为什么可再生能源先制氢再制电
因为直接用可再生能源发电导致电网的调峰压力非常大,巨大。弃风弃光弃水问题很严重。储能是提高电网调节能力的最佳手段之一。目前应用最多的是抽水蓄能,其次也有储热、电化学电池、压缩空气的各种技术路线。
本质上电制氢也是储能的一种。在电网下调峰能力不足的时候(即出现弃电的时候),将弃电部分用来制氢,或者在夜间负荷低的时候,用低价电制氢,在需要的时候,不管是发电还是直接燃烧,取用储存的能量。
用氢作为能源发电,两步过程中能量难免会有损失,但是其实仔细琢磨一下,还是可行的,主要是得采用廉价易得的电能来电解之制氢,像大规模的太阳能、风能都是很好的清洁能源。
提高电解制氢的效率后,能量从太阳能转移到氢能源里。由于氢气能量密度大,移动性好,不受天气影响,所以用氢气作为汽车的驱动能源还是很不错的选择,清洁环保。这其中最主要的还是得提高制氢的效率和氢转化为电和动力的效率。
可再生能源制氢的用处
可再生能源制氢有它的优势,采用了可再生能源,以风光水等等可再生能源为载体,以氢气作为一个二次能源的载体,在能源转型中可以和电力互为补充,以实现工业、建筑、电力、交通运输等产业互联。
目前广泛使用的氢源主来自化石燃料、电解水和化工副产氢。此外,生物质制氢、核能制氢和光催化制氢正在研究,还没达到工业化应用的水平。可再生能源制氢只能选择电解水制氢,化石燃料制氢和化工副产氢都是有碳排放的。
我们来看看目前我国氢气生产的来源:
我国制氢原料中以碳排放最高的煤制氢为主,占比高达62%,其次为天然气重整制氢占比为19%,电解水制氢占比最少,仅为1%。
绿氢”的生产途径有哪些
我国目前氢能产业仍处于初期阶段,氢气主要以“灰氢”为主,在生产过程中会有大量的CO2排放,并不能算是清洁能源。最终阶段的氢气是“绿氢”,这类氢气是通过使用可再生能源(例如太阳能、风能、核能等)制造的氢气。
目前较为成熟的生产方式是:可再生能源发电进行电解水制氢:主要是利用风光发电制氢,在生产“绿氢”的过程中,能够实现完全的无碳化。水电解制氢主要原理为水分子在直流电的作用下被解离生成氧气和氢气,分别从电解槽阳极和阴极析出。根据电解槽隔膜材料不同,可以分为碱性水电解(AE)、质子交换膜(PEM)水电解以及高温固体氧化物水电解(SOEC)。
正在开展研究的未来可能的氢能生产方式有: 1,液氨制氢, 主要原理是利用液氨和钠单质反应生成氨基化钠,然后氨基化钠将分解成为氮气、氢气以及钠单质。2,生物制氢,生物法制氢是把自然界储存于有机化合物中的能量通过产氢细菌等生物的作用转化为氢气。生物制氢是微生物自身新陈代谢的结果。具体包括:光解水制氢,暗发酵制氢,光发酵制氢几种方式3,太阳能制氢,目前太阳能制氢技术实现的主要途径有光化学制氢、光催化法制氢、人工光合作用制氢等。4,核能制氢,核能制氢就是利用核反应堆产生的热作为制氢的能源,通过选择合适的工艺,实现高效、大规模的制氢;同时减少甚至消除温室气体的排放。
化石能源制氢技术比较成熟,可以满足规模用氢需求;制氢技术正向可再生能源制氢转变。
一、工业制氢技术主要有以煤、天然气、石油等为原料的催化重整制氢,氯碱、钢铁、焦化等工业副产物制氢,生物质气化或垃圾填埋气生物制氢,采用网电或未来直接利用可再生能源电力电解水制氢;处于实验室阶段但潜力大的有光催化分解水、高温热化学裂解水和微生物催化等先进制氢技术。
二、氢气发生器电解槽 电解槽类型一般有:碱性电解槽、基于离子交换技术的聚合物薄膜电解槽和固体氧化物电解槽。
1、实验室中使用的碱性电解槽制氢和聚合物薄膜电解槽制氢。
2、碱性电解槽是最常用、技术最成熟、也最经济的电解槽,并且易于操作,在目前广泛使用,但缺点是其效率最低。
3、碱性电解槽制氢的特点是:氢氧根离子(OH-)在阴、阳极之间的电场力作用下穿过多孔的横隔膜。
4、碱液电解制氢工作原理是传统隔膜碱液电解法。电解槽内的导电介质为氢氧化钾水溶液,两极室的分隔物为航天电解设备用优质隔膜,与端板合为一体的耐蚀、传质良好的格栅电极等组成电解槽。
三、聚合物薄膜电解槽制氢 聚合物薄膜电解槽制氢(PEM),一些地方也称之为固体聚合物电解质(SPE)水电解制氢。该种原理不需电解液,只需纯水,比碱性电解槽安全,电解槽的效率可以达到85%或以上,但由于在电极处使用铂等贵重金属,薄膜材料也是昂贵的材料,故PEM电解槽目前还难以投人大规模的使用。 聚合物薄膜电解槽制氢的特点是:氢离子(H+)在阴、阳极之间的电场力作用下穿过离子交换膜。
四、1、目前氢氧呼吸机的功效主要用于肿瘤等疾病的辅助治疗;
2、氢氧呼吸机的原理与构造主要有两种,传统碱性AEC制氢和质子膜SPE制氢,对应的是吸氢机制氢结果。
1、蒸汽甲烷重整
蒸汽甲烷重整(SMR)是一种从主要是甲烷的天然气中生产氢气的方法。它是目前最便宜的工业氢气来源。世界上近50%的氢气是通过这种方法生产的。该过程包括在蒸汽和镍催化剂存在下将气体加热到700–1100°C之间。
产生的吸热反应分解甲烷分子并形成一氧化碳CO和氢气H2。然后一氧化碳气体可以与蒸汽一起通过氧化铁或其他氧化物并进行水煤气变换反应以获得更多量的H2.这个过程的缺点是它的副产品是CO2、CO和其他温室气体的主要大气释放。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
2、甲烷热解
说明甲烷热解的输入和输出,这是一种生产氢气且无温室气体的高效一步法
甲烷的热解是从天然气中生产氢气的过程。通过流过“气泡塔”中的熔融金属催化剂,氢气分离在一个步骤中进行。这是一种“无温室气体”方法,用于测量潜在的低成本氢气生产,以衡量其扩大规模和大规模运营的能力。 该过程在更高的温度(1065°C或1950°F)下进行。
3、电解
电解包括使用电将水分解成氢气和氧气。水的电解效率为70-80%(转化损失为20-30%) ,而天然气的蒸汽重整的热效率在70-85%之间。 电解的电效率预计将在2030年之前达到82-86% ,同时随着该领域的进展继续加快,同时也保持耐用性。
水电解可以在50–80°C之间运行,而蒸汽甲烷重整需要700–1100°C之间的温度。 两种方法的区别在于使用的一次能源;电力(用于电解)或天然气(用于蒸汽甲烷重整)。
环境影响
截至2020年,大部分氢气由化石燃料生产,导致二氧化碳排放。当排放物释放到大气中时,这通常被称为灰氢,当通过碳捕获和储存(CCS)捕获排放物时,这通常被称为蓝氢。
假设美国上游和中游的甲烷泄漏率和生产通过蒸汽甲烷重整器(SMR)改装了二氧化碳捕获装置。使用具有二氧化碳捕获功能的自热重整器(ATR)可以在令人满意的能源效率下实现更高的捕获率,并且生命周期评估表明,与具有二氧化碳捕获功能的SMR相比,此类工厂的温室气体排放量更低。
经评估,在欧洲应用ATR技术与二氧化碳的综合捕获相比,其温室气体排放量低于燃烧天然气,例如,H21项目报告称,由于二氧化碳强度降低了68%,因此温室气体排放量减少了68%。天然气与更适合捕获二氧化碳的反应器类型相结合。
使用较新的无污染技术甲烷热解生产的氢气通常被称为绿松石氢气。高质量的氢气直接由天然气生产,相关的无污染固体碳不会释放到大气中,然后可以出售用于工业用途或储存在垃圾填埋场。
由可再生能源生产的氢气通常被称为绿色氢气。有两种从可再生能源生产氢气的实用方法。一种是电制气,其中电力用于电解水制氢,另一种是利用垃圾填埋气在蒸汽重整器中制氢。当由风能或太阳能等可再生能源生产时,氢燃料是一种可再生燃料。
通过电解由核能产生的氢有时被视为绿色氢的一个子集,但也可以称为粉红色氢。奥斯卡港核电站于2022年1月达成协议,以每天公斤的数量级供应商业粉红色氢气。
首先能源的获得过程可分为,一次,二次,最终和使用能源.一次能源就是直接从自然界中能获得,并使用的,如原油,天然气,而现在用的氢气绝大部分是工厂制备的,因此不能说是一次能源,而我们普通人使用的能源都叫使用能源,要对一次能源进行加工和运输.
能源可分为可再生和不可再生的能源,制氢的方法有两类,
1.利用不可再生资源制氢和利用可再生资源制氢.前者是利用石油、天然气、煤炭等资源的方法,由此生产出的氢气约占目前世界氢气生产总量的96%.这种氢气就是不可再生的.
2.剩余4%的氢气生产量,则基本由电解水来完成,而水是一种可再生资源.这种氢是可再生的.
缺点是:成本高,设备要求高,电耗高。
优点:环保,氢气纯度高可控。