人类可利用的能源资源
煤炭、石油、天然气、风能、潮汐能等。
1、煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前。
但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会方方面面的发展的稳定,煤炭的供应安全问题也是我国能源安全中最重要的一环。
2、石油,地质勘探的主要对象之一,是一种粘稠的、深褐色液体,被称为“工业的血液”。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。
石油是古代海洋或湖泊中的生物经过漫长的演化形成,属于生物沉积变油,不可再生;后者认为石油是由地壳内本身的碳生成,与生物无关,可再生。石油主要被用来作为燃油和汽油,也是许多化学工业产品,如溶液、化肥、杀虫剂和塑料等的原料。
3、天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。
而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。
4、风能是因空气流做功而提供给人类的一种可利用的能量,属于可再生能源(包括水能,生物能等)。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。
5、潮汐能海水周期性涨落运动中所具有的能量。其水位差表现为势能,其潮流的速度表现为动能。这两种能量都可以利用,是一种可再生能源。由于在海水的各种运动中潮汐最守信,最具规律性,又涨落于岸边,也最早为人们所认识和利用,在各种海洋能的利用中,潮汐能的利用是最成熟的。
可再生能源是指风能、太阳能、水能、生物质能、地热能等非化石能源,是清洁能源。它们在自然界可以循环再生,是取之不尽,用之不竭的能源,不需要人力参与便会自动再生。在人类历史进程中,有相当长的一段时间是完全依靠可再生能源的,如薪柴用于炊事、取暖、风力用于提水、磨面等。
可再生能源的意义及重要性
发展可再生能源能够保障国家能源安全,可以有效替代化石能源,减少我国能源对外依存度,逐步实现能源自足;是践行应对气候变化自主贡献承诺的主导力量,实现碳中和,能源是主战场,可再生能源是主力军。
同时,发展可再生能源也是培养战略性新兴产业加速技术进步的重要途径,对于调整产业结构、促进转型升级、拉动有效投资,稳经济增长、扩就业都具有重要的意义。
可再生能源的五种有:
1、太阳能发电
太阳能是一种可再生能源,五千多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。
但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。
太阳能电池板的工作方式非常简单,它是由数百万个太阳能电池组成的面板。当太阳照射到这些电池板时,通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能。
这些电能可以为家庭供电,并且价格十分低廉。
2、风力发电
人们看向大海时,会发现海平面上有很多风力涡轮机。虽然它们可能不是最吸引人的,但它们效率非常高。因为欧洲和一些地区有绵延不绝的海岸线,所以风力发电在这些地方比较普遍。
风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。
空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。
快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。
3、水力发电
水力发电系利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。
地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。
4、生物质能
生物质能的应用在日常生活中越来越普遍。生物柴油可以为汽车、公共汽车和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。
5、地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。
因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。
再生能源有:
1、太阳能发电
太阳能是一种可再生能源,5000多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。
2、风力发电
风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。
遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。
3、水力发电
水力发电系(Hydroelectric power)利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。
地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。
4、生物质能
生物质能的应用在日常生活中越来越普遍。生物柴油可以为汽车、公共汽车和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。
5、地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。
除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。像生物能和煤炭石油天然气,主要透过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
木材
柴是最早使用的典型的生物质能源,烧柴在煮食和提供热力很重要,它可让人们在寒冷的环境下仍可生存。
役用动物
传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。
水能
磨坊就是采用水能的好例子。而水力发电更是现代的重要能源,尤其是中国、加拿大等满是河流的国家。
风能
人类已经使用了风力几百年了。如风车,帆船等。
太阳能
自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。
地热能
人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。
海洋能
海洋能即是利用海洋运动过程来生产的能源,海洋能包括潮汐能、波浪能、海流能、海洋温差能和海水盐差能等,一些沿海国家的海岸线,就很适合用来作潮汐发电。
生物能
生物质能是指能够当做燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和沼气(甲烷)牛粪等。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。
它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。
像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
水电
一是在做好布局的基础上,落实电力市场水电消纳和输电方案,包括四川、云南水电外送,以及“十三五”投产的重点水电。
二是落实水电与促进地方经济社会发展和扶贫协调机制,研究建立西藏水电的开发协调机制,促进藏东南水电基地的开发。
三是研究制定龙头水库综合效益共享机制与政策,进行抽水蓄能电站作用、效益机制研究,水电电价市场化改革及电价机制研究,探索和制定常规水电和抽水蓄能电站电价机制,促进水电持续健康发展。
四是做好流域综合监测规划,建立监测、监管体系,编制流域梯级水电站联合调度运行规程,优化水电站运行,提高利用效率。
到“十三五”时期,水电投资不足、开发技术难度较大等问题都会基本得以解决,而难点转向消纳、外送、移民、环保等方面。因此要把水电开发好,除了技术研究和积累之外,还应该加强水电开发机制体制等一系列问题研究,促进水电有序有效开发利用。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
应用方面,例如水能的应用形式就是水利发电,像坝式水电站、河床式水电站、引水式水电站。
人类使用再生能源的原因主要有以下几点:
1、科技的进步让此类能源更加“好用”;
2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候;
3、某些再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险;
4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。
太阳能一般指太阳光的辐射能量.太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式.
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等.
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成.由于没有活动的部分,故可以长时间操作而不会导致任何损耗.简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电. 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力.近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统.
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力.除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料.
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量.核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能.
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等.这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源.
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度.目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明.大型波浪发电机组也已问世.我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置.
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦.世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年.我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦.
风能
风能是太阳辐射下流动所形成的.风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要.
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展.
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车.该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成.到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时.
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用.生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料.地球上的生物质能资源较为丰富,而且是一种无害的能源.地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%.
地热能
地球内部热源可来自重力分异、潮汐磨擦、化学反应和放射性元素衰变释放的能量等.放射性热能是地球主要热源.我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦.
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源.氢能可以作飞机、汽车的燃料,可以用作推动火箭动力.
海洋渗透能
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液.江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差.在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电.
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭.而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖.当然发电厂附近必须有淡水的供给.据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度.
3,不可再生资源
,人类开发利用后,在相当长的时间内,不可能再生的自然资源叫不可再生资源。主要指自然界的各种矿物、岩石和化石燃料,例如泥炭、煤、石油、天然气、金属矿产、非金属矿产等。这类资源是在地球长期演化历史过程中,在一定阶段、一定地区、一定条件下,经历漫长的地质时期形成的。与人类社会的发展相比,其形成非常缓慢,与其它资源相比,再生速度很慢,或几乎不能再生。人类对不可再生资源的开发和利用,只会消耗,而不可能保持其原有储量或再生。其中,一些资源可重新利用,如金、银、铜、铁、铅、锌等金属资源;另一些是不能重复利
用的资源,如煤、石油、天然气等化石燃料,当它们作为能源利用而被燃烧后,尽管能量可以由一种形式转换为另一种形式,但作为原有的物质形态已不复存在,其形式已发生变化。