建材秒知道
登录
建材号 > 能源科技 > 正文

1999

含糊的指甲油
繁荣的果汁
2023-02-10 00:59:31

计基础【1999】44号文《国家计委、科技部关于进一步支持可再生能源发展有关问题的通知》具体内容?

最佳答案
冷傲的雪碧
羞涩的鸡
2025-08-08 06:54:48

国家计委、科技部关于进一步支持可再生能源发展

有关问题的通知

 

各省,自治区,直辖市及计划单列市人民政府,计委(计经委),科委,物价局(委员会),电力局:

为了进一步支持可再生能源发展,加速可再生能源发电设备国产化进程,经报国务院批准,现将有关问题通知如下:

一、可再生能源主要包括:风力发电,太阳能光伏发电,生物质能发电,地热发电,海洋能发电等。国家计委和科技部在安排财政性资金建设项目和国家科技攻关项目时,将积极支持可再生能源发电项目。

二、可再生能源发电项目可由银行优先安排基本建设贷款。贷款以国家开发银行为主,也鼓励商业银行积极参与。其中由国家审批建设规模达3000千瓦以上的大中型可再生能源发电项目,国家计委将协助业主落实银行贷款。对于银行安排基本建设贷款的可再生能源发电项目给予2%财政贴息,中央项目由财政部贴息,申请条件为:

申请银行贷款的可再生能源项目在项目建议书阶段应取得银行贷款意向书,在可行性研究阶段应获得有关银行的贷款承诺函。

可再生能源项目资本金应占项目总投资的35%及以上。

贴息一律实行“先付后贴”的办法,即先向银行付息,然后申请财政贴息。贴息实行逐年报批。报批程序为:由项目业主填制贴息申请表(一式2份),并附利息计息清单和借款合同,经贷款经办行签署审查意见后,分别报送国家计委、财政部和有关银行。国家计委会同财政部、有关银行审核汇总后,由财政部按国家有关规定下达批准项目贴息资金计划。

地方项目由地方财政贴息,具体办法由地方按国家有关规定知定。

三、对利用国产化可再生能源发电设备的建设项目,国家计委、有关银行将优先安排贴息贷款,还贷期限经银行同意可适当宽限。

四、对利用可再生能源进行并网发电的建设项目,在电网容量允许的情况下电网管理部门必须允许就近上网,并收购全部上网电量,项目法人应取得与电网管理部门的并网及售电协议。项目建议书阶段应出具并网意向书,可行性研究阶段应出具并网承诺函。

五、对可再生能源并网发电项目在还款期内实行“还本付息+合理利润”的定价原则,高出电网平均电价的部门由电网分摊。利用国外发电设备的可再生能源并网发电项目在还款期内的投资利润率以不超过“当时相应贷款期贷款利率+3%”为原则。国家鼓励可再生能源发电项目利用国产化设备,利用国产化设备的可再生能源并网发电项目在还款期内的投资利润率,以不低于“当时相应贷款期贷款利率+5%”为原则。其发电价格应实行同网同价,既与采用进口设备的项目享有同等的电价。

六、可再生能源并网发电项目在项目建议书阶段应出具当地物价部门对电价的意向函,可行性研究阶段由当地物价部门审批电价(包括电价构成),并报国家计委备案。经当地物价部门批准和国家计委备案的可再生能源并网发电项目电价从项目投产之日起实行。还本付息期结束以后的电价按电网平均电价确定。

七、对于独立供电的可再生能源发电系统,国家鼓励采用租赁、分期付款方式推广应用,具体办法由各地政府根据当地具体情况研究制定,并报国家计委备案。

八、本通知中的条款由国家计委负责解释。

一九九九年一月十二日

最新回答
甜蜜的鱼
留胡子的香氛
2025-08-08 06:54:48

行业主要上市公司:目前国内新能源行业的上市公司主要有隆基绿能(601012)、晶澳科技(002459)、金风科技(002202)、三峡能源(600905)、晶科科技(601778)、长江电力(600900)和中国中车(601766)等。

本文核心内容:新能源行业市场规模、新能源行业发展现状、新能源行业竞争格局、新能源行业发展前景及趋势。

行业概况

1、定义

新能源又称非常规能源,一般指在新技术基础上,可系统地开发利用的可再生能源,包含了传统能源之外的各种能源形式。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源则通常是指尚未大规模利用、正在积极研究开发的能源。新能源主要包括水能、太阳能、风能、生物质能、地热能等。

根据国家统计局制定的《国民经济行业分类(GB/T

4754-2017)》,新能源行业被归入电力、热力生产和供应业(国统局代码D44)中的电力生产(D441),包含的统计4级代码有D4413(水力发电)、D4415(风力发电)、D4416(太阳能发电)、D4417(生物质能发电)、D4418(其他电力生产)。

2、产业链剖析

新能源行业上游产业主要包括太阳能、光伏、水能和风能等新能源及可再生能源发电设备制造商,以及太阳能、光伏、水能和风能等新能源及可再生能源的组件及零部件制造商。其中:新能源发电设备制造主要包括太阳能发电设备和风力发电机组、可再生能源发电设备等,目前这一领域领先的上市企业有特变电工(600089)、迈为股份(300751)和中国中车(601766)等组件及零部件制造主要包括电力和光伏组件、太阳电池芯片、太阳电池组件、太阳能供电电源、光伏设备及元器件制造等。目前这一领域领先的上市企业有晶澳科技(002459)、天合光能(688599)和通威股份(600438)等。

新能源行业中游作为整条产业链的重要环节,主要包含氢能、光伏发电、风电和水电等能源供应商该领域目前的代表上市企业有隆基绿能(601012)、金风科技(002202)、三峡能源(600905)和长江电力(600900)等

新能源行业的下游产业主要包括新能源汽车、加氢站、充电桩和输变电等公共及个人应用领域。目前在新能源汽车行业,主要上市公司有比亚迪(002594)、上汽集团(600104)、广汽集团(601238)、东风汽车(600006)和北汽蓝谷(600773)等加氢站行业上市公司主要有蓝科高新(601798)、上海电气(601727)和美锦能源(000723)等电动汽车充电桩行业主要上市公司有特锐德(300001)、国电南瑞(600406)和万马股份(002276)等输变电行业上市公司主要有长缆科技(002897)、金杯电工(002553)和平高电气(600312)等。

行业发展历程:行业处在突飞猛进阶段

新能源行业在促进社会经济可持续发展方面发挥了重要作用,根据我国“十五”规划至“十四五”规划期间,国家对新能源行业的支持政策经历了从“加快技术进步和机制创新”到“因地制宜,多元发展”再到“加快壮大新能源产业成为新的发展方向”的变化。

“十五”计划(2001-2005年)时期,国家层面提出加快技术进步和机制创新,推动新能源和可再生能源产业迅速发展从“十一五”规划(2006-2010年)开始,规划提出按照“因地制宜,多元发展”的原则,在继续加快小型水电和农网建设的同时,大力发展适宜村镇、农户使用的风电、生物质能、太阳能等可再生能源“十二五”(2011-2015年)时期,国家层面提出以风能、太阳能、生物质能利用为重点,大力发展可再生能源至“十三五”期间(2016-2020年),合理把握新能源发展节奏,着力消化存量,优化发展增量,新建大型基地或项目应提前落实市场空间到“十四五”时期,根据《关于促进新时代新能源高质量发展的实施方案》,国家在新能源的开发利用模式、加快构建适应新能源占比逐渐提高的新型电力系统、完善新能源项目建设管理、保障新能源发展用地用海需求和财政金融手段支持新能源发展等方面,对我国新能源行业的发展做出了全面指引。

行业政策背景:政策加持,行业发展迅速

近年来,国务院、国家发改委、国家能源局等多部门都陆续印发了支持、规范新能源行业的发展政策,内容涉及新能源行业的发展技术路线、产地建设规范、安全运行规范、能源发展机制和标杆上网电价等内容,2014-2022年6月,我国新能源行业重点政策及政策解读汇总如下:

注:查询时间截至2022年6月20日,下同。

行业发展现状

1、新能源发电装机容量逐年上升

2017-2021年新能源发电装机容量呈逐年上升趋势。2021年,我国新能源发电装机容量达到11.2亿千瓦,占总发电装机容量的47.10%。其中,水电装机3.91亿千瓦(其中抽水蓄能0.36亿千瓦)、风电装机3.28亿千瓦、光伏发电装机3.06亿千瓦、核能发电装机0.55亿千瓦、生物质发电装机0.38亿千瓦。

2、新能源发电量稳步增长

2017-2021年新能源发电量稳步增长,2021年,全国新能源发电量达2.89万亿千瓦时,较2020年增长11.63%,其中,水电13401亿千瓦时,同比下降1.1%风电6526亿千瓦时,同比增长40.5%光伏发电3259亿千瓦时,同比增长25.1%生物质发电1637亿千瓦时,同比增长23.6%。

3、新能源消费量分析

根据《bp世界能源统计年鉴》(2021)数据显示,2016-2020年,中国新能源消费量呈逐年上升的趋势,从2016年的16.2艾焦增长到2020年的23.18艾焦,复合年增长率达到9.37%。前瞻根据中国新能源行业发展态势初步核算得到,2021年中国新能源行业消费量约为25艾焦。

4、新能源行业消纳情况分析

2022年1月,全国新能源消纳监测预警中心发布2021年12月全国新能源并网消纳情况,其中风电利用率达到100%的省市有北京、天津、上海、江苏、浙江、安徽、福建、湖北、重庆、四川、西藏、广东、广西和海南光伏利用率达到100%的省市有北京、上海、江苏、浙江、安徽、福建、湖北、重庆、四川、广东、广西、海南、江西和湖南。

5、新能源发电占总发电比重逐年递增

根据中国电力企业联合会公布的数据显示,2017-2020年中国新能源发电占总发电比重呈逐年上升的趋势。2020年,中国新能源发电占总发电比重为34.9%,比2017年增长了5.3个百分点2021年,中国新能源发电占总发电比重达到35.6%,同比提高0.7个百分点。

行业竞争格局

因目前新能源行业可量化指标较多,故行业竞争格局中的区域竞争部分仅以:各省份可再生能源电力消纳占全社会用电量的比重进行比较企业竞争格局以:2021年各光伏企业光伏组件出货量2021年各风力发电企业新增装机容量和累计装机容量进行对比2020年各水力发电企业水电装机总量及水电发电量进行对比。

1、区域竞争:青海、四川和云南位列新能源行业第一竞争梯队

根据2021年6月国家能源局发布的《2020年度全国可再生能源电力发展监测评价报告》,30个省(区、市)中,可再生能源电力消纳占全社会用电量的比重超过80%以上的3个,分别为青海、四川和云南40-80%的6个,分别为甘肃、重庆、湖南、广西、湖北和贵州20-40%的10个,分别为上海、广东、吉林、宁夏、江西、陕西、黑龙江、新疆、河南和内蒙古小于20%的11个,分别为浙江、福建、山西、安徽、辽宁、江苏、北京、海南、天津、河北和山东。

注:截至2022年6月22日,国家能源局尚未发布2021年全国可再生能源电力发展监测评价报告。

2、企业竞争格局分析

(1)光伏行业竞争格局

根据PV-Tech发布的《2021年全球组件供应商top10》,以光伏组件出货量来看,2021年光伏组件出货量前十名厂商中,中国企业包揽八席,隆基绿能、天合光能、晶澳科技依次位居2021年组件出货量全球排名前三,光伏组件出货量分别为38.52GW、24.80GW和24.069GW。据PV-Tech介绍,2021年全球光伏行业实现跨越式发展,光伏行业整体产能和出货量均超过190GW前十大组件供应商出货量超过160吉瓦,市场份额超过90%。

(2)风力发电行业竞争格局

中国可再生能源学会风能专业委员会发布的《2021年中国风电吊装容量统计简报》数据显示,新增装机容量方面,2021年中国风电市场有新增装机的整机制造企业共17家,新增装机容量5592万千瓦,排名前5家市场份额合计为69.3%,排名前10家市场份额合计为95.1%累计装机容量方面,2021年前5家整机制造企业累计装机市场份额合计达为57.3%,前10家整机制造企业累计装机市场份额合计达到81.8%其中,金风科技累计装机容量超过8000万千瓦,占国内市场的23.4%远景能源和明阳智能累计装机容量均超过3000万千瓦,占比分别为11.1%和9.6%。

(3)水力发电行业竞争格局

因存在严格的行政准入门槛、资金门槛和技术门槛等,目前,我国水电行业运营企业的数量不多,主要大型集团包括:长江电力、华能集团、华电集团、大唐集团、国家电投和国家能源等。根据企业的公开数据以及国家统计局数据计算,2020年按在水电装机总容量分析,长江电力的市场份额达12.32%,其余五大集团的市占率均在5-7.5%之间。按照水电发电量分析,长江电力的市场份额达16.75%,其余五大集团的市占率均在5.5-8.5%之间。

注:截至2022年6月22日,除大唐集团外的其他五大能源集团均为公布2021年社会责任报告,故此处仅以2020年数据为例,对我国水电行业市场竞争格局进行分析。

行业发展前景及趋势预测

1、“十四五”时期保障新能源发展用地用海需求,财政金融手段支持新能源发展

近年来,我国以风电、光伏发电为代表的新能源发展成效显著,装机规模稳居全球首位,发电量占比稳步提升,成本快速下降,已基本进入平价无补贴发展的新阶段。同时,新能源开发利用仍存在电力系统对大规模高比例新能源接网和消纳的适应性不足、土地资源约束明显等制约因素。2022年5月14日,国家发展改革委、国家能源局发布《关于促进新时代新能源高质量发展的实施方案》(以下简称“《实施方案》”)《实施方案》在新能源的开发利用模式、加快构建适应新能源占比逐渐提高的新型电力系统、完善新能源项目建设管理、保障新能源发展用地用海需求和财政金融手段支持新能源发展等方面做出了全面指引:

《实施方案》坚持统筹新能源开发和利用,坚持分布式和集中式并举,突出模式和制度创新,在四个方面提出了新能源开发利用的举措,推动全民参与和共享发展:

传统电力系统是以化石能源为主来打造规划设计理念和调度运行规则等。实现碳达峰碳中和,必须加快构建新型电力系统,适应新能源比例持续提高的要求,在规划理念革新、硬件设施配置、运行方式变革、体制机制创新上做系统性安排:

鉴于新能源项目点多面广、单体规模小、建设周期短等,《实施方案》立足新能源项目建设的规模化、市场化发展需求,继续深化“放管服”改革,重点在简化管理程序、提升服务水平上:

经过多年发展,我国已经形成了较为完善并具有一定优势的新能源产业链体系。新形势下,我国新能源产业必须强化创新驱动,统筹发展与安全,促进形成以国内大循环为主体、国内国际双循环相互促进的新发展格局。为此,《实施方案》从提升技术创新能力、保障产业链供应链安全、提高国际化水平等方面支持引导新能源产业健康有序发展:

与传统能源相比,新能源能量密度较低,占地面积大。随着新能源规模快速扩大,土地资源已经成为影响新能源发展的重要因素。《实施方案》进一步强化新能源发展用地用海保障,通过明确用地管理政策、规范税费征收、提高空间资源利用率、推广生态修复类新能源项目等措施,推动解决制约新能源行业发展的用地困境:

“十四五”风光等主要新能源已实现平价无补贴上网,财政政策支持的方向和模式需要与时俱进,金融支持政策力度需要加大,进一步发挥财政、金融政策的作用。《实施方案》提出三方面政策举措:

2、“十四五”新能源行业发展趋势:基础设施建设能力显著提高,向国际一流水平迈进

作为绿色低碳能源,新能源是我国多轮驱动能源供应体系的重要组成部分,对于改善能源结构、保护生态环境、应对气候变化、实现经济社会可持续发展具有重要意义。

“十四五”期间,新能源发电新增装机容量将成为我国发电新增装机容量增量的主体新能源为主体的新型电力系统加快形成并且新型储能进入规模化发展阶段:

国家能源局新能源和可再生能源司司长李创军表示,在“十三五”的基础上,“十四五”期间可再生能源年均装机规模还将有大幅度的提升,到“十四五”末可再生能源的发电装机占我国电力总装机的比例将超过50%,据此,前瞻初步预测至2025年末,我国新能源装机容量可达到17亿千瓦,至2027年末,我国新能源装机容量或将达到21亿千瓦。

随着新能源装机量的稳步增长,预计至2027年我国光伏、风能、水能、火电等新能源发电量也将随之进一步高增,前瞻根据近年来我国新能源发电量以及新能源行业发展趋势初步预测至2025年末,我国新能源发电量可达到4.28万亿千瓦时,至2027年末,新能源发电量或将突破5.20万亿千瓦时。

更多本行业研究分析详见前瞻产业研究院《中国新能源行业发展前景与投资战略规划分析报告》。

温婉的奇异果
眯眯眼的夕阳
2025-08-08 06:54:48

储能电站可以对电力进行存储,在需要的时候释放,能够有效解决电力在时间和空间上的不平衡。储能电站技术的应用贯穿于电力系统发电、输电、配电、用电的各个环节。实现电力系统削峰填谷、可再生能源发电波动平滑与跟踪计划处理、高效系统调频,增加供电可靠性。通过发电端稳定发电设备输出,调节峰谷负荷,提高利用效率;通过配电端减少配电网容量需求,减缓电网阻塞,延缓配电网升级压力;通过用电端利用峰谷电价合理分配用电。储能电站安装储能设备来平滑可再生能源发电的波动性,可以缓冲其对电网的冲击;储能系统能够确保可再生能源电站按照计划进行出力,与区域内的其它发电设备协调,合理安排发电量,减少电能的损耗和浪费。同时储能电站的电池储能能让系统的响应速度达到秒级,通过快速的充放电及时调整出力,跟上电网负荷的变化,维持系统频率的稳定。储能设备可以在电力系统发生突发事故和电网崩溃时保障重要机构和部门的用电安全,与电力电子变流技术相结合,实现高效的有功功率调节和无功控制,快速平衡系统功率,减小扰动对电网的冲击。

壮观的便当
等待的白猫
2025-08-08 06:54:48

发电机组是指能将机械能或其他可再生能源转变成电能的发电设备。一般我们常见的发电机组通常由汽轮机、水轮机或内燃机(汽油机、柴油机等发动机)驱动,而近年来所说的可再生新能源包括核能、风能、太阳能、生物质能、海洋能等。

由于柴油发电机组的容量较大,可并机运行且持续供电时间长,还可独立运行,不与地区电网并列运行,不受电网故障的影响,可靠性较高。尤其对某些地区常用市电不是很可靠的情况下,把柴油发电机组作为备用电源,既能起到应急电源的作用,又能通过低压系统的合理优化,将一些平时比较重要的负荷在停电时使用,因此在工程中得到广泛的使用。

雪白的铃铛
机智的大象
2025-08-08 06:54:48
我们当前的电力系统电源的主体是同步发电机。同步发电机基于电磁感应原理,以建立稳定电压源的形式,将水力、煤或燃气产生的蒸汽等机械能转化为可靠的电能。不同的发电机之间则通过电功率与功角的比例关系、电功率与机械功率在转子上的平衡作用等基本机制保持同步运行,从而共同构架起人类创造的最大规模动力系统即电力系统的稳定运行。

当电力系统中的负荷突然退出或投入运行时,同步发电机首先会大致按照电气距离的远近将这部分功率瞬时分担起来,从而保证电力系统用功功率实时平衡。其后,由于发电机机械功率和输出电功率的不平衡,其转速就会发生变化,或降低或升高,由于发电机转子的惯性,转速的变化速度被控制在合理的范围内。再后,当转速的变化超过一定阀值,发电机的动力系统就会自动发出增加或减少机械功率的指令,重新将发电机转速拉回到额定值附近,从而保证整个电网的频率在合理的范围内。

与此同时,当电网受到扰动,例如发生短路故障时,同步发电机可以保持内电势幅值基本不变,并瞬时输出无功电流,当短路故障切除后,同步发电机可以根据电网电压的恢复情况瞬时调整其无功输出,自动励磁控制系统也会随后自动发出增励磁或者减励磁指令,将电压控制在合理的范围内。

可以看到,在这样一个系统中,无论是负荷变化还是短路故障,同步发电机通过自身固有特性与调速、励磁控制的结合,将电网的频率、电压控制在合理范围。

在这样的传统电力系统中,负荷大时间尺度上变化可预测,小时间尺度上通过电气参数自动分配到同步发电机组上保证供需平衡,工作点稳定;同时,电源是可计划和可控工作的,当自动平衡后的稳定工作点偏离额定值后,都可以通过调节同步发电机电源的功率、电压输出使得整个电网恢复到额定的稳定工作点。

新能源发电与同步发电机有本质区别

再来看新能源发电。当前技术下的新能源发电主要指风电和光伏,它们与同步发电机有本质区别,可统称为非同步机电源,并网器件由电力电子换流器构成,其特性主要由换流器的控制特性塑造。目前在实际工程中广泛使用的变流器采用跟网型控制策略,即通过锁相环来实现变流器与电网之间的同步,采用矢量电流控制来控制变流器的输出电流,从而控制馈入电网的有功/无功功率,其本质上是受控电流源,主要控制目标是跟踪太阳能与风能当前的最大功率,并最大效率的将太阳能、风能转换为电能馈入电力系统。这种控制策略由于以电流作为控制目标,无法承担按计划、受控提供能量保持供需平衡(频率稳定)和平稳电网电压。

新型电力系统的显著特征是新能源在电源结构中占据主要地位,随着新能源发电装置占比增加到一定程度,例如新能源占比70%,同步机电源占比30%,即使负荷不变化,当新能源部分的波动由于天气影响超过30%时,30%的同步机电源就无法做到受控按需平衡功率,这样一个系统遇到类似扰动将无法正常运行。

除此之外,当前的新能源发电与同步机发电比较,还有以下特征:

首先,新能源的出力主要受天气的影响,和负荷的供电需求无法自动匹配,当新能源发电占比较小时,还可以通过其它同步发电机的调节机制来保证整个大电网的功率平衡,当新能源占比较大时,平衡机制将无法满足,只能采取限制新能源发电的形式来解决。据初步统计,2022年第一季度我国个别省份的新能源消纳率不足,主要是因为这个原因。

其次,新能源基本不具备惯量支撑能力,当新能源的占比增加时将导致整个电网的惯量降低。惯量降低后,同样的功率波动下,频率变化速度变快,调节难度增大;同时相同时间尺度内频率总的变化幅度变大,易发生超出设备允许的频率偏差范围的事件(例如火电同步机组的转子长期允许运行的频率在额定值附近2Hz-3Hz左右),导致电力系统的安全稳定运行风险增大。

再有,新能源并网换流器从发电经济性上考量,设计的过压、过流能力比同步发电机低较多。在电网发生短路故障时,新能源向故障点提供的短路电流水平较低,故障消除后,新能源也无法给电力系统提供足够的动态无功支撑以促进电力系统的功角和电压稳定工作点的恢复。如果上述阶段造成了接入电网的过电压水平较高(如超过1.3倍额定值)或电压较长时间无法恢复,新能源为了保证设备安全还会主动脱网运行,从而进一步恶化电力系统的频率稳定性。

还有,新能源并网换流器的控制速度快,按基本控制原理,控制速度越快,在接入电网较弱的情况下,发生宽频率振荡的风险也越大。2015年7月,新疆哈密地区新能源引发次同步功率振荡,导致天中直流配套火电三台机组轴系扭振保护动作,当时就引发了行业的高度关注,近几年类似宽频带振荡事件频发,如不能妥善解决,将制约新能源的发展与应用。

总结来看,新能源上述特征的存在,既有其自身发展规律的问题,也与新能源比常规同步电源在电力系统的电压、频率调节控制能力相对降低有关。

同样,解决的办法也需从这两个方面入手:其一,升级新能源发电特性,通过保留功率裕度、提升变流器过载能力同时采用新的控制策略等措施,使其具备常规水、火等同步发电机支撑电网的良好特性,可与同步发电机协同工作。这将影响新能源的发电量,经济性降低,短期内难以实现;其二,在新能源附近增加新的设备,具备同步发电机或者类似同步发电机的电压控制和频率调节能力,来保证既能消纳新能源,又能消除新能源对电力系统带来的不利影响,提供系统的稳定性支撑。

构网型储能技术综合解决大规模新能源发展难题

在平抑新能源发电功率波动,降低大电网调峰压力,提升大电网对新能源的接纳水平方面,储能环节是个必选项。各地也不断在尝试新能源场站配置大容量储能系统进行示范应用,电池储能技术得到了迅速发展。各省能源局也纷纷出台相关政策,要求在开发新能源的同时,配套建设10%-20%容量的储能系统。

但是当前配置储能的要求,都是从解决新能源波动的角度提出的。从技术的潜力来看,基于换流器并网的电化学储能的功能远不止如此。通过增加新型的控制策略就可以使储能具备同步发电机或者类似同步发电机的频率调节和电压控制能力,解决以上提出的新能源消纳增长带来的问题,这就是构网型储能技术。为了能够较好的使用新能源,南瑞继保较早时期就组织了团队深入研究如何利用储能系统解决相关问题,率先研制出了大容量构网型储能技术。该技术相较于同容量削峰填谷解决方案,只增加了较少的硬件成本,却可以进一步挖掘发挥储能的潜能,使储能可以对电网电压、频率和惯量进行支撑,从而综合解决大规模新能源发展中面临的难题。

饱满的蜻蜓
温暖的柠檬
2025-08-08 06:54:48

随着科技的不断进步与发展,风电技术越来越受到企业及研究人员的重视,下面我整理了风力发电机技术论文,欢迎阅读!

风力发电机技术论文篇一

风电储能技术分析与研究

[摘 要]本文首先概述了风力发电储能技术,然后详细阐述了风力发电储能技术的具体应用。随着我国对于能源需要的不断增大,风能的作用也就显得越来越重要了。因此,研究风力发电系统中储能技术就具有非常重大的现实意义。

[关键词]风力发电系统储能技术

中图分类号:TM614 文献标识码:A 文章编号:1009-914X(2015)15-0376-01

一、前言

随着科技的不断进步与发展,风电储能技术越来越受到企业及研究人员的重视,本文着重就该部分内容进行了研究。

二、风力发电储能概述

能源是整个世界经济发展的重要基础,人类社会的发展与能源开发利用是息息相关的,人类历史上每次使经济产生质的飞跃都是从新型能源的利用开始的。经济的发展对能源的需求量越来越多,而今使用的传统化石能源消耗速度远远大于自然自身补给速度,从而导致传统能源逐渐趋于枯竭,同时由于能源的不合理开法和利用所排放的有害气体导致环境破坏日益严重。从社会的可持续发展战略来看,开发和利用可再生能源替代传统化石能源是能源结构调整的重要发展方向。因此,世界各国必须寻求一种可再生能源来代替日益匮乏的传统化石能源,在过去的半个多世纪,储量丰富、分布广泛、无污染、使用便利的风能已经受到极大的关注,并被确认为最有前途的替代能源。随着人类对风能的开发和利用,风力发电市场迅速发展起来,进入 20 世纪九十年代以来,世界各国掀起了风力发电应用的新浪潮,风力发电在全球范围内得到前所未有的发展。

我国风能资源丰富、分布广泛,主要分布在新疆、内蒙古等北部地区和东部沿海地区及附近岛屿,这些地区工业污染和能源紧缺问题也比较严重,风电并网的开发利用成为解决这一问题的重要策略之一。但是由于风能的间歇性和随机性,风电功率随着风速大小变化而随机波动,尽管大电网允许一定容量波动的风电功率并网,一旦超过一定容量,其功率的波动就影响电网运行的稳定性,随之带来谐波污染、闪变等影响电能质量,为保证电网运行的可靠性和电能质量的优质性,电网不能接纳超过一定容量的风电电能,从而导致无法并网的风电被舍弃,这一状况严重阻碍了我国风电的大规模发展。据国家电监会公布的《风电、光伏发电情况监管报告》和电科院关于电网接纳风电能力的论证报告,可知目前我国大规模风电并网和电网接纳的矛盾日益突出。

三、风电储能技术

现有的储能技术主要包括物理储能、化学储能、电磁储能和相变储能等四种类型。物理储能主要包括抽水蓄能、压缩空气储能和飞轮储能等,电磁储能包括超导磁储能(SMES)和超级电容储能等,化学储能包括铅酸电池、锂离子电池和钠硫电池等,相变储能包括冰蓄冷储能和相变建筑材料储能等。各种储能的功率/能量特性及其适应范围不同。需要说明的是,与其他储能方式相比,相变储能并非以电能形式释放存储的电能,且其功率/能量等级涉及的因素很复杂,因而此处不予讨论。但是,随着智能电网的推进,其将在需求侧管理(DSM)方面发挥重要作用。

根据不同储能方式的能量/功率等级、响应速度、经济性等特点,其可应用于电力系统的削峰填谷、调频/调峰、稳定控制、改善电能质量乃至紧急备用电源等不同场合。

四、风力发电储能技术的具体应用

1、利用储能系统增强风电稳定性

增强电力系统稳定性的根本措施是改善系统平衡度,储能系统能够快速吸收或释放有功及无功功率,改善系统的有功、无功功率平衡水平,增强稳定性。针对电压稳定性问题,储能系统改善电压稳定性并增加系统的风电接入容量问题,但该文仅对储能系统做了理想的假设,缺乏有效的动态仿真及理论分析。利用超导储能和超级电容储能系统增强风电稳定性的问题,设计了相应的控制策略,结果显示,超导储能和超级电容储能系统均能有效降低风电并网PCC的电压波动,平滑风电机组的有功输出,增强系统稳定性。频率稳定性问题的研究主要集中在储能系统平滑风电输出功率方面。研究表明采用超导储能系统改善频率稳定性问题,仿真结果表明,超导储能系统在文中既定的条件下使得系统的最大频率偏差从0.369Hz降为0.095Hz,有效改善了系统的频率稳定性,且超导储能系统容量越大系统频率偏差越小。

2、利用储能系统增强风电机组LVRT功能在风电机组比例较高的电力系统中,LVRT是影响系统稳定性的关键因素之一。通过对有、无LVRT功能的风电机组在故障情况下的电网电压恢复情况的比较,结果显示,有LVRT功能的风电机组并网能够有效解决风电并网所产生的电压稳定性问题,有利于系统稳定性的增强。

3、利用储能系统增加风电穿透功率极限

不同电网,限制WPP水平的主导因素不同,采用的储能系统也不同。很多研究人员探讨了采用飞轮储能、电池储能和超导储能系统增加WPP的问题,结果表明,这3种储能系统都能有效增加系统的WPP,并能改善PCC的电压波动性,在冬季大方式和夏季小方式两种极端工况下,频率偏移和线路功率约束是限制WPP的主要因素。

4、利用储能系统优化风电经济性

随机波动的间歇性风电接入电网,将导致系统备用容量增加,系统运行经济性降低。合适的储能系统能够有效解决这一问题,实现电网与风电场的双赢。此外,在电力市场环境下,风电的竞争力较差,采用储能系统配合风电场运行,能够实现风电效益最大化。

五、风电储能展望

受自然条件限制,可再生能源发电具有很大的随机性,直接并入电网会对系统造成一定的冲击,增加系统不稳定的因素。因此,通过研发高效储能装置及其配套设备,与风电、光伏发电机组容量相匹配,支持充放电状态的迅速切换,确保并网系统的安全稳定已成为可再生能源充分利用的关键。

储能技术将在平抑、稳定风能发电或太阳能发电的输出功率和提升新能源的利用价值方面发挥重要作用。风电、光伏等可再生能源发电设备的输出功率会随环境因素变化,储能装置可以及时地进行能量的储存和释放,保证供电的持续性和可靠性。在风力发电中,风速的变化会使原动机输出机械功率发生变化,从而使发电机输出功率产生波动而使电能质量下降。应用储能装置是改善发电机输出电压和频率质量的有效途径,同时增加了分布式发电机组与电网并网运行时的可靠性。分布式发电系统可以与电网连接,实现向电网的馈电,并可以提供削峰、紧急功率支持等服务。而一些可再生能源分布式发电系统,受环境因素的影响较大,因此无法制订特定的发电规划。

针对变速风电机组设计了附加频率控制环节进行研究,分别通过对转子和风轮机的附加控制,使得DFIG对系统的一次调频有所贡献。针对这些控制方案将降低风电机组效率的缺陷,采用飞轮储能系统辅助风电机组运行,通过对飞轮储能系统的充放电控制,实现平滑风电输出功率、参与电网频率控制的双重目标,并通过仿真验证了方案的可行性。

六、结束语

加强对风电储能技术的研究,可以使风电储能更加完善,使风能发电更加实用,是非常具有现实意义的研究。

参考文献

[1] 王涛.浅析风电储能技术[J].清洁能源.2013(3):166-168.

[2] 盛文仲.浅谈风电储能技术[J].电力系统保护与控制.2012(3):16-18.

[3] 王文鹏.风电储能技术分析[J].电网与清洁能源.2013(6):66-69.

点击下页还有更多>>>风力发电机技术论文

爱笑的乌冬面
尊敬的缘分
2025-08-08 06:54:48

太阳能发电设备有哪些

太阳能发电设备有哪些,在现实生活中,太阳能也我们都经常运用的一种能源,它的用途也是十分广的,而太阳能热水器也是我们常见的一种热水器,下面为大家分享太阳能发电设备有哪些。

太阳能发电设备有哪些1

太阳能光伏发电设备是一种将太阳光能直接转化为电能的一种新型发电方式,它利用的是太阳能的光生伏特效应原理。

其基本工作原理是:当阳光照射到硅材料上时,光电效应使得电子发生偏移,从而产生直流电。由于半导体材料的特殊性质-半导体的电阻率随着温度的升高而减小,因此光照使半导体中的载流子浓度增加而使电压和电流增大;反之则减小。这就是光电效应的基本原理。

光伏电池的工作过程大致可分为两个部分:

(1)吸收太阳辐射;

(2)把光能转化成电能;

(3)存储能量;

(4)释放电能。

(1)吸收太阳辐射:这是形成光伏电池组件的基础,也是关键的一步。在这一阶段里,首先要有足够的太阳辐照度,才能保证在一定的条件下使晶体硅中产生自由电子并运动形成电流;其次要尽量减少各种外部干扰对晶体硅产生的各种影响如温度、压力以及机械应力等;最后还要有合适的工艺参数以保证获得最大的`转换效率等等。

(2)把光能转换成电能:这一阶段的实质是将输入的电能通过内部电路进行变换而输出交流电或直流电的过程。

(3)存储能量:通过逆变器的作用将从电网获得的交流电转换为符合系统要求的、可用的直流电的储能装置称为光伏电源控制器,

(4)释放电能:经过蓄电池组储存的能量经充电器逆变成交流电后即可为负载提供电力。

(5)控制器的分类及主要功能如下表所示。太阳能电池板由pvb构成pvb是文"planterblkelectrolyticvacancy"的缩写,中文意思是"片状电工绝缘体",俗称"晶片"。

太阳能发电设备有哪些2

(1)太阳能电池方阵。太阳电池方阵由太阳电池组合板和方阵支架组成。太阳能电池板是太阳能光伏系统中的最主要组成部分,也是太阳能光伏发电系统中价值最高的部分。太阳能电池板在有光照情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光电效应”。在光电效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,它是能量转换的器件。

(2)蓄电池组。其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。在太阳能并网发电系统中,可不加蓄电池组。

(3)控制器。对电能进行调节和控制的装置。

(4)逆变器。是将太阳能电池方阵和蓄电池提供的直流电转换成交流电的设备,是光伏并网发电系统的关键部件。由于太阳能电池和蓄电池是直流电源,当负载是交流负载时,逆变器是必不可少的。

太阳能发电系统由哪些设备组成

离网发电系统组成。

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;

(三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC、110VDC、220VDC。为能向110VAC、220VAC、380VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

太阳能发电设备有哪些3

光伏发电的主要设备构成有哪些

光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。

1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。

20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。

太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。

太阳能每秒钟到达地面的能量高达800兆瓦时,假如把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6×1012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。

20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。美国是最早制定光伏发电的发展规划的国家。

1997年又提出“百万屋顶”计划。日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。

而德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。

瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。

世界光伏组件在1990年——2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。

商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。

洁净的八宝粥
包容的小懒猪
2025-08-08 06:54:48
地热能发电既是21世纪的新能源而且有很大的发展前途,他既不会受外界天气的影响,也不会消耗什么化石能源造成环境的污染,要是现在的技术能把地热能80%以上转化为电能那店里的问题也就不是问题.

务实的向日葵
欣慰的滑板
2025-08-08 06:54:48
利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。

太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。

太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。

编辑本段

人们需要太阳能

现有能源

随着经济的发展、社会的进步,人们对能源提出越来越高的要求 ,寻找新能源成为当前人类面临的迫切课题。现有电力能源的来源主要有3种,即火电、水电和核电。

火电的缺点

火电需要燃烧煤、石油等化石燃料。一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。据估计,全世界石油资源再有30年便将枯竭。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。

水电的缺点

水电要淹没大量土地,有可能导致生态环境破坏,而且大型水库一旦塌崩,后果将不堪设想。另外,一个国家的水力资源也是有限的,而且还要受季节的影响。 太阳能屋顶发电站

核电的缺点

核电在正常情况下固然是干净的,但万一发生核泄漏,后果同样是可怕的。前苏联切尔诺贝利核电站事故,已使900万人受到了不同程度的损害,而且这一影响并未终止。

太阳能满足新能源的条件

陕西清立新能源:这些都迫使人们去寻找新能源。新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。目前找到的新能源主要有两种,一是太阳能,二是燃料电池。另外,风力发电也可算是辅助性的新能源。其中,最理想的新能源是太阳能。

编辑本段

太阳能发电是最理想的新能源

照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为是理想的能源。

从太阳能获得电力,需通过太阳电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净(无公害);③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥使用者从感情上容易接受;⑦获取能源花费的时间短。不足之处是:①照射的能量分布密度小,即要占用巨大面积;②获得的能源同四季、昼夜及阴晴等气象条件有关。但总的说来,瑕不掩瑜,作为新能源,太阳能具有极大优点,因此受到世界各国的重视。

要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低其成本,二是要实现太阳能发电同现在的电网联网。

目前,太阳能电池主要有单晶硅、多晶硅、非晶态硅三种。单晶硅太阳电池变换效率最高,已达20%以上,但价格也最贵。非晶态硅太阳电池变换效率最低,但价格最便宜,今后最有希望用于一般发电的将是这种电池。一旦它的大面积组件光电变换效率达到10%,每瓦发电设备价格降到1-2美元时,便足以同现在的发电方式竞争。估计本世纪末便可达到这一水平。

当然,特殊用途和实验室中用的太阳电池效率要高得多,如美国波音公司开发的由砷化镓半导体同锑化镓半导体重叠而成的太阳电池,光电变换效率可达36%,快赶上了燃煤发电的效率。但由于它太贵,目前只能限于在卫星上使用。

编辑本段

太阳能发电的应用

太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散地进行,所以它适于各家各户分别进行发电,而且要联接到供电网络上,使得各个家庭在电力富裕时可将其卖给电力公司,不足时又可从电力公司买入。实现这一点的技术不难解决,关键在于要有相应的法律保障。现在美国、日本等发达国家都已制定了相应法律,保证进行太阳能发电的家庭利益,鼓励家庭进行太阳能发电。

日本已于1992年4月实现了太阳能发电系统同电力公司电网的联网,已有一些家庭开始安装太阳能发电设备。日本通产省从1994年开始以个人住宅为对象,实行对购买太阳能发电设备的费用补助三分之二的制度。要求第一年有1000户家庭、2000年时有7万户家庭装上太阳能发电设备。[1]

据日本有关部门估计日本2100万户个人住宅中如果有80%装上太阳能发电设备,便可满足全国总电力需要的14%,如果工厂及办公楼等单位用房也进行太阳能发电,则太阳能发电将占全国电力的30%-40%。当前阻碍太阳能发电普及的最主要因素是费用昂贵。为了满足一般家庭电力需要的3千瓦发电系统,需600万至700万日元,还未包括安装的工钱。有关专家认为,至少要降到100万到200万日元时,太阳能发电才能够真正普及。降低费用的关键在于太阳电池提高变换效率和降低成本。

不久前,美国德州仪器公司和SCE公司宣布,它们开发出一种新的太阳电池,每一单元是直径不到1毫米的小珠,它们密密麻麻规则地分布在柔软的铝箔上,就像许多蚕卵紧贴在纸上一样。在大约50平方厘米的面积上便分布有1,700个这样的单元。这种新电池的特点是,虽然变换效率只有8%—10%,但价格便宜。而且铝箔底衬柔软结实,可以像布帛一样随意折叠且经久耐用,挂在向阳处便可发电,非常方便。据称,使用这种新太阳电池,每瓦发电能力的设备只要1.5至2美元,而且每发一度电的费用也可降到14美分左右,完全可以同普通电厂产生的电力相竞争。每个家庭将这种电池挂在向阳的屋顶、墙壁上,每年就可获得一二千度的电力。

编辑本段

太阳能发电的前景

太阳能发电有更加激动人心的计划。一是日本提出的创世纪计划。准备利用地面上沙漠和海洋面积进行发电,并通过超导电缆将全球太阳能发电站联成统一电网以便向全球供电。据测算,到2000年、2050年、2100年,即使全用太阳能发电供给全球能源,占地也不过为 65.11万平方公里、 186.79万平方公里、829.19万平方公里。829.19万平方公里才占全部海洋面积 2.3%或全部沙漠的 51.4%,甚至才是撒哈拉沙漠的 91.5% 。因此这一方案是有可能实现的。

另一是天上发电方案。早在1980年美国宇航局和能源部就提出在空间建设太阳能发电站设想,准备在同步轨道上放一个长10公里、宽5公里的大平板,上面布满太阳电池,这样便可提供500万千瓦电力。但这需要解决向地面无线输电问题。现已提出用微波束、激光束等各种方案。目前虽已用模型飞机实现了短距离、短时间、小功率的微波无线输电,但离真正实用还有漫长的路程。

随着我国技术的发展,在2006年,中国有三家企业进入了全球前十名,标志着中国将成为全球新能源科技的中心之一,世界上太阳能光伏的广泛应用,导致了目前缺乏的是原材料的供应和价格的上涨,我们需要将技术推广的同时,必须采用新的技术,以便大幅度降低成本,为这一新能源的长远发展提供原动力!

太阳能的使用主要分为几个方面:家庭用小型太阳能电站、大型并网电站、建筑一体化光伏玻璃幕墙、太阳能路灯、风光互补路灯、风光互补供电系统等,现在主要的应用方式为建筑一体化和风光互补系统。

世界目前已有近200家公司生产太阳能电池,但生产设备厂主要在日企之手。

近年韩国三星、LG都表示了积极参与的愿望,中国海峡两岸同样十分热心。据报道,我国台湾2008年结晶硅太阳能电池生产能力达2.2GW,以后将以每年1Gw生产能力扩大,当年并开始生产薄膜太阳能电池,今年将大力增强,台湾期待向欧洲“太阳能电池大国”看齐。2010年各国及地区有1GW以上生产计划的太阳能电池厂商有日本Sharp,德国Q—Cells,Scho~Solar,拐5威RWESolar,中国SuntechPower等5家公司,其余7家500MW以上生产能力的公司。

近年世界太阳能电池市场高歌猛进,一片大好,但百年不遇的金融风暴带来的经济危机,同样是压在太阳能电池市场头上的一片乌云,主要企业如德国Q—Cells的业绩应声下调,预年今年世界太阳电地市场也会因需求疲软、石油价格下降而竞争力反提升等不利因素而下挫。但与此同时,人们也看到美国.奥巴马上台后即将施行GreenNewDeal政策,包括其内的绿色能源计划可有1500亿美元的补助资金,日本也将推行补助金制度来继续普及太阳能电池的应用。

编辑本段

太阳能电池发电原理

太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体硅为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 吉光光电当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。

编辑本段

晶体硅太阳能电池的制作过程

储量丰富的硅

“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。

生产过程

生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。

以单晶硅为例,其生产过程可分为: 工序一,硅片清洗制绒

目的——表面处理:

清除表面油污和金属杂质;

去除硅片表面的切割损坏层;

在硅片表面制作绒面,形成减反射织构,降低表面反射率; 利用Si在稀NaOH溶液中的各向异性腐蚀,在硅片表面形成3-6 微米的金字塔结构,这样光照在硅片表面便会经过多次反射和折射,增加了对光的吸收;

工序二,扩散

硅片的单/双面液态源磷扩散,制作N型发射极区,以形成光电转换的基本结构:PN结。

POCl3 液态分子在N2 载气的携带下进入炉管,在高温下经过一系列化学反应磷原子被置换,并扩散进入硅片表面,激活形成N型掺杂,与P型衬底形成PN结。主要的化学反应式如下: POCl3 + O2 → P2O5 + Cl2 P2O5 + Si → SiO2 + P

工序三,等离子刻边

去除扩散后硅片周边形成的短路环; 工序四,去除磷硅玻璃

去除硅片表面氧化层及扩散时形成的磷硅玻璃(磷硅玻璃是指掺有P2O5的SiO2层)。

工序五,PECVD

目的——减反射+钝化:

PECVD即等离子体增强化学气相淀积设备,Plasma Enhanced Chemical Vapor Deposition;

制作减少硅片表面反射的SiN 薄膜(~80nm);

SiN 薄膜中含有大量的氢离子,氢离子注入到硅片中,达到表面钝化和体钝化的目的,有效降低了载流子的复合,提高了电池的短路电流和开路电压。

工艺原理:

硅烷与氨气反应生成SiN 淀积在硅片表面形成减反射膜。

利用高频电源辉光放电产生等离子体对化学气相沉积过程施加影响的技术。由于等离子体存在,促进气体分子的分解、化合、激发和电离,促进反应活性基团的生成,从而降低沉积温度。PECVD在200℃~500℃范围内成膜,远小于其它CVD在700℃~950℃范围内成膜。

反应过程中有大量的氢离子注入到硅片中,使硅片中悬挂键饱和、缺陷失去活性,达到表面钝化和体钝化的目的。

工序六,丝网印刷

用丝网印刷的方法,完成背场、背电极、正栅线电极的制作,已引出产生的光生电流;

工艺原理:

给硅片表面印刷一定图形的银浆或铝浆,通过烧结后形成欧姆接触,使电流有效输出;

正面电极用Ag金属浆料,通常印成栅线状,在实现良好接触的同时使光线有较高的透过率;

背面通常用Al金属浆料印满整个背面,一是为了克服由于电池串联而引起的电阻,二是减少背面的复合;

工序七,烘干和烧结

目的及工作原理:

烘干金属浆料,并将其中的添加料挥发(前3个区);

在背面形成铝硅合金和银铝合金,以制作良好的背接触(中间3个区);

铝硅合金过程实际上是一个对硅进行P掺杂的过程,需加热到铝硅共熔点(577℃)以上。经过合金化后,随着温度的下降,液

相中的硅将重新凝固出来,形成含有少量铝的结晶层,它补偿了N层中的施主杂质,从而得到以铝为受主杂质的P层,达到了消除背结的目的。

在正面形成银硅合金,以良好的接触和遮光率;

Ag浆料中的玻璃添加料在高温(~700度)下烧穿SiN膜,使得Ag金属接触硅片表面,在银硅共熔点(760度)以上进行合金化。

编辑本段

聚光太阳能发电

聚光太阳能发电(Concentrating Solar Power)简称CSP,准确地说应该是“聚光太阳能热发电”。

聚光太阳能发电的先行者是美国的吉尔伯特·科恩,在美国内华达州建造极具规模的聚光太阳能发电站,已经成功地为拉斯维加斯供应22兆瓦的电力能源。

聚光太阳能发电继风能、光电池之后,已经开始崭露头角,有望成为解决能源匮乏、应对气候变暖的有效技术手段。

基本原理:聚光太阳能发电使用抛物镜将光线聚集到充有合成油的吸热管上,再将加热到约400摄氏度的合成油输送到热交换器里,将热量通过此加热循环水,将水加热,产生水蒸气,推动涡轮转动使发电机运转,以此来发电。

聚光太阳能发电与太阳能电池不同,太阳能电池使用太阳电池板将太阳能直接变成电能,可以在阴天操作,CSP一般只能够在阳光充足、天气晴朗的地方进行。

不过,即使在没有太阳的夜晚,采用熔融盐储存热量的方法,现在也能解决全天候的供电问题了。

国际能源署(IEA)下属的SolarPACES、欧洲太阳能热能发电协会(ESTELA)和绿色和平组织的预测则较为温和,认为CSP到2030年在全球能源供应份额中将占3%-3.6%,到2050年占8%-11.8%,这意味着到2050年CSP装机容量将达到830GW,每年新增41GW。在未来5-10年内累计年增长率将达到17%-27%。

编辑本段

太阳能电池的应用

通信卫星供电

上世纪60年代,科学家们就已经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯、太阳能发电户用系统、村寨供电的独立系统、光伏水泵(饮水或灌溉)、通信电源、石油输油管道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。欧美等先进国家,将光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。

离网发电系统

太阳能发电[1]控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。

蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。

逆变器负责把直流电转换为交流电,供交流负荷使用。逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,逆变器的高效运行也显得非常重要。

产品包括:A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源。

并网发电系统

上海力友电气有限公司的可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器[2]直接反向馈入电网的发电系统。

因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。

产品包括:A、光伏并网逆变器 B、小型风力机并网逆变器 C、大型风机变流器 (双馈变流器,全功率变流器)

编辑本段

太阳能发电技术原理

现在,太阳能的利用还不是很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳能电池在为人造卫星提供能源方面得到了应用。太阳能是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。地球轨 道上的平均太阳辐射强度为1369w/㎡。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102000TW 的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外),虽然太阳能资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。 尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。

编辑本段

太阳能发电网

中国太阳能发电网以互联网作为信息平台,以光伏、光热及太阳能发电行业的整个产业链的企业要闻、行业政策、技术动态、产业观察等信息作为主要内容,是致力于为太阳能发电企业提供行业新鲜、权威的资讯产品,为政府机关、能源企事业单位、科研院所、行业协会、学会提供资讯服务、咨询服务、资本运作、项目合作等综合服务的信息咨询公司。积极利用自身行业优势,探索将新技术、新资源,新媒体进行整合,尝试新思维、新模式有机结合,创新绿色能源发展路径,致力打造成中国太阳能发电企业的权威网站、极

具影响力的行业媒体平台——“中国太阳能发电网”。

《太阳能发电》杂志

《太阳能发电》杂志,是中国太阳能发电网下的专业平媒, 杂志以太阳能发电业界的权威人士为采访对象,每月推出一位重点人物,以探寻名企生产运行的战略方针,对目前国家相关政策的解读等。内设高端访谈、特别企划、阳光资讯、产业研究、技术论坛、国际观察、前沿动态等栏目,努力打造成网刊一体、网刊互动的综合性行业媒体平台。

耍酷的水杯
笑点低的台灯
2025-08-08 06:54:48
2014年开始。

从欧洲超级电网计划可以看到,虽然单独的可再生能源发电系统输出受地形、气候等外界因素影响,与大电网的交换功率水平波动范围大,具有间歇J险和易变性,但在大空间尺度下能够彼此互补,即广域范围内的调度能够平衡可再生能源的输出波动。

国内外己有专家学者针对可再生能源的广域互补性进行了研究。 以美国东海岸上分布的海上风电系统实测数据为基础,研究了风力发电在大空间范围的互补性,得出风电能源的互补性随着调度范围增大而变强的结论。 针对光伏发电系统进行了研究,认为利用光伏电站在广域范围的互补性能够有效平滑功率输出。 基于中国气象局的风速和光照强度测量值,研究分析了中国北部和东部沿海区域风能和太阳能的互补J险,并提出通过调整两种发电设备在组合中的比例能够提高广域互补性。

以上研究证明,广域调度能够有效减少可再生能源发电系统对电网的负面影响,提高可再生能源的利用率,充分发挥可再生能源发电对电网的支撑作用,对中国可再生能源发展具有启示作用。

中国能源负荷分布严重不均衡:中东部地区城市化水平高、人口密集、大型企业集中,负荷水平占全国总负荷的近70 %而传统能源电力,如大型火电厂主要分布在包括东北、华北、西北的“三北”地区,水力发电厂则主要集中在水力资源丰富的四 、云南、西藏等西南部地区,均远离负荷中心。

在中国政府的大力发展推动下,大规模利用可再生能源发电的新型电厂蓬勃发展。截至2014年年底,中国风力发电累积并网装机容量达到96. 37 GW,占全部发电装机容量的7%,占全球风电装机容量的26%,位居世界首位。其中,陆上风电主要集中在“三北”地区,合计占全国风电总量的87 %,而且随着大型风电基地建设的推进,并网风机装机占比将持续提高。近海地区也在发展海上风电,全国共建成海上风电示范项目5个,总装机容量达到390 MW,开展前期工作项目17个,总装机容量3. 95 GW。光伏发电经过多年探索,近年来快速发展,截至2014年年底,全国并网光伏发电装机容量达到26. 52 GW,同比增长67 %。西北地区,如山西、甘肃、青海、宁夏和新疆等地,海拔高、日照时间长,太阳能资源充足,光伏电站并网容量占全国总量的75.5 %。