16、电力系统中风电、光伏发电等可再生能源发电形有哪些优点?
16、电力系统中风电、光伏发电等可再生能源发电形优点如下:
1、太阳能资源取之不尽,用之不竭,而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。
2、太阳能资源随处可得,,可就近供电,不必长距离输送。
3、光伏发电的能量转换过程简单,是直接从光能到电能的转换,没有中间过程和机械运动,不存在机械磨损。
国家计委、科技部关于进一步支持可再生能源发展
有关问题的通知
各省,自治区,直辖市及计划单列市人民政府,计委(计经委),科委,物价局(委员会),电力局:
为了进一步支持可再生能源发展,加速可再生能源发电设备国产化进程,经报国务院批准,现将有关问题通知如下:
一、可再生能源主要包括:风力发电,太阳能光伏发电,生物质能发电,地热发电,海洋能发电等。国家计委和科技部在安排财政性资金建设项目和国家科技攻关项目时,将积极支持可再生能源发电项目。
二、可再生能源发电项目可由银行优先安排基本建设贷款。贷款以国家开发银行为主,也鼓励商业银行积极参与。其中由国家审批建设规模达3000千瓦以上的大中型可再生能源发电项目,国家计委将协助业主落实银行贷款。对于银行安排基本建设贷款的可再生能源发电项目给予2%财政贴息,中央项目由财政部贴息,申请条件为:
申请银行贷款的可再生能源项目在项目建议书阶段应取得银行贷款意向书,在可行性研究阶段应获得有关银行的贷款承诺函。
可再生能源项目资本金应占项目总投资的35%及以上。
贴息一律实行“先付后贴”的办法,即先向银行付息,然后申请财政贴息。贴息实行逐年报批。报批程序为:由项目业主填制贴息申请表(一式2份),并附利息计息清单和借款合同,经贷款经办行签署审查意见后,分别报送国家计委、财政部和有关银行。国家计委会同财政部、有关银行审核汇总后,由财政部按国家有关规定下达批准项目贴息资金计划。
地方项目由地方财政贴息,具体办法由地方按国家有关规定知定。
三、对利用国产化可再生能源发电设备的建设项目,国家计委、有关银行将优先安排贴息贷款,还贷期限经银行同意可适当宽限。
四、对利用可再生能源进行并网发电的建设项目,在电网容量允许的情况下电网管理部门必须允许就近上网,并收购全部上网电量,项目法人应取得与电网管理部门的并网及售电协议。项目建议书阶段应出具并网意向书,可行性研究阶段应出具并网承诺函。
五、对可再生能源并网发电项目在还款期内实行“还本付息+合理利润”的定价原则,高出电网平均电价的部门由电网分摊。利用国外发电设备的可再生能源并网发电项目在还款期内的投资利润率以不超过“当时相应贷款期贷款利率+3%”为原则。国家鼓励可再生能源发电项目利用国产化设备,利用国产化设备的可再生能源并网发电项目在还款期内的投资利润率,以不低于“当时相应贷款期贷款利率+5%”为原则。其发电价格应实行同网同价,既与采用进口设备的项目享有同等的电价。
六、可再生能源并网发电项目在项目建议书阶段应出具当地物价部门对电价的意向函,可行性研究阶段由当地物价部门审批电价(包括电价构成),并报国家计委备案。经当地物价部门批准和国家计委备案的可再生能源并网发电项目电价从项目投产之日起实行。还本付息期结束以后的电价按电网平均电价确定。
七、对于独立供电的可再生能源发电系统,国家鼓励采用租赁、分期付款方式推广应用,具体办法由各地政府根据当地具体情况研究制定,并报国家计委备案。
八、本通知中的条款由国家计委负责解释。
一九九九年一月十二日
当电力系统中的负荷突然退出或投入运行时,同步发电机首先会大致按照电气距离的远近将这部分功率瞬时分担起来,从而保证电力系统用功功率实时平衡。其后,由于发电机机械功率和输出电功率的不平衡,其转速就会发生变化,或降低或升高,由于发电机转子的惯性,转速的变化速度被控制在合理的范围内。再后,当转速的变化超过一定阀值,发电机的动力系统就会自动发出增加或减少机械功率的指令,重新将发电机转速拉回到额定值附近,从而保证整个电网的频率在合理的范围内。
与此同时,当电网受到扰动,例如发生短路故障时,同步发电机可以保持内电势幅值基本不变,并瞬时输出无功电流,当短路故障切除后,同步发电机可以根据电网电压的恢复情况瞬时调整其无功输出,自动励磁控制系统也会随后自动发出增励磁或者减励磁指令,将电压控制在合理的范围内。
可以看到,在这样一个系统中,无论是负荷变化还是短路故障,同步发电机通过自身固有特性与调速、励磁控制的结合,将电网的频率、电压控制在合理范围。
在这样的传统电力系统中,负荷大时间尺度上变化可预测,小时间尺度上通过电气参数自动分配到同步发电机组上保证供需平衡,工作点稳定;同时,电源是可计划和可控工作的,当自动平衡后的稳定工作点偏离额定值后,都可以通过调节同步发电机电源的功率、电压输出使得整个电网恢复到额定的稳定工作点。
新能源发电与同步发电机有本质区别
再来看新能源发电。当前技术下的新能源发电主要指风电和光伏,它们与同步发电机有本质区别,可统称为非同步机电源,并网器件由电力电子换流器构成,其特性主要由换流器的控制特性塑造。目前在实际工程中广泛使用的变流器采用跟网型控制策略,即通过锁相环来实现变流器与电网之间的同步,采用矢量电流控制来控制变流器的输出电流,从而控制馈入电网的有功/无功功率,其本质上是受控电流源,主要控制目标是跟踪太阳能与风能当前的最大功率,并最大效率的将太阳能、风能转换为电能馈入电力系统。这种控制策略由于以电流作为控制目标,无法承担按计划、受控提供能量保持供需平衡(频率稳定)和平稳电网电压。
新型电力系统的显著特征是新能源在电源结构中占据主要地位,随着新能源发电装置占比增加到一定程度,例如新能源占比70%,同步机电源占比30%,即使负荷不变化,当新能源部分的波动由于天气影响超过30%时,30%的同步机电源就无法做到受控按需平衡功率,这样一个系统遇到类似扰动将无法正常运行。
除此之外,当前的新能源发电与同步机发电比较,还有以下特征:
首先,新能源的出力主要受天气的影响,和负荷的供电需求无法自动匹配,当新能源发电占比较小时,还可以通过其它同步发电机的调节机制来保证整个大电网的功率平衡,当新能源占比较大时,平衡机制将无法满足,只能采取限制新能源发电的形式来解决。据初步统计,2022年第一季度我国个别省份的新能源消纳率不足,主要是因为这个原因。
其次,新能源基本不具备惯量支撑能力,当新能源的占比增加时将导致整个电网的惯量降低。惯量降低后,同样的功率波动下,频率变化速度变快,调节难度增大;同时相同时间尺度内频率总的变化幅度变大,易发生超出设备允许的频率偏差范围的事件(例如火电同步机组的转子长期允许运行的频率在额定值附近2Hz-3Hz左右),导致电力系统的安全稳定运行风险增大。
再有,新能源并网换流器从发电经济性上考量,设计的过压、过流能力比同步发电机低较多。在电网发生短路故障时,新能源向故障点提供的短路电流水平较低,故障消除后,新能源也无法给电力系统提供足够的动态无功支撑以促进电力系统的功角和电压稳定工作点的恢复。如果上述阶段造成了接入电网的过电压水平较高(如超过1.3倍额定值)或电压较长时间无法恢复,新能源为了保证设备安全还会主动脱网运行,从而进一步恶化电力系统的频率稳定性。
还有,新能源并网换流器的控制速度快,按基本控制原理,控制速度越快,在接入电网较弱的情况下,发生宽频率振荡的风险也越大。2015年7月,新疆哈密地区新能源引发次同步功率振荡,导致天中直流配套火电三台机组轴系扭振保护动作,当时就引发了行业的高度关注,近几年类似宽频带振荡事件频发,如不能妥善解决,将制约新能源的发展与应用。
总结来看,新能源上述特征的存在,既有其自身发展规律的问题,也与新能源比常规同步电源在电力系统的电压、频率调节控制能力相对降低有关。
同样,解决的办法也需从这两个方面入手:其一,升级新能源发电特性,通过保留功率裕度、提升变流器过载能力同时采用新的控制策略等措施,使其具备常规水、火等同步发电机支撑电网的良好特性,可与同步发电机协同工作。这将影响新能源的发电量,经济性降低,短期内难以实现;其二,在新能源附近增加新的设备,具备同步发电机或者类似同步发电机的电压控制和频率调节能力,来保证既能消纳新能源,又能消除新能源对电力系统带来的不利影响,提供系统的稳定性支撑。
构网型储能技术综合解决大规模新能源发展难题
在平抑新能源发电功率波动,降低大电网调峰压力,提升大电网对新能源的接纳水平方面,储能环节是个必选项。各地也不断在尝试新能源场站配置大容量储能系统进行示范应用,电池储能技术得到了迅速发展。各省能源局也纷纷出台相关政策,要求在开发新能源的同时,配套建设10%-20%容量的储能系统。
但是当前配置储能的要求,都是从解决新能源波动的角度提出的。从技术的潜力来看,基于换流器并网的电化学储能的功能远不止如此。通过增加新型的控制策略就可以使储能具备同步发电机或者类似同步发电机的频率调节和电压控制能力,解决以上提出的新能源消纳增长带来的问题,这就是构网型储能技术。为了能够较好的使用新能源,南瑞继保较早时期就组织了团队深入研究如何利用储能系统解决相关问题,率先研制出了大容量构网型储能技术。该技术相较于同容量削峰填谷解决方案,只增加了较少的硬件成本,却可以进一步挖掘发挥储能的潜能,使储能可以对电网电压、频率和惯量进行支撑,从而综合解决大规模新能源发展中面临的难题。
从欧洲超级电网计划可以看到,虽然单独的可再生能源发电系统输出受地形、气候等外界因素影响,与大电网的交换功率水平波动范围大,具有间歇J险和易变性,但在大空间尺度下能够彼此互补,即广域范围内的调度能够平衡可再生能源的输出波动。
国内外己有专家学者针对可再生能源的广域互补性进行了研究。 以美国东海岸上分布的海上风电系统实测数据为基础,研究了风力发电在大空间范围的互补性,得出风电能源的互补性随着调度范围增大而变强的结论。 针对光伏发电系统进行了研究,认为利用光伏电站在广域范围的互补性能够有效平滑功率输出。 基于中国气象局的风速和光照强度测量值,研究分析了中国北部和东部沿海区域风能和太阳能的互补J险,并提出通过调整两种发电设备在组合中的比例能够提高广域互补性。
以上研究证明,广域调度能够有效减少可再生能源发电系统对电网的负面影响,提高可再生能源的利用率,充分发挥可再生能源发电对电网的支撑作用,对中国可再生能源发展具有启示作用。
中国能源负荷分布严重不均衡:中东部地区城市化水平高、人口密集、大型企业集中,负荷水平占全国总负荷的近70 %而传统能源电力,如大型火电厂主要分布在包括东北、华北、西北的“三北”地区,水力发电厂则主要集中在水力资源丰富的四 、云南、西藏等西南部地区,均远离负荷中心。
在中国政府的大力发展推动下,大规模利用可再生能源发电的新型电厂蓬勃发展。截至2014年年底,中国风力发电累积并网装机容量达到96. 37 GW,占全部发电装机容量的7%,占全球风电装机容量的26%,位居世界首位。其中,陆上风电主要集中在“三北”地区,合计占全国风电总量的87 %,而且随着大型风电基地建设的推进,并网风机装机占比将持续提高。近海地区也在发展海上风电,全国共建成海上风电示范项目5个,总装机容量达到390 MW,开展前期工作项目17个,总装机容量3. 95 GW。光伏发电经过多年探索,近年来快速发展,截至2014年年底,全国并网光伏发电装机容量达到26. 52 GW,同比增长67 %。西北地区,如山西、甘肃、青海、宁夏和新疆等地,海拔高、日照时间长,太阳能资源充足,光伏电站并网容量占全国总量的75.5 %。