建材秒知道
登录
建材号 > 能源科技 > 正文

核能为什么是不可再生资源

粗心的小笼包
可靠的大神
2023-02-10 15:32:27

核能为什么是不可再生资源?

最佳答案
拼搏的月亮
背后的白羊
2025-07-28 12:39:25

核燃料是矿产资源,属于非可再生资源,所以核能属于非可再生能源。

可再生能源为来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。

月球核能。

早在20世纪60年代末和70年代初,美国阿波罗飞船登月时,6次带回368.194千克的月球岩石和尘埃。科学家将月球尘埃加热到3000华氏度时,发现有氦等物质。经进一步分析鉴定,月球上存在大量的氦-3。科学家在进行了大量研究后认为,采用氦-3的聚变来发电,会更加安全。

有关专家认为,氦-3在地球上特别少,但是月球上很多,光是氦-3就可以为地球开发1万-5万年用的核电。地球上的氦-3总量仅有10-15吨,可谓奇缺。但是,科学家在分析了从月球上带回来的月壤样品后估算,在上亿年的时间里,月球保存着大约5亿吨氦-3,如果供人类作为替代能源使用,足以使用上千年。

最新回答
甜甜的爆米花
俊逸的跳跳糖
2025-07-28 12:39:25

氦3是核能源核聚变的能源,原理和氢弹一样,但如果缓慢释放这种能量就可以用来发很多电。核聚变条件:高温质量轻的元素,比如说氢,铀(氢是最好的材料)核聚变:通过原子的原子核融合释放巨大能量。欢迎采纳!七夕快乐!

鲤鱼白羊
自由的金针菇
2025-07-28 12:39:25
从20世纪90年代开始,包括中国、以色列、日本、印度等国家在内,人类掀起了新一轮的探月高潮,在这次探月高潮中,有一种神秘的元素成为世人共同的目标,它就是——氦-3

氦-3是氦的同位素,含有两个质子和一个中子。氦-3原本大量存在于太阳喷射出来的高能粒子流——太阳风中。在几乎没有大气的月球上,太阳风直接落到月球表面,日积月累,在月面的沙粒、岩石中,氦-3的含量越积越多,成了月壤重要的组成部分。

氦-3最吸引人类的就是它作为能源材料的优秀“潜质”。氘和氦-3可以进行核聚变,这种聚变不产生中子,所以放射性小,而且反应过程易于控制,可算是既无污染又安全。氦-3不仅可用于地面核电站,而且特别适合作为火箭和飞船的燃料,用于宇宙航行。从月球土壤中每提取一吨氦-3,可得到6300吨氢、70吨氮和1600吨碳。

据专家计算,如果采用氦-3核聚变发电,美国年发电总量仅需消耗25吨氦-3;中国1992年的年发电总量只需8吨氦-3,全世界一年有100吨氦-3就够了。以目前全球电价和空间运输成本算,1吨氦-3的价值约40亿美元,而且随着空间技术发展,空间运输成本肯定将大大下降。最近法国科学家宣布,2030年,利用氦-3进行核聚变发电将实现商业化。据估算,月球上有300万到500万吨的氦-3储量,能够支持地球7000年的电量!

另外氦-3在军事、医学等方面也有广大的神通,难怪1克氦-3要比1克黄金贵重三十几倍呢!

大力的犀牛
默默的泥猴桃
2025-07-28 12:39:25

替代能源包括太阳能、风能、核能、地热、潮汐发电等等很多能源都有可能替代煤和石油,氦-3是一种已被世界公认的高效、清洁、安全、廉价的核聚变发电燃料。核能将替代煤,让发电更环保,并没有能源消失的后患。

石油也不只是燃料,而且是重要的工业原料,我们用的塑料大都来自石油。石油的问题不仅仅是能源问题。核聚变将替代核裂变,使核电成为高效、清洁、安全、廉价的能源,个人飞行器将替代汽车,让人可以在空中自由飞行。

扩展资料

1、天然气:如天然气汽车,天然气化工,优点是可以基本替代石油的功能,且储量和使用年限比石油长,石油才50年,天然气要200年,是最佳的能源。

2、可再生能源:太阳能、风能等,能源密度小,要通过电采用转换,可用来替代燃油汽车。

3、煤:煤化工也可作为原油的化工替代,但污染严重,需要开发清洁煤技术。

4、核能:主要是发电,替代柴油发电和供热等。

活力的往事
大方的水杯
2025-07-28 12:39:25

① 氦-3是一种清洁、安全和高效率的核融合发电燃料。开发利用月球土壤中的氦-3将是解决人类能源危机的极具潜力的途径之一。

② 氦-3是氦的同位素,含有两个质子和一个中子。它有许多特殊的性质。根据稀释制冷理论,当氦-3和氦-4以一定的比例相混合后,温度可以降低到无限接近绝对零度。在温度达到2.18k以下的时候,液体状态的氦-3还会出现“超流”现象,即没有黏滞性,它甚至可以从盛放它的杯子中“爬”出去。然而,当前氦-3最被人重视的特性还是它作为能源的潜力。氦-3可以和氢的同位素发生核聚变反应,但是与一般的核聚变反应不同,氦-3在聚变过程中不产生中子,所以放射性小,而且反应过程易于控制,既环保又安全,但是地球上氦-3的储量总共不超过几百公斤,难以满足人类的需要。科学家发现,虽然地球上氦-3的储量非常少,但是在月球上,它的储量却是非常可观的。

③ 氦大部分集中在颗粒小于50微米的富含钛铁矿的月壤中。估计整个月球可提供71.5万吨氦-3。这些氦-3所能产生的电能,相当于1985年美国发电量的4万倍,考虑到月壤的开采、排气、同位素分离和运回地球的成本,氦-3的能源偿还比估计可达250。这个偿还比和铀235生产核燃料(偿还比约20)及地球上煤矿开采(偿还比不到16)相比,是相当有利的。此外,从月壤中提取1吨氦-3,还可以得到约6300吨的氢、70吨的氮和1600吨碳。这些副产品对维持月球永久基地来说,也是必要的。俄罗斯科学家加利莫夫认为,每年人类只需发射2到3艘载重100吨的宇宙飞船,从月球上运回的氦-3即可供全人类作为替代能源使用1年,而它的运输费用只相当于如今核能发电的几十分之一。据加利莫夫介绍,如果人类如今就开始着手实施从月球开采氦-3的计划,大约30年到40年后,人类将实现月球氦-3的实地开采并将其运回地面,该计划总似的费用将在2500亿到3000亿美元之间。

美好的蜜蜂
无奈的星月
2025-07-28 12:39:25

因为氘与氦三(He3)的散射截面比氘氚要小很多,前者在300keV下的截面只有0.8b, 所以需要更多的能量输入,聚变的条件(比如温度和浓度以及约束能量)也更高些。

聚变需要的条件:等离子体浓度,等离子体温度和约束能量

不过也确实如题主所说,氘氚聚变产生的高能中子是个问题,并不能像质子这样容易磁场约束,而且高能质子也可能可以实现直接电能的转化。但因为目前人类技术有限,还远达不到氘与氦三(He3)聚变的条件,更为容易的氘氚聚变因此成为现在的选择。

首先最后一句话从哪里得到的结论呢?氦3既然是从氚中生产的,为啥反而比用氚还便宜呢?怎么考虑也是更贵啊,多了一道生产过程啊。氚在目前的反应中是理论上自持的,就是自己能够循环的。而在氘氦3的反应中,氦3是实际消耗的。显而易见,氚获得氦3来进行反应是贵得多的。氦3聚变难度也要大得多,需要更高的能量引发聚变。目前最简单的做着都不是,的顺利,更别提这个了。

氦3核聚变需要的温度非常高,在近未来只适用于核脉冲爆震发动机,可以用做航天器燃料,对于地球电网之类无意义。无论人类取得怎样的技术突破,氦3不会成为代替化石燃料的新能源,因为利用海水里的氘的条件比利用氦3低。

海水中的氘对现代人类来说多到不行,但氘-氘聚变需要的温度太高,点火要求约为氘-氚聚变的6倍,现有技术只有做成热核武器锅炉才能对外发电。氘-氦3聚变的中子辐射很小,能量输出比氘-氚、氘-氘更强,然而点火要求比氘-氚高10倍,现有技术用不起来。

开采月球氦3是很困难的,想要一克氦3至少要处理一百五十吨月球表土,再从月面运输回来代替化石燃料纯属多此一举,即使靠微波输电打回地球也是直接在轨道上输太阳能转换的电比较好。

傻傻的台灯
怕孤独的身影
2025-07-28 12:39:25

氦-3的提取是一个极其复杂的过程。人们首先需要将月球土壤加热到700摄氏度以上,才可以从中提取到氦-3。开发、运送月球上的能源也有很多难题需要解决。比如,需实现月球和地球之间的人、货运输,首先要有足够大推力的运载火箭。另外,要在没有大气包裹的月球表面着陆,主要只能靠反推火箭来缓冲,如何保障安全是一大难题。此外,氦-3提取成功后如何利用呢?这同样是一个技术难题。

因为使用氦-3的热核反应堆中没有中子(氦-3与氘进行热核反应只会产生没有放射性的质子),故使用氦-3作为能源时不会产生辐射,不会为环境带来危害。但是因为地球上的氦-3储量稀少,无法大量用作能源。幸好,根据月球探测的结果,月球上的氦-3含量估计约100万吨以上。

100吨氦-3便能提供全世界使用一年的能源总量。