化。这样COP为4意味着输入每个单位的电能可以产生4个单位的热能。经过对比,空气源热泵的COP大约为2,取决于高峰供暖和制冷需要的备用电能。在欧洲,这个比率有时候作为“季节性运行参数”,即供暖季和制冷季的平均COP,同时要考虑系统特性。

4 地热热泵的可再生讨论

随着热泵装机的稳定增加,使人认识到它们对可再生能源利用的贡献。这只是部分的认识,因为它们只涉及了供暖和制冷的表面,所以没有可再生电能的考虑。然而,这里面有两个其他的因素——一个是关于地下能源的可持续问题,一个是基于空气源热泵的问题,在能量输出时没有纯能量的增加,所以它们仅仅是一种能量效率技术。

20世纪50、60年代,当空气源热泵风靡的时候,在城市里的化石燃料电厂发电的效率接近30%。当时空气源热泵的COP一般在1.5~2.5之间变化。表2显示了在建筑物里能量释放的情况,60%的能量来自于空气,而用来发电的原生能量只有75%作为有用的热能得到利用。这样,从空气中提取的可再生能量已经高效地释放了热能,但没有剩余能量。表2的第二列是当前的数据。新型的组合或联合循环发电厂发电效率已超过40%。土壤源热泵的SPF已超过3.5。这导致了140%的效率,其中最终能量的71%来自地下。更重要的是,超过40%的剩余量已高于发电消耗的原始能量。

表2 能量和效率对比表

水源热泵和新型发电效率的联合才构成剩余可再生能源的释放。

如果从一开始就用可再生能源发电,则所有传递的能量就都是可再生的。为了释放可再生的能量最多,建议应该尽快使可再生电能变得经济,并与地源热泵结合起来。

能量讨论可能是有争议的,但二氧化碳排放量的减少却很容易证实。举个例子,当前英国电网和地热热泵联合供暖相对于传统的化石燃料供暖技术可以减少50%的二氧化碳排放量。这归功于当前英国电网的联合。由于目前发电所排放的二氧化碳在减少,所以通过利用地热热泵而排放的二氧化碳会更少。随着利用可再生能源发电,建筑供暖将不再需要排放二氧化碳。

如果要计算一下世界范围内可节约的石油当量和当前地热热泵装机容量所能减少的二氧化碳排放量,则需要有几个假设条件。如果每年地热能被利用28000TJ(7800GWh),将此量与30%效率的燃油发电相比,则会节约15.4百万桶石油,或者2.3百万吨石油当量,减少700万吨二氧化碳的排放量。如果我们假想每年同样长时间的制冷,则这个数字会翻倍。

5 美国的经验

在美国,大多数系统都是根据高峰制冷负荷设计的,它高于供暖负荷(主要是北方地区),这样,估计平均每年有1000个小时满负荷供暖。在欧洲,绝大多数系统是根据供暖负荷设计的,所以经常据基础荷载设计,另加化石燃料调峰。结果,欧洲的系统每年可以满负荷运行2000到6000个小时,平均每年2300个小时。尽管制冷模式将热量灌入地下,它不是地热,但它仍然节省能量,有利于清洁环境。在美国,地热热泵装机容量能稳定在12%,大多数安装在中西部地区和从北达科他州到佛罗里达州的东部地区。目前,每年接近安装50000个热泵机组,其中46%是垂直闭路循环系统,38%是水平闭路循环系统,15%是开路系统。超过600个学校安装了热泵系统进行供暖和制冷,尤其在得克萨斯州。应该注意到这一点,热泵按照吨(1吨冰产生的制冷量)来分等级,这个吨相当于12000Btu/hr或3.51kW(Kavanaugh和Rafferty,1997)。一个典型的家庭需要的热泵机组应该是3吨或者是105kW的装机容量。

美国装机容量最大的热泵是在肯塔基州路易斯维尔市的一个宾馆。通过热泵为600个宾馆房间、100个公寓和89000m2的办公区(整个宾馆161650m2)提供冷热空调服务。热泵利用出水量177l/s、出水温度14℃的4口水井,提供15.8MW的冷负荷和196MW的热负荷。消耗的能量是没有热泵系统附近相似建筑的53%,每月节约25000美元。

6 欧洲的状况

地热热泵实际上可在任何地方既供热又制冷,可以满足任何的需求,具有很大的灵活性。在西欧和中欧,直接利用地热能对众多客户进行区域供暖受限于区域的地质条件。在这种情况下,通过分散的热泵系统采集到处都有的浅层地热是一个明智的选择。相应的,在欧洲各个国家,热泵正在快速增长和发展起来。热泵系统的市场正在蔓延,从事该项工作的商业公司也在增长,他们的产品已经进入“黄页”。

欧洲超过20年对热泵的研究开发为该项技术的可持续性建立了一个完善的概念,还解决了噪音问题,制定了安装标准。图3是一个典型的井下热交换器型热泵(BHE)。这个系统每输出1kWh的热或冷需要0.22~0.35kWh的电能,它比季节性利用大气做热源的空气源热泵少需要30%~50%的能量。

图3 中欧家庭中BHE热泵系统的典型应用,典型的BHE长度大于100m

根据欧洲许多国家的天气条件来看,目前大多数的需求是供暖,空调很少需要。所以热泵通常只是用于供暖模式。然而随着大型商业利用数量的增加,制冷的需要以及这项技术推广到南欧,将来供暖和制冷双重功效就会越来越重要。

在欧洲统计热泵安装的可靠数量是相当困难的,尤其是个人的利用。图4是欧洲主要利用热泵的几个国家安装热泵的数量。2001年瑞典大幅增加的热泵主要是空气源热泵,然而瑞典在欧洲也是安装地热热泵最多的国家(见表1)。总的情况,除了瑞典和瑞士,地热热泵的市场扩展在整个欧洲还不太大。

7 德国的经验

1996年之后,根据热泵的销售统计,德国各种热源的热泵销售情况各不相同(图5)。在经过1991年销售量小于2000台的低迷后,热泵的销售量呈现稳定的增长。地热热泵的份额从80年代少于30%上升到1996年的78%,2002年达到82%。而且从2001年到2002年,当德国的房地产由于经济萧条正在缩水的时候,地热热泵的销售量仍然有所增长。将来它在市场上仍然有增长的机会,因为有较好技术前景做保证。

图4 一些欧洲国家热泵机组的安装数量对比图

图5 每年德国热泵的销售数量对比图

德国地热热泵在住宅利用的数量是巨大的,许多小型系统安装在独立的房子里,而较大系统用于一些需要供暖和制冷的办公楼等商业区域。德国的大部分地区夏季的湿度允许制冷不带除湿,例如冷却顶棚。热泵系统就很适合直接利用地下的冷能,不需要冷却器,它们显示了非常高的制冷效率,COP能达到20以上。第一个利用井下热交换器和直接制冷的系统在1987年安装的,同时该项技术成为一个标准设计选择。一些最新的德国地热热泵的例子Sanner和Kohlsch有文章介绍。

在德国,地热热泵已经走过了研究、开发和开发现状阶段,当前的重点是选型和质量安全性。像技术准则VDI4640、合同规范以及质量认证等工作正开始被强制执行来保护工业和消费者,避免质量不合格和地热热泵系统无法长期运行等问题。

8 瑞士地热热泵的繁荣

地热热泵系统在瑞士已经以每年15%的速度快速增长。目前,有超过25000台热泵系统在运行。来自地下有三种热能供应系统:浅层水平管(占所有安装热泵的比例小于5%)、井下换热器系统(100~400m深,占65%)、地下水水源热泵(占30%)。仅仅在2002年,就施工钻孔600000m,并安装了井下换热器系统。

地热热泵系统非常适于开发到处都有的浅层地热资源。热泵系统长期运行的可靠性现在已经通过理论和实践研究以及通过在几个供暖季的测试得到证明。季节运行因素已大于3.5。

各种测试和模型模拟证明这种系统可以持续性的吸取热量。长期运行的可靠性保证了系统可以无故障应用。热泵系统所配备井下换热器的合理尺寸也有利于广泛的应用和选择。实际上,热泵系统的安装在1980年从零开始,经过快速发展,现在是瑞士地热直接利用里最大的部分。

地热热泵系统的安装自从20世纪70年代末期开始认识以来发展很快,这种印象深刻的增长可见图6和图7。

图6 1980~2001年瑞士地热热泵安装的发展趋势图

图7 1980~2001年瑞士井下换热装置和地下水的地热热泵系统装机容量发展趋势图

每年的增长非常显著:新安装系统的数量以每年大于10%的速度增长。小型系统(<20kW)显示了最高的增长速度(大于15%,见图1)。2001年地热热泵系统的装机容量是440MWt,产生的能量为660GWh。2002年施工了大量的钻孔(几千个),并安装了双U型管的井下热交换器。井下换热器的平均深度大约150~200m;超过300m深度的钻孔也越来越多。平均每米的造价是45美元左右,包括钻井、下入U型管和回填。2002年,井下换热器的进尺达到600000m。

热泵快速进入瑞士市场的原因

热泵系统在瑞士市场上快速发展的原因主要是那里除了这种到处都有的地热以外,在地壳浅层没有其他地热能资源。另外,也有许多其他的原因,包括技术上的、环境上的以及经济上的原因。

技术原因

大多数人口居住的瑞士高原合适的天气条件:大气温度在0℃附近,冬天日照很少,

地下浅层温度在10~12℃之间,长供暖期。

恒定的地下温度通过正确选型尺寸,可以提供热泵最好的季节运行因素和长期使用寿命。

地热热泵以分散方式进行安装,适合于独立用户需要,避免了如同区域供暖系统的昂贵的热分配。

安装位置在建筑物附近(或建筑物地下),相对自由,在建筑物内对空间的要求也不高。

至少对小型系统来说,不需要进行回灌,因为在系统闲置期(夏天)地下的热能可以自动恢复。

环境原因

没有交通运输、储藏和运行的危险(与石油相比);

没有地下水污染的危险(与石油相比);

系统运行可以减少温室气体二氧化碳的排放。

经济原因

环境友好的地源热泵安装成本比得上传统(燃油)系统的安装(赖贝奇,2001);

比较低的运行成本(与利用化石燃料供暖进行比较,不需购买石油或天然气,和燃烧器控制);

对环境友好的热泵,当地给予对用电费用优惠。

二氧化碳的排放税预计要实施。

进一步快速推广地热热泵的刺激因素是公用事业的“能量合同”。它暗示了利用热泵的公司以自己的成本设计、安装、运行和维护地热热泵,同时以合同价格卖热能或冷能给合适的用户。

尽管绝大多数地热热泵是为单独住宅供暖(生活热水),但一些新的利用方式正在出现(包括各种井下换热器系统,联合太阳能进行热量采集和储存、地热供暖和制冷,“能量堆”)。对于每2km2一台机组,它们的地区密度是世界上最高的。这保证了瑞士在地热直接利用方面是有优势的(在世界上前五个国家中人均装机容量)。相信瑞士的地热热泵在相当长的一段时间内会兴盛下去。

9 英国的地热热泵

在英国,路特·开尔文努力发展了热泵理论,但利用热泵进行供暖却进展缓慢。第一个安装地热热泵的记载要追溯到1976年夏天。小型闭路系统的先锋设置是在90年代初期苏格兰的住宅进行安装的。英国花了很长时间发现为什么到目前为止在英国该项技术要落后于北美和北欧。首要的原因是相对温暖的天气、房屋材料的保温性较差、缺少适合的热泵机组和与天然气庞大管网的竞争。

在20世纪90年代中期,通过吸取加拿大、美国和北欧地区利用热泵的经验教训,英国的地热热泵开始缓慢发展。他们利用很长时间确定合理的技术来适用于本国的住宅材料,以及克服英国特有的各种问题。另外的一个难题就是英国的地质条件复杂。

过去的两年时间里,热泵已经被公认在几个英国政策里扮演着重要的角色,例如供热保障程序、可再生能源以及能源效率目标。

在英国,很少人知道其实热泵系统比起传统的那些系统可以大量减少二氧化碳的排放。利用英国电网的地热热泵系统将会立刻减少40%~60%的二氧化碳排放量。随着英国电网在将来几年变得越来越清洁,长寿热泵的排放量也会进一步下降。建筑师和发展商发现新的建筑评价标准正开始考虑二氧化碳这个新参数。

从非常小的起步,目前地热热泵系统已经出现在整个英国,从苏格兰到Cornwall。私人建筑家、房地产商和建筑协会现都成为这些系统的消费者。室内安装热泵系统一般在25kW到2.5kW之间,主要选择各种水对水和水对空气的热泵,安装在几种不同地质条件的地区。

最近宣称有拨款计划(清洁天空项目)会帮助建立该项技术的部门鉴定,会建立可信的安装队伍、技术标准以及适用于英国室内的热泵。随着去年英国主要的用户发起了热泵安装发展到1000家的活动,希望对于该项技术的兴趣能够快速增长,同时希望在将来几年能够大量涌现出室内地热热泵安装的成功案例。

另一个利用地热热泵的重要领域就是供暖和制冷都需要的商业和公共建筑。2002年国际能源协会热泵中心安排了首批国家级研究,对热泵可能减少二氧化碳的排放量进行研究(IEA,2002)。其中第一个就是在英国展开的,研究结论是热泵系统应用于办公室和小商店效果最好。第一个不在室内安装的热泵仅25kW,是在Scilly的Isles的健康中心。这个系统在接下来的2000年到今天得到迅速发展,设备尺寸和型号目前已经达到300kW。

热泵的利用已经发展到学校、单层或者多层的办公楼和展览中心。显著的一个例子就是Derbyshire的国家森林展览中心、Chesterfield、Nottingham、Croydon地区的办公楼以及Cornwall的Tolvaddon能源公园。一个大型的系统已经在Peterborough地区的新宜家销售中心进行安装。这些系统的安装采用了各种各样的类型,有简单利用地板供暖的,反循环热泵供暖和制冷的,也有复杂的整合机组同时进行供暖和制冷的。单独的或者是混合的配置都已经被采用,包括利用大型地下水平循环和其他相互联系的钻孔网。

10 瑞典的地热热泵

20世纪80年代初期,地热热泵在瑞典开始盛行。到1985年,已有50000台热泵机组被安装。随后较低的能源价格和技术质量问题使热泵市场萎缩,在接下来的10年里,平均每年安装2000个热泵机组。1995年,由于瑞典政府的支持和补贴,公众对地热热泵的兴趣开始增强。根据占住宅销售市场约90%的瑞典热泵机构(SVEP)统计的销售数据显示,2001年和2002年大约有27000个热泵机组被安装(见图8)。因此,安装的机组数量估计达到200000台。

目前,热泵是瑞典小型住宅区最流行的采用液体循环的供暖方式,由于当前的油价,它替代了烧油;由于电费高昂,它又替代了电;由于方便而替代了木炭火炉。直接利用电加热的发展速度已相当减慢。除了住宅方面,还有一些大型的系统安装(包括闭路和开路循环)用于区域供暖网。所有热泵机组平均输出的热能估计大约10kW。

瑞典地热热泵的安装通常建议占标称负荷的60%,即每年大约3500~4000个小时满负荷运行。整合在热泵里的电加热器提供剩余的负荷,有将热泵负荷增加到80%~90%的趋势。大约80%的热泵采用的是垂直类型(钻孔类型)。在住宅里,钻孔的平均深度大约125m,水平类型平均循环长度大约350m。开式、充满地下水的单U型管(树脂管,直径40mm,压力正常6.3bar)几乎用于所有的热泵安装。当热量需要被回灌入地下时,双U型管有时候被采用。热反应测试已经显示自然对流在充满地下水的钻孔中比填满砂(砾石)的钻孔热交换更强烈。地源热泵的盛行已经使人们逐渐关注相邻钻孔之间长期热影响的问题。

图8 每年瑞典热泵销售数量对比图

用于客户住所的大型系统正在变得越来越流行。用来制冷的垂直式安装正在占据市场,但在住宅方面仍然没有引起人们的兴趣。在商业和工业上制冷的需求为地热热泵打开了一个崭新的市场。

热泵技术上的发展有由涡轮式压缩机逐渐代替活塞式压缩机的趋势,它的优点是运行平稳、设计简洁。另外人们对各种容量控制也产生了兴趣,例如在同一个机组里分别安装一个小型压缩机和一个大型压缩机,夏天,生活热水可以通过小型压缩机来供给。绝大多数进口的热泵利用的工质是R410A。瑞典生产商仍然利用的是R407C,但有向R410A转变的趋势,还有的对丙烷也感兴趣。目前正在研究利用极少量的工质来组建热泵。一些生产商通过利用废气和土壤作为热源的热泵抢占市场。废气可以被用来预加热从钻孔开采出来的热运移流体,或者热泵闲置时灌入地下。

在大型钻孔型热泵系统里,为了确保系统长期运行,不得不考虑地下热能的平衡。如果主要是满足热负荷,则在夏天必须向地下回灌热能。自然界的可再生能源,如室外空气、地表水和太阳能都应该被考虑。在Nasby公园,在建筑物下面安装了一套系统,施工了48个200m深的钻孔,利用400kW的一个热泵基本提供热负荷,每年运行6000个小时。夏天,从附近的湖引来的地表温水(15~20℃)通过钻孔灌入地下。

11 挪威的例子

在奥斯陆的Nydalen,180个基岩井将会是给一个接近20万m2的建筑进行供热和制冷的关键。这是欧洲这种类型的系统里最大的项目。

一个能量供应站将为Nydalen的这个建筑供暖和制冷。通过利用热泵和地热井,热能既可以从地下采集,也可以将能量储存地下。夏天,但有制冷需要时,热能可以灌入地下。基岩的温度可以从平常的8℃上升到25℃。在冬天,热能可以用来供暖。供暖的输出功率是9MW,而制冷是7.5MW。与电、石油和天然气供暖相比,每年供暖的成本可以减少60%~70%。供暖和制冷的联合调用确保了能量站的高效利用。

这个项目最独特的地方是地热能量储藏。这里的180个井,每个都深200m,可以提供4~10kW能量。整个储热基岩的体积是180万m3,主要在建筑物的下面。塑料管形成封闭环路,用来传递热能。

该项目总投资是6千万挪威克朗(相当于750万欧元)。这比起传统方式(即没有能量井和收集装置)多投资1700万挪威克朗。然而,每年购买的能量减少约400万挪威克朗,项目还是有利润的。这个项目由政府实体Enova SF和奥斯陆能源基金拨款支持了1100万挪威克朗。

能量站按计划在2003年4月开始建设,包括施工一半的基岩井。剩下的井可能安排在2004年的建设中。

该项目的细节可以在项目组www.avantor.no和热能储存www.geoenergi.no两个网站上查询。

结论

地热热泵是一个刚兴起的技术,有能力利用地下巨大的可再生贮存能量,提供高效率的供暖和制冷。它们正逐渐被认为是替代化石燃料的一种选择,在许多国家,它们在对建筑进行供暖和制冷时可以极大地减少二氧化碳的总排放量。相信安装热泵系统的数量和国家都会快速增长起来。

参考文献(略)

烂漫的白开水
娇气的人生
2025-07-27 17:37:36
专家认为,未来想要实现零碳排放,能源系统将主要依靠低成本太阳能发电。到2025年,全世界必须建成约100家太阳能电池板工厂,以便到2035年实现世界能源供应“去化石化”。如果没有以光伏为代表的可再生能源,通过技术进步实现的成本快速下降,那么实现“碳中和”目标将更加艰巨。

芬兰拉彭兰塔工业大学(LUT University)太阳能经济学教授克里斯蒂安·布雷耶的研究小组,对通往未来零排放能源系统的过渡转化途径进行了建模。他说:“世界必须尽快、安全且经济高效地实现零温室气体净排放,需要对能源系统进行去化石化,要做到这一点,需要为世界每个地区提供技术上可行、成本优化的能源系统转化的过渡途径。我们的计算对如何实现转化给出了答案。”

LUT的成本优化模型发布于2019年,模型展示了如何实现净零碳排放的全球能源系统。在该模型中,实现零排放的一年中,太阳能光伏板(PV)满足了所有用途的全球能源总需求的69%。其余的来自风能、生物质和废物、水力发电和地热能。

布雷耶强调,他的零排放情景不包括核电,因为它“太贵了”。光伏技术正变得越来越便宜;另一方面,核电站的建设成本却在上升。此外,安装和运行太阳能发电厂更容易、更快、风险更低。

LUT研究人员基于太阳能的模型提出了两个问题。

首先,如果要实现将全球变暖保持在1.5摄氏度(2.7 F)以下的国际公认目标,那么到什么时间点地球温室气体排放必须达到净零排放呢?

其次,如果要实现这一气候目标,必须建成多少座太阳能电池板制造厂呢?何时建成才能满足太阳能在所有能源生产中高达三分之二呢?

英国利兹大学的气候科学家Piers Forster说:到2021年初,要使全球变暖保持在1.5摄氏度以下,人类最多可以向空气中释放出1,950亿吨二氧化碳,而自工业革命开始以来,人类已经向大气排放了1,700亿吨二氧化碳。

仅在2019年,全球排放总量约为40亿吨二氧化碳。如果未来几年的排放量大致维持在2019年的水平(很有可能),则剩余的二氧化碳排放预算将在2025年底之前用完。在那之后,世界将处于碳超标状态,并可能导致气候变化更危险。

布雷耶说:“我们必须在2025年之后尽快实现零排放。目前零排放的政治目标年是2050年,为时已晚。”

为了避免危险的气候变化和长期海平面上升,现在释放到大气中的大部分碳都必须在未来几十年内收回,那将是非常昂贵的。布雷耶认为,更快地扩展可再生能源系统并尽快关闭燃煤发电厂将便宜得多。

原因如下:产生一兆瓦时的燃煤电力会导致大约1吨的二氧化碳排放。从长远来看,如果将二氧化碳永久存储起来,每吨成本可能约为100欧元。相比之下,到2020年,一兆瓦时的电力在德国的电力平均交换成本为33欧元。这意味着燃煤发电实际上比没有碳排放的光伏发电或风力发电厂的电价贵四倍。

布雷耶表示:“这还不包括燃煤发电厂排放的重金属的 健康 成本。公共卫生专家估算,仅在德国,这种污染每年就造成约5,000人过早死亡,而在亚洲,这一数字将近一百万。”

LUT模型估计,实现净零排放的地球,将有90%来自电力,而不是化石燃料,其中69%的电力将来自太阳能光伏。为了实现这一目标,需要多少个巨型光伏组件工厂呢?需要何时建成呢?

这取决于我们对世界仅剩的200亿吨二氧化碳碳预算的紧张程度。让我们想象一下到2035年完全由可再生能源驱动的全球系统,并假设新的光伏工厂将在2025年建成,因此它们可以在10年内完成工作。

迄今为止,全球最大的光伏组件工厂正在中国安徽省建设。根据开发商协鑫集成 科技 股份有限公司的公告,其年生产能力为60GW(GW或吉瓦,功率单位,1GW=10亿瓦),该项目总投资180亿元,其中固定资产总投资约120亿元,在2020年至2023年分四年四期投资建设。2020年全球光伏产能约为200GW,其中大部分在中国。

LUT模型预计,当全球实现碳中和,全球已安装的可再生能源发电量为78,000GW。其中包括63,400GW的太阳能PV,约8,800GW将在欧洲。

我们能否在2024年之前建成足够多的工厂,并到2035年生产所需数量的太阳能电池板呢?答案是:差远了!根据当前的行业计划,到2024年,将仅建立400GW的年PV生产能力,并且全球仅生产、安装了约1,500GW的PV。为了在2035年之前实现零排放且三分之二的能源来自太阳能,在2025至2035年之间生产、安装另外62,000GW的光伏,即每年6,200GW。

这意味着想要应对气候变化挑战,到2024年,我们将需要至少再建设100个与安徽60GW光伏组件工厂相同规模的超级工厂,以实现合计6,000 GW的年生产能力。如果欧洲要生产自己的光伏组件,而不是进口光伏组件,那么这100家巨型工厂中的15家必须设在欧洲。

这些数字告诉我们,作为全球净零排放竞赛的核心要素,可再生能源的快速扩张在技术上是可行的。毕竟,人类肯定有能力建造和经营100家巨型工厂。当前面临的关键问题是:我们是否会认真对待气候科学家的警告,撸起袖子加油干呢?

去年12月16日-18日召开的中央经济工作会议上,第一次将“做好碳达峰、碳中和工作”列入年度重点任务之一。也是第一次将碳达峰和碳中和目标,写入正在编制的经济和 社会 发展“五年”规划。

此前高层指出,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。(又称30.60目标)这是中国首次向全球明确实现碳中和的时间点,也是迄今为止各国中作出的最大减少全球变暖预期的气候承诺。

在高层明确任务之后,多部委也开始响应:

12月20日,发改委强调要部署开展碳达峰、碳中和相关工作;

12月21日,央行表示为了实现碳中和目标,会加大对新能源产业、能源高效利用产业的金融支持;

12月22日,生态环境部副部长透露,生态环境部正制定2030年前碳排放达峰行动计划、行动方案,支持有条件的地区率先达到碳排放峰值。

不过,我国碳排放强度依然很大。从行业看,电力行业碳排放占比达到41%,因此加速调整能源结构迫在眉睫。据《中国实现碳中和的路径建议》研究报告,实现“碳中和”目标的多种可行方案中,“加速可再生能源转型”是其中最有效的路径之一。即如果中国持续提升公路运输、建筑和工业领域的直接电气化程度,且通过普及零碳电力(太阳能等清洁能源发电)供应,构建规模更大、更清洁化的电力系统。那么,电力行业的碳排放量最快可于2024年达峰,此后将迅速下降。

国家能源局新能源司的最新预计是,到今年年底光伏发电装机规模将超过风电,成为全国第三大电源。根据国家能源局目前的测算情况,“十四五”新增光伏发电装机规模需求将远高于“十三五”。中国光伏行业协会也预计,中国年均光伏新增装机规模将在70GW到90GW之间,是当前年均新增装机量的两倍有余。

此外,用户光伏空间正在打开。华创证券指出,预计今年我国光伏新增装机量将会在35GW左右,如用户新增装机量达到10GW,占比将会超过28.5%,意味着光伏正在走向寻常百姓家。用户光伏潜在空间巨大,价值尚未被完全开发。按10%的渗透率和3.5元/W的单瓦价值计算,市场空间或达1.4万亿元。

据不完全统计,除目前已实现“碳中和”的苏里南和不丹两个国家外,瑞典、英国等6个国家已立法“碳中和”,欧盟作为整体和加拿大等5个国家地区处于“碳中和”立法状态(进程),中国、日本等14个国家发布了“碳中和”政策宣示文档。

全球范围“碳中和”目标的实现,都绕不开依赖于发展、利用以光伏为代表的可再生能源、清洁能源。2019年,中国硅料、硅片、电池片、组件占全球产量的比重分别达到了67%、98%、83%和77%,而中国生产的光伏产品,60%-70%出口到了全球各地。全球光伏组件出口商前十名中,绝大多数都是中国企业。作为全球最大的光伏生产基地,全球碳中和也意味着,全世界电力系统将更加依赖于中国光伏!

洁净的书本
诚心的犀牛
2025-07-27 17:37:36
发展低碳经济,要用清洁能源替代化石能源。

中国发展清洁能源,主要包括:

核电——作用和潜力大

水电——目前开发力度不够,三年没有上新项目了!

沼气——是解决农村用能的重要途径,还可以有效避免上砍柴破坏树木的行

太阳能热水器——解决生活用热水,可以替代部分化石能源。建议有条件的地方,积极安装。

风电、光伏发电——成本还比较高,接入电网也存在一定困难

纤维素乙醇——替代石油(技术上还有很多难关)

直率的外套
健康的星月
2025-07-27 17:37:36
你知道有哪些发电方式

火力发电内能转化为电能

核电厂核能转化为电能

风力发电机械能转化为电能

太阳能发电光能转化为电能

地热能发电 内能转化为电能

潮汐能发电 机械能转化为电能 利用太阳能发电的方法有三种:

其一为利用光电池,直接将日光转换为电流。

其二利用集热板将水加热,产生蒸汽以推动汽轮机及发电机。

其三则利用日光将水分解成氢与氧两种气体,再用氢作为发电的燃料。

上述三种方法均须有稳定的日照及广大的土地,例如要建一座发电量与核四厂相当的太阳能电厂,则约需6750公顷的土地,约为核四厂现址面积的十四倍,而且还须保证这块土地有充足而稳定的日照。

风力发电

风力发电是直接利用风力推动发电机中的导线线圈来发电,其最大特色即为荷兰的标记~风车。台湾澎湖的七美也有座风力发电厂,其发电量约比核四核厂小了一百万倍,可知欲发展这种电厂也需有大量的土地,而稳定且强劲的风力也是不可或缺的条件。

海水温差发电

在海上阳光只照到海的表层而照不到深处,因此有些海面与深海的温差可达200℃,目前研究显示可利用某些特殊气体(如氨气),在流经海面时吸热成为气态推动气轮机发电,用过的气体再送入深海冷却成液体而继续下一次循环。就技术而言,其最大的挑战是深海管路的铺设,也正因此一挑战尚无法有效克服,故迄今世界上还没有一个商业性海水温差电厂。

地热发电

地球为半径六千公里的球体,其表面岩石层的地壳约为三十公里,而因地球中心温度高达摄氏六千度左右,故一般地区每深入地层一百公尺,温度上升约30℃。在火山温泉地区,其温度上升则可达100℃,此为岩浆从地壳裂缝慢慢涌出的结果,而地下水流经这些地区后会变成高温高压的蒸汽,如以适当的工程方法引出这些蒸汽,即可送入汽轮机作功而发电。台湾地处环太平洋火山带,具有很多地热区,但却因酸性太高或蒸汽含量太少,大都无法用来发电。1980年国科会曾于宜兰清水地区兴建一座地热示范电厂,但后因地热产量衰减,已于1993年底停止运转。

常见发电方式有哪些?

水力发电,这是推荐使用的方式,但是这个受水利条件 的限制。火力发电,就是将煤燃烧时产生的热能转化为电能。风力发电,利用风能发电也是比较常见的,但是风能不是很稳定的。核能发电,核电站也是将来的一个发展方向,但是要控制好它的副作用。太阳能发电,这是推荐使用的方式,完全没有污染。

目前存在的发电形势有哪些

主要有:

火力发电,

水力发电,

还有:

风力发电,

潮汐发电,

太阳能发电,

核能发电。

我国发电方式有哪些?

迄今为止,我国最主要的发电方式为火力发电与水力发电.

一、火力发电

火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温,高压的水蒸气,然后再由水蒸气推动发电机来发电.

火力发电根据使用的燃料不同,可分为石油火力发电,煤炭火力发电和LINGC(液化天然气火力发电)等.

火力发电的主要设备系统包括:燃料供给系统、给水系统、蒸气系统、冷却系统、电气系统及其他一切辅助处理设备,火力发电也是传统的电力能源获取的手段之一,尤其是在缺少水资源的地区.相对于需要修建大坝和水库的水力发电,具有投资少,见效快的特点.但火力发电对环境的污染较严重,这是目前急需要解决的难题.

二、水力发电

水力发电与火力发电相比,因为水力发电所用之水不计成本,所以水力发电的成本只及火力发电的四分之一,显得较为经济.下面就介绍一些有关水力发电站的情况:

自建国至1983年,我国已建成了大型水电站100多座,还有9万多座小型水电站[1],遍及1500多个县,发电量占全国总发电量的16.8%,然而这些发电量还只占可开发水力资源的2.5%.

我国的可开发水能资源为3.8亿千瓦,年发电量为1.9万亿度,其中近期可

开发的为1.03亿千瓦,年发电量4300亿度,居世界首位.自80年代以来,我国继续大力发展水力发电,在黄河上游,兴建装机容量为120万千瓦的刘家峡水电站和容量为150万千瓦的龙羊峡水电站,在长江三峡出口兴建装机容量为271.5万千瓦的葛洲坝水电站.长江三峡是世界著名的大峡谷,可开发的水资源占全国的53%,是天下无双的水力资源富矿 ⑵.脱贫致富,小水电将成为大规模持续发展的农村能源.

有哪些方法可以发电?原理是什么? 30分

1、火电:

利用煤、石油和天然气等化石燃料所含能量发电的方式统称为火力发电。

中国煤炭资源丰富,探明储量达4万亿吨,现年开采量达14亿吨,在一次能源中占70%,故火力发电在中国电源结构中始终占绝对的主要地位,装机容量和发电 量都在70%以上。

“十二五”时期,火电仍然是我国的主力电源,新开工建设火电规模将达2.6亿至2.7亿千瓦。

2011年底,全国火电装机容量达到76546万千瓦,占全部装机容量的72.5%。2011年1-12月,全国火电发电量为38137亿千瓦时,占全部发电量的82.54%

2、水电:

水电是清洁能源,可再生、无污染、运行费用低,调峰能力强,有利于提高资源利用率和经济社会的综合效益。在地球传统能源日益紧张的情况下,世界各国普遍优先开发水电

,大力利用水能资源。中国不论是已探明的水能资源蕴藏量,还是可能开发的水能资源,都居世界第一位。

进入21世纪,特别是电力体制改革的推进,调动了全社会参与水电开发建设的积极性,我国水电进入加速发展时期。

2004年,以公伯峡1号机组投产为标志,中国水电装机容量突破1亿千瓦,超过美国成为世界水电第一大国。溪洛渡、向家坝、小湾、拉西瓦等一大批巨型水电站相继开工建设。

2010年,以小湾4号机组投产为标志,我国水电装机已突破2亿千瓦。目前,中国不但是世界水电装机第一大国,也是世界上在建规模最大、发展速度最快的国家,已逐步成为世

界水电创新的中心。

2011年底,全国水电装机容量达到23051万千瓦,占全部装机容量的21.83%,2011年1-12月,全国水电发电量为6108亿千瓦时,占全部发电量的14.01%,

3、风电:

风电行业的真正发展始于1973年石油危机,20世纪80年代开始建立示范风电场,成为电网新电源。在过去的20多年里,风电发展一直保持着世界增长最快的能源地位,风电技术

日臻成熟。

“十一五”期间,在国家的大力支持下,经过科研机构、风电企业等各方的共同努力,我国风电产业发展引人瞩目,已成为新能源的领跑者。中国《可再生能 源发展“十一五

”规划》中提出的“2010年风电总装机容量达到1000万千瓦”的发展目标在2008年已经达到,《可再生能源中长期规划》中2020年风电装机3000万千瓦的目标也已在2010年提前实

现。2011年底,全国风电装机容量达到4505万千瓦,占全部装机容量的4.267%,2011年1-12月,全国风电上网发电量为732亿千瓦时,占全部发电量的1.55%。

在世界海上风电开始进入大规模开发阶段的背景下,中国海上风电场建设也拉开了序幕。中国东部沿海的海上可开发风能资源约达7.5亿千瓦,不仅资源潜力巨大且开发利用市

场条件良好,中国计划在距离海岸大约30英里的地方大规模建造水上风力发电站,这些发电站可能建在巨大的浮体上,也可能深入水下120英尺建在大陆架上。鉴于海面上风力通常

比地面上大,因此海上风力发电更具有发展前景。

4、核电:

核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。核电站还可以大大减少燃料的运输量。例如,一座100万千瓦的火电站每年

耗煤三四百万吨,而相同功率的核电站每年仅需铀燃料三四十吨。核电的另一个优势是无污染,随着世界上煤和油的不断枯竭,在不久的将来,核电必然会取代火电成为第一大电

源。

从1954年前苏联建成世界上第一座试验核电站、1957年美国建成世界上第一座商用核电站开始,......>>

常见的发电方式有五种 分别是什么

水,风,太阳,火力,机戒

节能发电的方式有哪些?

随着世界能源消耗的不断增加和能源危机的不断加剧,科学家们正在努力寻找新的能源开发途径,以便作为未来能耗的补充。现在除正在使用的煤碳、石油、核裂变核聚变发电外,科学家们正在努力开发太阳能发电、风力发电、磁流发电、水力发电等,此外,科学家们又另辟蹊径,研究和开发更广泛的发电技术。 排风再利用发电系统 由国内风电专家林其访提出的新型环保能源利用系统,这是一项非常符合当前国家政策指引的高新技术项目,这是通过回收废风中的能量达成再生能源之目的.充分实践节能减排之政策.项目采用了超低速风力发电技术,结合高效率的叶片达成100%回收生成被风所消耗的电能.目前我们已完成1.1KW电机的电能全额回收的技术开发,后期将进一步完善该技术,以使项目产品的技术达成到100%以上的增值效果,本项目回收的是由负压风机排出的废风是配套于现有的负压风机设备的一种利用被白白废弃的风能进行发电的装置,其价值在于最大限度地回收被废弃的风能并高效地将之转变成电能后加以存储和利用。 现在很多先进的企业都用到了人造风发电,在工厂里都会安装排风系统,利用排出来的风再次利用用于发电,既环保又经济,再次创造经济效益,走可持续发展到路。 高温巖体发电 3千米、温度300℃的地下深处的高温岩石,其特点是没有蒸气或热水;这种高温巖体发电和地热发电一样,其很大的优点是本来没有热水,而是利用这种高温热量人工制作蒸气,通过涡轮机发电。 高温巖体发电方式的优点是:在地下产生热,注入水产生水蒸气,对环境影响少,可大规模发电。作为火山之国的日本,高温巖体十分普遍,该热能贮藏量十分丰富,作为自然能源,这种发电方式今后将会具有广阔的发展前景。我国 *** 也是发展高温巖体发电的理想场所。 污水沉淀发电 日本东京大学已经发明了一种使污水沉积物固体化的方法。据称:这种固体沉积物每公斤具有4000至4500大卡的发热量,相当于低质煤的发热量。利用它进行发电,既可节约能源,又可保护环境卫生,真是一举两得。 垃圾发电 加拿大对垃圾处理十分重视,把它当作发电的燃料。他们在安大略湖边上建立了用90%的煤和10%的垃圾作燃料的发电站,发电能力为一万五千至二万千瓦。 用垃圾作能源的比例,丹表已占75%,瑞典占50%,德国占30%,日本占25%,法国占21%,英国占6%。 匈牙利于1982年就建成了一座规模巨大的垃圾发电厂,它有四个用天然气引火的垃圾燃烧室,每个燃烧室可以燃烧15吨垃圾,电站既能发电,又可给热网提供温度高达250℃的蒸气,这座垃圾发电站全部实现自动比,工作人员不用直接接触垃圾,电站的设计特别注意环境的保护,燃烧出来的气体,用过滤器来过滤处理,剩下的灰烬是很好的肥料。目前世界各国都在设法消灭垃圾,利用垃圾。我国垃圾位于世界之首,合理处理和应用是当务之急。 高炉顶压发电 我国自行设计建造的第一套炼铁厂高炉顶压发电设备在1988年就投入正式运行。这套设备发电能有力为1700千瓦,年发电量可达1000万度,如果每户按两盏25瓦灯泡计算,那么这套发电设备足可供一座十几万人口城市的照明之用。 植物发电 日本科学家发现,叶绿素能直接把太阳能转换成电能。他们把从菠菜叶内提取的叶绿素与卵磷脂混合,涂在透明的氧化锡结晶片上,用它作为正极安置在“透明电池”中,当它被太阳光照射时,就会产生电流。 氦核聚变发电 氦——3是氦的一种问位素,用它作核聚变燃料,不但热值非常高,而且它产生的射线剂量很低,所以很安全。 日本将从1995年度开始研究这项重要技术,预计21世纪初向月球发射探测火箭。从月球向地球运输氦——3采集系统将在2......>>

有哪些类型的发电厂

发电厂(power plant)又称发电站,是将自然界蕴藏的各种一次能源转换为电能(二次能源)的工厂。19世纪末,随着电力需求的增长,人们开始提出建立电力生产中心的设想。电机制造技术的发展,电能应用范围的扩大,生产对电的需要的迅速增长,发电厂随之应运而生。现在的发电厂有多种途径的发电途径:靠燃煤、石油或天然气驱动涡轮机发电的称热电厂,靠水力发电的称水电站,还有些靠太阳能(光伏),风力和潮汐发电的小型电站,而以核燃料为能源的核电站已在世界许多国家发挥越来越大的作用。

分类

水力发电厂

利用水流的动能和势能来生产电能,简称水电厂。水流量的大小和水头的高低,决定了水流能量的大小。从能量转换的观点分析,其过程为:水能→机械能→电能。实现这一能量转换的生产方式,一般是在河流的上游筑坝,提高水位以造成较高的水头;建造相应的水工设施,以有效地获取集中的水流。水经引水机沟引入水电厂的水轮机,驱动水轮机转动,水能便被转换为水轮机的旋转机械能。与水轮机直接相连的发电机将机械能转换成电能,并由发电厂电气系统升压送入电网。建造强大的水力发电厂时,要考虑改善通航和土地灌溉以及生态平衡。水电厂按电厂结构及水能开发方式分类有引水式、堤坝式、混合式水电厂;按电厂性能及水流调节程度分类有径流式、水库式水电厂;按电厂厂房布置位置分类有坝后式、坝内式水电厂;按主机布置方式分类有地面式、地下式水电站。水力发电厂建设费用高,发电量受水文和气象条件限制,但是电能成本低,具有水利综合效益。水轮机从启动到带满负荷只需几分钟,能够适应电力系统负荷变动,因此水力发电厂可担任系统调频、调峰及负荷备用。

小水电

从容量角度来说处于所有水电站的末端,它一般是指容量5万千瓦以下的水电站。世界小水电在整个水电的比重大体在5%-6%。中国可开发小水电资源如以原统计数7000万kW计,占世界一半左右。而且,中国的小水电资源分布广泛,特别是广大农村地区和偏远山区,适合因地制宜开发利用,既可以发展地方经济解决当地人民用电困难的问题,又可以给投资人带来可观的效益回报,有很大的发展前景,它将成为中国21世纪前20年的发展热点。

世界上,许多发展中国家都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。中国小水电可开发量占全国水电资源可开发量的23%,居世界第一位。

火力发电厂

利用煤、石油、天然气或其他燃料的化学能来生产电能,简称火电厂。从能量转换的观点分析,其基本过程是:化学能→热能→机械能→电能。世界上多数国家的火电厂以燃煤为主。煤粉和空气在电厂锅炉炉膛空间内悬浮并进行强烈的混合和氧化燃烧,燃料的化学能转化为热能。热能以辐射和热对流的方式传递给锅炉内的高压水介质,分阶段完成水的预热、汽化和过热过程,使水成为高压高温的过热水蒸气。水蒸气经管道有控制地送入汽轮机,由汽轮机实现蒸气热能向旋转机械能的转换。高速旋转的汽轮机转子通过联轴器拖动发电机发出电能,电能由发电厂电气系统升压送入电网。

原子能发电厂

利用核能来生产电能,又称核电厂(核电站)。原子核的各个核子(中子与质子)之间具有强大的结合力。重核分裂和轻核聚合时,都会放出巨大的能量,......>>

常见的发电方式有哪几种

目前主流的发电方式有太阳能发电、火力发电、水力发电、风能发电、核电这几种

太阳能发电是直接将光线通过太阳能电池板转换为电能

火力发电和核电是通过将水加热后形成的水蒸气推动发电机,所不同的是一个是用燃烧来加热水,一个利用核裂变产生的热量来加热水

水力发电和风能发电都是利用自然界的能量直接推动发电机运作,不需要额外的能量转换。

细心的吐司
传统的墨镜
2025-07-27 17:37:36

其实在“十四五”“十五五”期间,我国将持续优化风电和太阳能发电发展布局,在继续推进集中式基地建设的同时,全力支持分布式风电、光伏发展,鼓励有条件的地区大力发展海上风电。

对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,是实现能源可持续发展的重要举措。海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。

创新和技术在风电领域发挥着越来越重要的作用,结合GIS技术、大数据、物联网、移动应用和智能应用等先进技术的综合应用给风电行业前景带来更大的价值提升,解决着困扰风电行业的深层顽疾。数字化技术的深度应用打通了数据壁垒,实现数据共享,让风电行业与数字化实现深度融合。

图扑软件(HIghtopo)打造风电场远程集控中心可视化系统,建立风电场远程监控自动化,实现风电场运行管理、检修管理、经营管理和后勤管理集中化,是风电发电场未来发展的趋势,同时也是保障风电场综合利用效益最大化实现的方式。

伴随着风电开发的深入发展,偏远山区,高海拔地区、海上风电正在成为风电的主要方向,而在这些地区的运维人员,必然面对生活条件艰苦、工作环境恶劣的问题。其次,在大型的风电场中有几十台甚至上百台风电机组,同时一个风力发电公司拥有多个风电场,多个风电场分散于不同的区域,如需对每个风电场单独进行管理,需要消耗大量的人力物力,也给电网的调度和电网的安全运行带来诸多问题。通过结合GIS技术、云计算、大数据、物联网、移动应用和智能应用等先进技术的综合应用,让运维感知更透彻、互通互联更全面、智能化更深入,可以大大提升现场作业人员的工作效率。

风电的实用价值

1、实现能源管理绿色化

利用HT的可视化技术,以及结合GIS技术的应用,进行全方位的数字化建设,让风电场的监控更为直观,控制更加精准,提高风电场的整体管理水平和运维效率,推进风电场的绿色化和智能化的转型升级进程。

2、运营管理精细化

可实现整个风电场系统的过程管理和运行管理,提高了风电场系统的管理效率。通过数据面板信息实时了解风电场的运行情况实现精准的管理。利用大数据分析及风电模型仿真技术,定量分析运营过程中的各项运营指标,用数字驱动风电机的运营管理与决策。

3、监测管理透明化

实现远程监控、无人值守,通过远程智慧控制,只需在集控中心就能实现均衡输送、精确调节,并能及时发现风电机损耗情况,及时检测修复,保障风电场的安全运维。