建材秒知道
登录
建材号 > 能源科技 > 正文

利用可再生能源合成化学品原因

细心的萝莉
独特的黄蜂
2023-02-09 15:32:53

利用可再生能源合成化学品原因

最佳答案
无奈的豌豆
尊敬的八宝粥
2025-08-09 16:51:05

您好,您是想问利用可再生能源合成化学品原因是什么吗?利用可再生能源合成化学品原因是为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。因为可再生能源合成化学品是一种先进的储能方式,可实现碳元素有效循环,相比于物理储能和电化学储能方式,具有能量密度高、易储运以及长时储能特点,有望使交通和工业燃料独立于化石能源,实现燃料净零碳排放,可为能源转型与碳中和目标实现提供全新的解决方案,而且能够达到增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求的目的。

最新回答
感动的啤酒
怡然的苗条
2025-08-09 16:51:05

(1)①图表分析判断,平衡常数随温度升高减小,平衡逆向进行,正反应是放热反应,△H<0;

故答案为:<;

②某温度下,将2mol CO和6mol H2充入2L密闭容器中充分反应,4分钟后反应达到平衡,测得CO的物质的量为0.4mol,依据化学平衡三段式列式计算;

               CO(g)+2H2(g)?CH3OH(g)

起始量(mol)  2         6            0

变化量(mol)1.6         3.2        1.6

平衡量(mol) 0.4       2.8         1.6

CO的反应速率=

1.6mol
2L
4min
=0.2mol/(L?min)

平衡状态气体压强和起始压强之比等于气体物质的量之比P(平衡):P(起始)=(0.4+2.8+1.6):(2+6)=4.8:8=0.6;

故答案为:0.2mol/(L?min),0.6;

(2)CO2(g)+3H2(g)?CH3OH(g)+H2O(g),反应的平衡常数K=

c(H2O)c(CH3OH)
c(CO2)c3(H2)

为了加快反应Ⅱ的反应速率,并且提高H2的转化率;

a.增大CO2的浓度,增大氢气的转化率,平衡正向进行,反应速率加快,故a符合;

b.增大H2的浓度,平衡正向进行,反应速率增大,氢气的转化率减小,故b不符合;

c.增大压强,反应速率增大,平衡正向进行,氢气转化率增大,故c符合;

d.加入催化剂改变化学反应速率不改变化学平衡,氢气转化率不变,故d不符合;

故答案为:K=

c(H2O)c(CH3OH)
c(CO2)c3(H2)
,a、c;

(3)反应Ⅰ:CO(g)+2H2(g)?CH3OH(g)△H1

反应Ⅱ:CO2(g)+3H2(g)?CH3OH(g)+H2O(g)△H2

依据盖斯定律反应Ⅰ-反应Ⅱ得到CO(g)+H2O(g)=CO2(g)+H2(g)△H=△H1-△H2;

图表中数据保持氢气初始浓度不变,一氧化碳浓度增大一倍,达到平衡所需时间缩短4分钟,所以分析判断n=4min;

故答案为:CO(g)+H2O(g)=CO2(g)+H2(g)△H=△H1-△H2 、4;

(4)甲醇和氧气以强碱溶液为电解质溶液的新型手机电池,燃料电池中燃料在原电池负极发生氧化反应,甲醇失电子在碱溶液中生成碳酸钾,该电池中甲醇发生反应的一极为负极,电极反应为:CH3OH-6e-+8OH-=CO32-+6H2O;

故答案为:负,CH3OH-6e-+8OH-=CO32-+6H2O;

(5)用该电池作电源,用惰性电极电解饱和NaCl溶液时,CH3OH-6e-+8OH-=CO32-+6H2O,每消耗0.2mol CH3OH,转移电子1.2mol,阴极电极反应为2H++2e-=H2↑,产生标况下气体的体积=0.6mol×22.4L/mol=13.44L;

故答案为:13.44.

俏皮的秀发
爱撒娇的发夹
2025-08-09 16:51:05
这个官方微博给下的结论,是这个方法有望解决能源危机问题,并通过清除大气中的二氧化碳帮助对抗全球变暖。其实这个工艺里面涉及到的各个技术环节,都是成熟的,经过了工业实践检验的。简单的说这个工艺包括了几个大部分:首先是从空气中富集二氧化碳。虽然工业上目前很罕见直接从空气中富集二氧化碳的做法,但是富集的原理是非常简单的。二氧化碳是酸性的,可以很方便地被碱吸收,而吸收了二氧化碳的碱,可以通过其他方法把二氧化碳释放出来,这样,就可以二氧化碳的富集,同时实现碱的循环使用来降低成本。工业上,吸收二氧化碳可以使用无机碱的水溶液,不过大规模的装置一般会使用有机胺。在煤化工天然气化工领域,通过碱来吸收二氧化碳已经是很成熟的了,这些都是化学方法。此外还可以通过物理方法,直接把二氧化碳溶解在溶剂里面,比如应用非常广泛的低温甲醇洗工艺,利用二氧化碳在零下三四十度的低温的甲醇溶液里面溶解度较好的性质,来吸收二氧化碳,然后再在较高的温度分离二氧化碳和甲醇,甲醇重复使用,而二氧化碳则得到了富集。目前工业上应用的二氧化碳富集工艺处理的都是至少几个百分点的二氧化碳,还没有应用到处理空气中几百个ppm的低浓度二氧化碳的实际例子。没有这样的工业实践的一个重要原因就是并没有这样的实际需求,并不是说技术上并不可行。当然在二氧化碳富集并没有足够的经济利益驱动的情况下,这个做法的确缺乏经济价值。造成经济性不好的原因,是一方面需要有投资,一方面运行这个回收装置需要消耗大量的能量,而且二氧化碳的浓度约低,需要的投资也就越大,所消耗的能量也就越大。这个能量,是需要有地方提供的。汽油是碳氢化合物,元素是碳和氢。二氧化碳只能提供碳元素的来源,氢的来源就要依靠广泛存在的水。这个工艺提出的方法,是电解水。电解水制氢是非常成熟的工艺,需要注意这个工艺也是需要消耗能量的。然后就需要把二氧化碳和氢气进行反应。这个工艺提出的方法是甲醇合成。这也是很成熟的工艺。二氧化碳和氢气在一定的反应温度和压力下得到甲醇已经有几十年的历史了,最早工艺来源于一氧化碳与二氧化碳的混合气体加氢得到甲醇,后来也有了专门使用二氧化碳加氢得到甲醇的工业示范,技术方面是没有问题的,因为没有经济性并没有被工业实际应用。这个反应本身的确是放热反应,不需要外界提供能量,不过将原料气体调整到所需要的温度和压力,仍然是需要能量的。然后就是将甲醇变成汽油的工艺。这个工艺听起来稀罕,实际上在八十年代就在新西兰有过大规模的工业实践,目前国内也有这样的装置,建成叫做MTG。这个工艺也需要外界提供一些能量。得到汽油以后还需要进行一些精馏分离等等提制工艺,也是需要能量的。如果不考虑技术细节,只看这个工艺的起始和终点,原料是二氧化碳和水,产物是汽油。汽油的使用方法是燃烧提供能量,得到二氧化碳和水。也就是说,二氧化碳和水,最终得到二氧化碳和水,还提供了人们可以使用的能量。这个能量不可能凭空而来。上面的分析也看到了,大多数的具体工艺环节都需要有能量来源,可以说这个工艺的本质,是利用二氧化碳和水作为媒介,将其他形式的能源,变成了运输可用的能源。千万不要误会这本身就是一个能源来源的解决办法,这只是能源形式转换的一个办法。运输使用的能源对可携带性有比较高的要求,要求便于存储、运输,需要一定的能量密度。这些要求是的汽油柴油成为运输用能源的首选,运输存储方便,能量密度大,目前还是其他能源形式不可替代的。运输业也有电力驱动,比如电气机车已经完全占据了铁路运输的市场,但是在飞机、轮船、汽车这些领域,电力因为不方便存储携带仍然没有得到大规模应用。所以在运输用能源短缺,至少未来石油肯定会不够用的前提下,研究其他方法制备汽油柴油是有价值的。特别是石油或者目前已经成熟的煤制油,天然气制油,使用的都是化石能源,可再生能源除了生物质以外都只能以电力的形式用于运输。这个工艺路线,在实现使用可再生能源来生产汽油的方面,是有价值的。那么,这算是解决能源危机的一个方法吗?长远看,是的。化石能源早晚有不够用的那一天,这个方法到了化石能源不够的时候,是一个生产汽油的方法。但是短期来看,这个全工艺的投资很高,能量转换效率也比较低,再加上目前可再生能源的价格也不便宜,至少在成本上是完全无法与目前的传统工艺竞争的。在至少二三十年的时间范围内,这条路线在解决能源危机方面做不了什么贡献,所以只能算是一个长远的方法,甚至可能是在化石能源退出舞台之后的一个运输用能源解决方法,与现在所谈的能源危机并不完全是一回事。直接就说是解决能源危机的方法,有很大的误导嫌疑。其实这个路线长远来甚至都不一定是一个好方法。电力汽车技术有可能在二三十年以后成熟,与电力汽车相比,这个路径的效率明显要地上不少,也许有特殊的市场定位,但是不可能是一个普遍的运输能源解决方法。或者说无论近期远期,从能源危机角度来讲,这条路线的意义都不大。但是也不是说长远看这条路线没有价值。要知道地球上能源的分布是很不均匀的,而能源的应用密度更加不均匀,而且,很多时候能源资源的分布于能源需求的分布对不上号,这就需要长距离进行能源运输。目前世界的石油就有一个遍及全球的输送网络,而电力却不可能实现超远距离的输送,跨越大洋的电力输送更是非常遥远的事情。这样,如何把可再生能源丰富但是需求较少的地区的能源运输出来,也是一个难题。如果能把可再生能源转化成为液体燃料的形式,就可以进行远洋运输,进行超远距离输送。当然要做到这一点,并没有必要把能源转化成为汽油,转化成甲醇就已经足够了。至少在三十年前,就有日本人提出过利用澳大利亚的丰富的太阳能资源,通过固定空气中的二氧化碳,转化成甲醇,然后把甲醇运输到日本使用。石油的用处也不仅仅在运输用能源,依赖石油为原料生产的各种各样的有机材料已经成为人们生活不可缺少的一部分。类似的思路可以生产乙烯,丙烯等基础化工产品,使用甲醇为原料制备乙烯丙烯的工艺都已经在进行工业实践。在石油稀缺到连化学品的供应都无法保障的时候,这个思路可以保证后石油时代的化学品供应。实际上,在差不多百年之后的后化石能源时代,使用大气中的二氧化碳作为碳的原料来生产化学品,可能要比提供运输用能源要靠谱得多,也更有可能成为现实。那么,这个做法能够清除大气中的二氧化碳吗?一定条件下来看,也是的。不过这个限定条件要比较苛刻。工艺本身,从大气中得到的二氧化碳里面的碳以汽油的形式被固定下来,汽油燃烧以后,再释放回到大气,可以实现二氧化碳的平衡。但是如果这个转化过程中所消耗的能量来自化石能源,那么这个工艺是不可能实现完全的二氧化碳平衡的。实际上,这个工艺是否真的能实现自身的二氧化碳平衡,取决于所利用的能量的清洁性。只有这个工艺里面所需要的能源来源都是清洁的,没有碳排放的,所需要消耗掉的消耗品的生产也是完全清洁的,没有二氧化碳排放的,那么,整个过程才不会产生更多的二氧化碳排放,或者说在没有产生更多的二氧化碳的排放的情况下人们实现了能量的利用,这也是很不错的。在这个时候,虽然这个工艺并没有直接减少大气中二氧化碳的总量,但是大自然本身就可以消耗一定的二氧化碳,如果人们停止了向大气中二氧化碳的排放,大气中的二氧化碳含量会逐渐降低的,间接的起到了清除大气中二氧化碳的作用。但是,真的实现,如前所说的,很可能是后化石能源时代的事情了,至少三五十年以内,实际应用价值仍然不大。

满意的鲜花
阔达的小刺猬
2025-08-09 16:51:05
可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。

大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。

随着能源危机的出现,人们开始发现可再生能源的重要性。

·太阳能

·地热能

·水能

·风能

·生物质能

·潮汐能

所有人类活动的基本能源都来自太阳,透过植物的光合作用而被吸收。

木材

柴是最早使用的能源,透过燃烧成为加热的能源。烧柴在煮食和提供热力很重要,它让人们在寒冷的环境下仍可生存。

动物牵动

传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。

生物质燃料

此种燃料原为可再生能源,如能产出与消耗平衡则不会增加二氧化碳。但如消耗过量而毁林与耗竭可返还土壤的有机物,就会破坏产耗平衡。用生物质在沼气池中产生沼气供炊事照明用,残渣还是良好的有机肥。用生物质制造乙醇甲醇可用作汽车燃料。

水力

磨坊就是采用水力的好例子。而水力发电更是现代的重要能源,尤其是中国这样满是河流的国家。此外,中国有很长的海岸线,也很适合用来作潮汐发电。

风力

人类已经使用了风力几百年了。

太阳能

太阳直接提供了能源给人类已经很久了,但使用机械来将太阳能转成其他能量形式还是近代的事。

潮汐能

潮汐发电利用潮水涨落,世界已有电站容量16GW。

从地球蕴藏的能源数量来看,自然界存在有无限的能源资源。仅就太阳能而言,太阳每秒钟通过电磁波传至地球的能量达到相当于500多吨煤燃烧放出的热量。这相当于一年中仅太阳能就有130万亿吨煤的热量,大约为全世界目前一年耗能的一万多倍。不过,由于人类开发与利用地球能源尚受到社会生产力,科学技术、地理原因及世界经济、政治等多方面因素的影响与制约。包括太阳能、风能、水能在内的巨大数量的能源,可以利用的仅占微乎其微的比例,因而,继续发展的潜力巨大。人类能源消费的剧增、化石燃料的匮乏至枯竭以及生态环境的日趋恶化,逼迫使人们不得不思考人类社会的能源问题。国民经济的可持续发展,依仗能源的可持续供给,这就必须研究开发新能源和可再生能源。

太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时(3.78×1024J),相当于1.3×106亿吨标准煤。按目前太阳的质量消耗速率计,可维持6×1010年。所以可以说它是“取之不尽,用之不竭”的能源。但如何合理利用太阳能,降低开发和转化的成本,是新能源开发中面临的重要问题。

风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、制冷和致热等。风力发电是主要的风能开发利用方式。中国的风能总储量估计为1.6×109千瓦,列世界第三位,有广阔的开发前景。风能是一种自然能源,由于风的方向及大小都变幻不定,因此其经济性和实用性由风车的安装地点、方向、风速等多种因素综合决定。

对于核电站,人们有许多误解,其实核能发电是一种清洁、高效的能源获取方式。对于核裂变,核燃料是铀、钚等元素,核聚变的燃料则是氘、氚等物质。有些物质,例如钍,本身并非核燃料,但经过核反应可以转化为核燃料。我们把核燃料和可以转化为核燃料的物质总称为核资源。

近年来,许多发展中国家虽然都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,尤其是近年来,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。2005年,根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。

氢是一种二次能源,一种理想的新的含能体能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质加工后方能得到氢气。最丰富的含氢物质是水,其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。

地热是指来自地下的热能资源。我们生活的地球是一个巨大的地热库,仅地下10千米厚的一层,储热量就达1.05×1026焦耳,相当于9.95×1015标准煤所释放的热量。地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。

海洋能通常指蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能等。海洋能蕴藏丰富,分布广,清洁无污染,但能量密度低,地域性强,因而开发困难并有一定的局限。开发利用的方式主要是发电,其中潮汐发电和小型波浪发电技术已经实用化。波浪能发电利用的是海面波浪上下运动的动能。1910年,法国的普莱西克发明了利用海水波浪的垂直运动压缩空气,推动风力发动机组发电的装置,把1千瓦的电力送到岸上,开创了人类把海洋能转变为电能的先河。目前已开发出60-450千瓦的多种类型波浪发动装置。

此外,还有生物质能,是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。

沼气

沼气发酵又叫厌氧消化,是指利用人畜粪便、秸秆、污水等各种有机物在密闭的沼气池内,在厌氧(没有氧气)条件下,被种类繁多的沼气发酵微生物分解转化,最终产生沼气的过程。沼气是一种混合气体,可以燃烧,因为这种气体最先是在沼泽中发现的,所以称为沼气

甲醚

【中文名称】甲醚;二甲醚;氧代双甲烷

【英文名称】dimethyl ethermethoxymethane

【CAS 登录号】115-10-6

【结构或分子式】

CH3-O-CH3

所有C、O原子均以sp3杂化轨道形成σ键。

【相对分子量或原子量】46.07

【分子式】C2H6O

【密度】相对密度1.617(空气=1)

【熔点(℃)】-138.5

【沸点(℃)】-24.5

【闪点(℃)】-41.4

【蒸气压(Pa)】663(-101.53℃);8119(-70.7℃);21905(-55℃)

【性状】

无色可燃性气体或压缩液体,有乙醚气味。

【溶解情况】

溶于水和乙醇。

【用途】

用作溶剂、冷冻剂等。

【制备或来源】

由甲醇脱水而得,也可由原甲酸在三氯化铁的催化下分解而得。

【其他】

临界温度128.8℃。临界压力5.32兆帕。凝固点-138.5℃。液体密度0.661

第三部分:危险性概述 -

危险性类别:

侵入途径:

健康危害: 对中枢神经系统有抑制作用,麻醉作用弱。吸入后可引起麻醉、窒息感。对皮肤有刺激性。

环境危害:

燃爆危险: 本品易燃,具刺激性。

第四部分:急救措施 -

皮肤接触:

眼睛接触:

吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:

第五部分:消防措施 -

危险特性: 易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。气体比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。

有害燃烧产物: 一氧化碳、二氧化碳。

灭火方法: 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、抗溶性泡沫、干粉、二氧化碳、砂土。

第六部分:泄漏应急处理 -

应急处理: 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。用工业覆盖层或吸附/ 吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。漏气容器要妥善处理,修复、检验后再用。

第七部分:操作处置与储存 -

操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止气体泄漏到工作场所空气中。避免与氧化剂、酸类、卤素接触。在传送过程中,钢瓶和容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。

储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与氧化剂、酸类、卤素分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。

第八部分:接触控制/个体防护 -

职业接触限值

中国MAC(mg/m3): 未制定标准

前苏联MAC(mg/m3): 未制定标准

TLVTN: 未制定标准

TLVWN: 未制定标准

监测方法:

工程控制: 生产过程密闭,全面通风。

呼吸系统防护: 空气中浓度超标时,建议佩戴自吸过滤式防毒面具(半面罩)。

眼睛防护: 戴化学安全防护眼镜。

身体防护: 穿防静电工作服。

手防护: 戴防化学品手套。

其他防护: 工作现场严禁吸烟。进入罐、限制性空间或其它高浓度区作业,须有人监护。

第九部分:理化特性 -

主要成分: 纯品

外观与性状: 无色气体,有醚类特有的气味。

pH:

熔点(℃): -141.5

沸点(℃): -23.7

相对密度(水=1): 0.66

相对蒸气密度(空气=1): 1.62

饱和蒸气压(kPa): 533.2(20℃)

燃烧热(kJ/mol): 1453

临界温度(℃): 127

临界压力(MPa): 5.33

辛醇/水分配系数的对数值: 无资料

闪点(℃): 无意义

引燃温度(℃): 350

爆炸上限%(V/V): 27.0

爆炸下限%(V/V): 3.4

溶解性: 溶于水、醇、乙醚。

主要用途: 用作致冷剂、溶剂、萃取剂、聚合物的催化剂和稳定剂。

其它理化性质:

第十部分:稳定性和反应活性 -

稳定性:

禁配物: 强氧化剂、强酸、卤素。

避免接触的条件:

聚合危害:

分解产物:

第十一部分:毒理学资料 -

急性毒性: LD50:无资料

LC50:308000 mg/m3(大鼠吸入)

亚急性和慢性毒性:

刺激性:

致敏性:

致突变性:

致畸性:

致癌性:

第十二部分:生态学资料 -

生态毒理毒性:

生物降解性:

非生物降解性:

生物富集或生物积累性:

其它有害作用: 无资料。

第十三部分:废弃处置 -

废弃物性质:

废弃处置方法: 处置前应参阅国家和地方有关法规。建议用焚烧法处置。

废弃注意事项:

第十四部分:运输信息 -

危险货物编号: 21040

UN编号: 1033

包装标志:

包装类别: O52

包装方法: 钢质气瓶;磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱;安瓿瓶外普通木箱。

运输注意事项: 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂、酸类、卤素、食用化学品等混装混运。夏季应早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线行驶,禁止在居民区和人口稠密区停留。铁路运输时要禁止溜放。

第十五部分:法规信息 -

法规信息 化学危险物品安全管理条例 (1987年2月17日国务院发布),化学危险物品安全管理条例实施细则 (化劳发[1992] 677号),工作场所安全使用化学品规定 ([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志 (GB 13690-92)将该物质划为第2.1 类易燃气体。

第十六部分:其他信息 -

参考文献:

填表部门:

数据审核单位:

修改说明:

其他信息:

【补充】

二甲醚又称甲醚,简称DME,在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。

二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。

二甲醚作为一种新兴的基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。

无私的飞鸟
阳光的裙子
2025-08-09 16:51:05

全球气候变化及其造成的严重后果已成为新闻中普遍关注的话题。极端天气似乎在整个地球上越来越普遍。人造二氧化碳(一种温室气体)的排放与气候变化有关,因为二氧化碳的含量一直在稳定地增长。为了应对这种变化,许多科学家和工程师进行了研究,以寻找从大气中隔离二氧化碳的方法,或者从源头捕获二氧化碳,以避免必须从空气中浓缩二氧化碳。

同时,CO2被认为是一种廉价的C1碳源,研究其理化性质使其能够直接在化学生产中使用并转化为更高价值产物对碳循环和节能具有重要意义。鉴于此,美国化学会杂志Journal of the American Chemical Society以3月份特刊的形式,重点关注了碳捕捉和转化技术,并预测在很长一段时间内CO2高效利用将成为研究重点。

文章链接: https://pubs.acs.org/page/virtual-collections.html?journal=jacsat&ref=vi_journalhome.

本文重点关注自2019年初以来的几份近期报告,其中包括碳捕集与封存(CCS)技术。例如,热和化学健稳定的金属有机骨架(MOF)的合成,其中氨基共价连接到MOF的内部,从而对CO2可逆结合表现出高选择性,对N2或H2O具有良好的吸附选择性。同时将CO2转化为高附加值的化学原料也是研究者的目标。由于CO2是碳的完全氧化形式,C为最高正四价,因此通常必须提供能量以将碳转化为还原度更高的形式。其中,光/电/热可以提供这种能量,相应的载体包括微生物、自范式器件、半导体材料、分子有机物等,他们以催化的方式克服反应能垒并具有不同的效率、选择性及反应产物。

【CO2利用集锦】

1.Nature: 机器学习寻找CO2吸附的MOF基材料 ”Data-drivendesignof metal–organic frameworks for wet flue gas CO2 capture”.

碳的捕获与封存是缓解CO2排放的可行技术之一,同时也是将CO2转化为高附加值化学品是实现碳循环的关键环节。金属有机框架(MOF)由无机金属中心(金属离子或金属簇)与桥连的有机配体通过自组装相互连接,形成的一类具有周期性网络结构的晶态多孔材料。其中有机配体与金属离子节点的巧妙组合理论上可以产生无数种结构和化学上不同的纳米多孔MOF。但是,当使用含有水的气体时,MOF对于CO2与N2的分离却效果不佳,因为水与CO2存在相同的吸附位点,从而导致材料失去选择性。而干燥排放的气体,将会对捕获过程增加高额的成本。

瑞士洛桑联邦理工学院的BerendSmit、俄勒冈州立大学的Kyriakos C. Stylianou、英国赫瑞瓦特大学的Susana Garcia和加州大学伯克利分校的Tom K. Woo通过对超过30万个MOF材料的理论计算,筛选出不同类别的具有强CO2结合位点(称之为“吸附型”)的MOF材料,这些位点使MOF具有在湿气体中对CO2/N2保持高选择性。同时,研究者根据理论计算的结果,合成了两种具有强疏水性吸附基团的MOF,发现它们的CO2捕获性能不受水的影响,并且性能优于某些沸石和活性炭等商业材料。

2.Nature Energy: 原子层二维半导体光催化CO2还原 “SelectiveVisible-light driven Photocatalytic CO2 Reduction to CH4 Mediated byAtomically-thin CuIn5S8 Layer”.

中国科学技术大学合肥微尺度物质科学国家研究中心孙永福教授、谢毅教授课题组从CO2还原的反应热力学和动力学角度出发,设计构建了一种S空位的双金属位点型超薄纳米片以期实现精准调控CO2还原产物的选择性。以制备的缺陷态CuIn5S8超薄纳米片为例,理论模拟和原位红外光谱测试结果均证实低配位的Cu和In位点能够与二氧化碳分子作用生成高稳定的Cu-C-O-In中间体,而该中间体在同时断裂Cu-C键和C-O键形成自由态的CO分子时则需要克服很高的反应能垒;相比较而言,在该中间体的C原子上加氢形成CHO中间体的反应则是放热反应、能够自发进行,从而使其更倾向于获得接近100%的甲烷选择性。

光催化测试结果证实,含硫缺陷的CuIn5S8超薄纳米片在可见光驱动下将CO2还原为CH4的选择性达到近100%,平均产率为8.7μmol g-1 h-1。该工作通过构建双金属位点CuIn5S8超薄纳米片,改变了关键反应中间体的构型,调节了反应势垒,进而改变了反应路径,最终使得还原产物由CO变为CH4,这为设计高选择性和高活性的二氧化碳光还原催化剂体系提供了新的思路。

3.Nature Energy: 固态电解质助力CO2还原选择性生产纯液体燃料 ”Continuous production ofpure liquid fuel solutions via electrocatalytic CO2 reduction usingsolid-electrolyte devices”.

电催化CO2还原生产有价值的液态燃料,是实现碳中性能量循环的潜在策略。但是,这些液态产物通常在传统H型或流动池反应器中,易于电解质中的溶质混合,因此需要额外的分离和浓缩过程以便在实际应用中进行回收利用。尽管已经研究出具有高选择性(>90%)和高活性的CO2还原催化剂,但在大多数情况下,由于中性或碱性电解质环境,从而导致形成的产物是甲酸盐或浓度很低。因此对于电催化CO2还原的实际应用,直接连续地生产纯液态燃料,特别是具有高产物浓度和长期操作稳定性的纯液态燃料至关重要。

美国莱斯大学汪淏田教授课题组使用固态电解质电池装置将CO2电还原连续转化为纯净单一组分的液态燃料,其中电化学产生的阳离子和阴离子结合形成纯产物且不和其它离子发生混合。当使用Bi催化剂时,在阴极可获得高选择性的HCOOH(法拉第效率>90%),作者成功生产出了浓度高达12 M的纯HCOOH溶液。此外,该催化剂可以连续100 h稳定生成0.1 M HCOOH,在此过程中几乎没有选择性和活性的衰减。

4.Science: 分子催化剂助力流动池CO2电还原”Molecular electrocatalysts canmediate fast, selective CO2 reduction in a flow cell”.

研发兼具高活性和高稳定性的CO2还原电催化剂是研究人员孜孜不倦追求的目标。基于异相催化的固体电催化剂能在高达150mA/cm2的电流密度下进行CO2还原,但如何在如此高的电流密度下保持高的稳定性和能量转化效率仍是一个世界性难题。基于均相催化的分子电催化剂则能在CO2还原反应中达到更高的选择性,并能从分子设计的角度设法降低CO2还原反应的过电位。但其电流密度过低,难以达到商业应用的要求。

加拿大不列颠哥伦比亚大学的Curtis P. Berlinguette和法国巴黎大学的Marc Robert(共同通讯作者)等以商业酞菁钴(CoPc)作为电催化剂,采用流动相电催化CO2还原反应,CoPc分子催化剂在液流电池中也表现出更高的电化学稳定性,在50 mA/cm2的高电流密度下能持续工作100 h以上。当液流电池的电流密度为150 mA/cm2时,CoPc催化CO2还原为CO的选择性高于95%。

5.Science: 固液气三相界面超高电流密度CO2电还原C2H4 ” CO2 electrolysis to multicarbonproducts at activities greater than 1 Acm−2”.

利用可再生能源来驱动气体的电化学固定,将其转化为具有附加值的产品,这是将CO2和CO转化为碳氢化合物燃料和化学原料的一个有吸引力的途径。然而普遍的在碱性水测试环境中由于传质的原因,限制了水相电池中催化剂的生产能力,其电流密度被限制在每平方厘米几十毫安的范围是制约高效电还原CO2的难题。

加拿大多伦多大学的Edward H. Sargent等研究人员提出了一种混合催化剂设计,通过构建有效固-液-气三相界面解耦气体、离子和电子的传输,使CO2和CO在>1 A cm−2区域的电流密度下能够有效地进行气相电解以生成高附加值化工品乙烯。在7 M KOH电解液中,获得从0.2到1.5A cm-2电流密度, H2的生成率保持在10%以下。在最高电流操作条件下,优化后的催化剂对乙烯的最大产率为65~75%,在阴极能效率为46.3%的情况下,其峰值偏电流密度也能达到1.34 A cm-2,为工业化CO2还原奠定了道路。

供稿人:Matche Lee

要减肥的飞鸟
孝顺的花卷
2025-08-09 16:51:05

我们所处的地球环境正在日益恶化,环保问题备受关注。汽车作为全球碳排放的一大因素,为了节能减排,全球各国都将发展新能源汽车列为重点项目。

提到新能源汽车,大部分人的第一印象就是纯电车,靠电驱动、没有了汽油燃烧时产生的大量排放物给人感觉会更加环保。然而事实果真如此吗?首先从产品层面来看,电车补能效率低、续航不稳定、电池受温度影响大、配套基础设施不完善等因素让不少消费者仍处在观望状态;其次我国电动汽车的电力大部分依赖于火力发电,电动车是否“真环保”仍有待商榷;最后从长远角度来看,报废汽车后续的电池处理问题也不容忽视。

那么是否有一种新能源,能够解决纯电汽车的这些短板?答案是有的,那就是氢能源汽车。

氢气是一种二次能源,也是公认的清洁能源。因其具有热值高、终端利用无污染、便于大规模储存等优点,被国际能源署誉为“未来能源架构的核心”,随着氢能产业各环节技术的日渐成熟,氢能利用也越来越广泛。在《中国制造2025》《能源技术革命创新行动计划(2016-2030年)》《新能源汽车产业发展规划(2021-2035年)》《“一三五”国家战略性新兴产业发展规划》等多个国家规划中,明确提出将“氢能与燃料电池”作为战略重点。

而在氢燃料电池车领域,除了大家较为熟悉的丰田,现代汽车也早已深耕多年。早在 1998 年,现代汽车便启动燃料电池开发部门,2013年基于ix35打造的第1代氢燃料电车成为全球首款量产车型,随后的几年氢燃料电池大巴、氢燃料电池重卡先后问世,今年氢燃料电池车 Nexo 中国版也会在年内正式上市,形成“乘商并兼”的全产品矩阵。

与此同时,现代汽车集团全球首个海外氢燃料电池生产销售基地——“HTWO 广州”将于 2022 年底正式竣工并投产,作为中国首家大型氢燃料电池系统生产专用工厂,率先布局的现代汽车有望在氢能源车发展上取得先机。未来,现代汽车计划将燃料电池系统拓展部署至移动出行以及其他各种领域,实现 2040 构建氢能社会的美好愿景。

作为首款符合中国法规的氢燃料电池乘用车,目前Nexo中国版已经正式登录工信部《免征车辆购置税的新能源汽车车型目录》(第五十七批),其在续航里程及补能方面给我留下了深刻的印象。在充满氢的情况下,CLTC-P工况下续航里程可达550公里,加满氢仅需5分钟,完全解决了新能源汽车补能时间过长和续航焦虑等问题。在为中国消费者带来真正的“零碳排放”环保出行新体验进程中又迈出了重要的一步。

但不可否认的是,对于现阶段的国内市场而言,氢燃料电池车的发展仍面临不少的挑战。首先是公众认知问题。氢气的化学性质活泼,长期以来,我国一直将氢气作为危化品进行管理,应用领域局限在化学品,由此导致公众认知水平较低,且没有完善的能源管理方案。其次,日常运输、储氢也是一项难题,氢气在高压状态下存在安全隐患。此外,建设加氢站的成本远高于超充站,接近千万元,所以距离大规模普及还有些距离,目前全国支持公用的加氢站仅 270 座左右,多分布在广东、上海、河北等地。且我国储氢罐压力值与国外标准不同,受限于国内的相关法规,国内版的储氢能力会有所下降。最后就是价格方面,受到造车成本的限制,参考长安深蓝早前公布的SL03氢能版售价69.99万元,现代 Nexo 上市后的价格也不会很低,这就意味着想要亲身感受氢燃料电池车的独特魅力还有待时日。

 

即便如此,我依旧对它很有信心,此刻之于氢燃料电池车就像十年前之于纯电车一般,谁也不曾想到十年后的今天电动车的渗透率如此之高。由此可见,诸多挑战的背后是国家大力发展新能源的决心,作为“绝对纯净”的新能源,氢燃料电池车的发展前景更是不可估量。

美满的雪碧
雪白的铅笔
2025-08-09 16:51:05
美国

新能源成果突出,生态安全备受重视

2018年,美政府在大力推动传统能源产业发展的同时,持续加大对太阳能、核能、地热能、生物能等新能源领域的研发投入。

众多新能源领域中,新型电池研发成果引人注目。750次充电/放电循环后仍能正常工作的新型锂空气电池、容量大且寿命长的可充电水基锌电池、靠细菌发电的低成本纸基生物电池等成为电池中的新星。而在提高现有电池性能方面,科学家也取得不少成果。他们将有机太阳能电池的光电转化效率提高至15%,将锂离子电池的容量提高了40%。布朗大学开发的新型燃料电池反应合金催化剂,在活性和耐久性方面更是超过了能源部2020年车用电催化剂技术指标。

在维护生态环境安全方面,尽管政府最新气候评估报告称,气候变化将给美国带来多重伤害,但并没有说服特朗普总统。科学家依然不遗余力游说,不仅发文称美墨边境墙会严重危害地区生物多样性,还对欧洲将木材作为低碳燃料的政策提出质疑。在具体研究方面,甲烷温室效应的证实、金属铋“催化可塑性”的发现、可再生可降解乳蛋白包装材料的开发等成果,都成为保护全球生态环境安全的助推剂。

日本

锂电池负极大容量化,制氢系统投建

大容量不劣化的锂电负极研发成功。日本产业技术综合研究所新开发出了一种锂离子电池使用的负极,容量约为目前主流的石墨负极(372mAh/g)的5倍,与一氧化硅的理论容量基本一致。新开发的电极在反复充放电200多次后,容量依然没有变化,确认具备大容量、长寿命的特性。利用此次开发的电极有望提高负极的能量密度,推动锂离子二次电池实现大容量化和小型化。

世界最大规模利用可再生能源的制氢系统在福岛投建。2018年8月,日本新能源产业技术综合开发机构(NEDO)、东芝能源系统、东北电力及岩谷产业合作,开始在福岛县浪江町建设利用可再生能源制氢的氢能源系统“福岛氢能源研究站”,系统装置具备世界最大规模的1万千瓦制氢能力。利用该系统制造的氢预定用于燃料电池发电用途及燃料电池车和燃料电池巴士等交通用途,或者作为工厂的燃料使用。

氢燃料发动机实现大功率、高热效率、低排放。产综研与日本冈山大学、东京都市大学、早稻田大学组成的研究小组,在小型发动机的基础实验中,利用氢燃料优异的燃烧特性确立了新的燃烧方式,开发出全球首款能实现高热效率和低氮氧化物(NOx)的火花点火氢燃料发动机。

东海核燃料再处理设施报废计划获批。日本“原子力规制委员会”2018年6月批准了由日本原子力研究开发机构提交的东海核燃料再处理设施报废计划,耗资1万亿日元,报废时长预计将持续70年。

俄罗斯

大气治理取得进展,核废料和水处理有新法

大气污染防治方面,俄罗斯国立秋明大学的科研人员研发出液滴悬浮约束方法,并可进行定量液滴有序成团,此项工作可用于大气中污染物扩散机理的研究,制定生态灾难预防性措施托木斯克理工大学研究人员使用含有3%—10%有机杂质的工业用水和废水,获取了燃料气溶胶,这种气溶胶可用于快速点燃火力发电厂和锅炉房的锅炉,还可用于柴油发电机燃烧室以及汽车内燃机。

核废料处理方面,俄科学院远东分院化学研究所联合俄远东联邦大学,正在研制新型纳米结构吸附反应剂,该吸附剂可用于净化俄远东红星造船厂内的放射性液体废物俄西伯利亚联邦大学的科学家采用空化技术,让位于乏核燃料储罐底部密实的不溶性沉积层不断受到空化—活化水酸性溶液侵蚀而被破坏,新技术将溶解速率和沉积物回收量提高至原来的1.5倍,制备出的含放射性化学废物的水泥混合物强度是常规方法的2—3倍。

水处理方面,俄圣彼得堡理工大学的科学家使用高铁酸钠替代传统的氯气对自来水进行消毒,新试剂用量小,不会形成毒性分解物,还能将一些危险化学品分解成低毒化合物,同时杀死水中微生物俄托木斯克工业大学能源工程学院研发出液滴爆炸粉碎式污水处理方法,可高效去除污水中的化学侵蚀性、毒性及燃料杂质,具有高效、低能耗的特点,适用于化工、石化、冶金、纸浆造纸等行业的污水处理。

德国

致力解决气候和雾霾问题,开发储存制取氢的新工艺

2018年德国大规模启动了碳转化学项目以解决气候和雾霾问题,这个由赢创公司和西门子合作的项目,拟利用人工光合作用,将二氧化碳和水转化为有用化学物质。按照计划,到2021年将在鲁尔区的马尔化学工业园建成一个巨大的化学试验装置,预计每年可利用二氧化碳生产20000吨有用的化学品和燃料。该项目最终获益的不仅是钢铁行业,还有化学和能源等行业。

德国尤利希研究中心和埃朗根—纽伦堡大学的研究人员合作,开发出了利用有机载体液和特殊催化剂,储存和制取氢燃料的新工艺,可使原先装卸氢燃料所需的两个装置简化成一个装置。这一新工艺将来应用于工业化储氢和生产,将大大降低成本和能源消耗,对能源转型具有重要意义。

不莱梅大学库尔策教授领导的研究小组找到了一种解决地下水硝酸盐污染的新方法,发现一种合成的多金属氧酸盐对于减少硝酸盐水污染有特殊作用,这种纳米结构物质在水中对硝酸盐还原起电催化效果。

韩国

建成应对核泄露系统,提高锂电池性能

2018年,韩国建成了迅速应对核泄露的“核辐射状况信息共享系统”,在核能设施周边29个地点探测放射能量泄露数据并迅速应对。

韩国大学成功开发出一种利用太阳光谱中红光捕捉二氧化碳的技术,能够将二氧化碳转换成一氧化碳中间物质,从而生产燃料此外,韩国还研发出了符合更高环保要求的氢气制备技术。

韩国使用富锂锰氧化物开发了一种兼具高电压、高容量的黏合剂阳极材料,可大幅提高锂二次电池的能量密度同时,充电速度为现有锂电池5倍、采用石墨烯球正极保护膜和负极材料的锂二次电池也在韩国研发成功。

以色列

注重氢燃料电池研发,助力新能源汽车发展

在第6届国际智能机动峰会上,以色列公司展示出水基氢燃料溶液,利用公司的专利催化剂,可以快速从溶液中获取氢气,供给氢燃料电池产生电能。该溶液具有无毒、化学性质稳定的特点,同时储能密度高,且便于运输和存储。

以色列研究人员还发现在太阳能的作用下,过氧化氢在氧化铁构成的光电极上产生光化学分离的化学机理。该发现有望将水廉价且高效地转化为清洁的氢燃料,促进氢燃料电池驱动的汽车大规模发展。

乌克兰

建立环境研究中心,监测研究自然生态

2018年9月,乌克兰教科部、环境部、国立喀尔巴阡大学,以及喀尔巴阡山国家公园联合建立了喀尔巴阡环境研究中心。喀尔巴阡山是横跨中东欧多个国家的欧洲第二长山脉,目前存在着诸如地表水体污染、工业和生活垃圾污染等环境问题,以及自然生态系统退化、生物多样性丧失、洪水和山体滑坡威胁增大的趋势。该研究中心建立后,通过监测和研究将为解决上述问题提供科学依据和解决方案。

舒服的外套
深情的大米
2025-08-09 16:51:05

气凝胶最早由美国科学工作者S.Kistler在1931年制得的一种低密度、高孔隙率的纳米多孔材料,早在1993年美国宇航局NASA就将气凝胶应用到航空航天领域。是目前公认热导率最低的固态材料,也是目前最轻的固体;其优异的理化性能打破了十余项吉尼斯世界纪录,被誉为改变21世纪的十大材料之一。由于它的特殊性能被应用到了很多领域。

(1)军事及航空航天领域

与传统绝热材料相比,气凝胶材料可以用更轻的质量、更小的体积达到等效的隔热效果。这一特点使其在航空、航天应用领域具有举足轻重的优势,目前主要应用在太空服的绝缘材料和飞行器隔热等;

(2)工业及建筑绝热领域

在电力、石化、化工、冶金、建材行业以及其他工业领域,热工设备大量存在。其中由于一些设备的特殊部位和环境,受到重量、体积或空间的限制,都需要用到这种高效的超级绝热材料;

(3)太阳能热水器领域

太阳能热水器及其他集热装置的高效保温是进一步提高太阳能装置的能源利用率和其实用性的关键因素。将气凝胶材料应用于热水器的储水箱、管道和集热器等,比现有太阳能集热效率更高,更有效。

由于气凝胶材料的优异性能,已经被应用到了很广泛的领域,那到底这种材料有没有缺点?国内外的科研工作者一直在研究如何将气凝胶更好地应用到日常服装领域,气凝胶本身柔韧性较差、易碎,目前应用到服装领域的气凝胶是将气凝胶颗粒或粉末与无机纤维或有机纤维结合在一起制成气凝胶毡,这种气凝胶复合材料的保暖性很好,但是克重较重,柔韧性较差,而且在使用过程中气凝胶粉末会逐渐的逸出,体验效果不够理想。

而这一“世纪性难题”终于在2018年得到了解决。据资料显示,国内最早开发出来的纺织专用气凝胶复合材料是由疏博纳米研发出来的,解决了气凝胶材料固有的易碎、掉粉等缺陷,最先开发出了颠覆传统的纺织专用气凝胶复合保暖材料,在保留了气凝胶最轻、最隔热的特点同时将气凝胶真正地做到了柔性可穿戴,并将其应用在服饰中,真正做到了让科技造“服”于人。

轻松的钢铁侠
光亮的墨镜
2025-08-09 16:51:05

行业主要上市公司:美锦能源(000723)厚普股份(300471)中国石化(600028)卫星化学(002648)嘉化能源(600273)亿华通(688339)等

本文核心数据:氢能源板块上市公司研发费用氢能源相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“hydrogen

energy”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。

氢能技术概况

1、氢能源的界定及分类

(1)氢能源的界定

氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,储量丰富。氢能被视为21世纪最具发展潜力的清洁能源,随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。

(2)氢能源的分类

按照氢气的来源,通常将氢能源分为三类,即灰氢、蓝氢和绿氢。

2、技术全景图:四大环节构成

氢能产业主要由制氢、储氢、运氢、加氢和用氢四大环节构成。为发挥氢能重要能源载体作用,需大力推动氢能产业每个环节的技术发展。其中电解水制氢、液态/固态储氢、液态有机储氢、氢燃料电池等先进技术研究对氢能产业规模化应用具有重要意义。

氢能产业技术发展历程:始于上世纪50年代

中国的氢能与燃料电池技术研究始于上世纪50年代。20世纪80年代以来,相继启动了863计划和973计划,加速以研究为基础的技术商业化项目,氢能和燃料电池均被纳入其中。“十三五”期间,氢能与燃料电池开始步入快车道。2016年以来相继发布《能源技术革命创新行动计划(2016-2030年)》、《节能与新能源汽车产业发展规划(2012-2020年)》、《中国制造2025》等顶层规划。2019年两会期间,氢能首次写入政府工作报告。2020年4月,氢能被写入《中华人民共和国能源法》(征求意见稿)。2021年,“十四五”规划指出要在氢能与储能等前沿科技和产业变革领域,组织实施未来产业孵化与加速计划,谋划布局一批未来产业。2022年发布第一个氢能源专项规划——《氢能产业发展中长期规划(2021-2035

年)》,为中国氢能源产业发展作为指引。

氢能产业技术政策背景:政策加持技术水平提升

近些年来,我国提出了一系列氢能产业技术发展相关政策,包括氢气制备、储运、应用和燃料电池等关键技术,使得氢能产业技术水平稳步提升。

氢能产业技术发展现状

1、氢能产业技术科研投入现状

(1)国家重点专项

为推进氢能技术发展及产业化,国家重点研发计划启动实施“氢能技术”重点专项。2018-2022年,“氢能技术”重点专项数量逐年增加。2018年仅9项技术专项,到2022年,“氢能技术”重点专项围绕氢能绿色制取与规模转存体系、氢能安全存储与快速输配体系、氢能便捷改质与高效动力系统及“氢能万家”综合示范4个技术方向,拟启动24项重点专项。

(2)A股上市企业研发费用

目前,中国氢能市场正处于发展初期,行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国氢能源板块上市公司研发总费用逐年增长,2022年第一季度,氢能源板块上市公司研发总费用约158.69亿元。

2、氢能产业技术科研创新成果

(1)论文发表数量

从氢能相关论文发表数量来看,2010年至今我国氢能相关论文发表数量呈现逐年递增的趋势,可见氢能科研热度持续走高。截至2022年8月,我国已有80825篇氢能相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解氢能产业技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,催化剂、燃料电池、制氢系统、电解水、电解槽等关键词涉及的专利数量较多,说明氢能领域近期的研发和创新重点集中于燃料电池和制氢等领域。

(3)专利聚焦领域

从氢能专利聚焦的领域看,目前氢能产业专利聚焦领域较明显,其主要聚焦于催化剂、燃料电池、制氢系统、电解水、电解槽等。

注:图中格子数量表示每家公司的专利覆盖率,每个格子代表相同数量的专利。

主要氢能产业环节技术分析

1、前端制氢环节:可再生能源电解制氢是氢源终极方案

制氢环节技术主要包括化石能源制氢和可再生能源制氢。其中,利用化石能源制氢并未摆脱能源对石油、煤炭和天然气的依赖,仍会产生大量碳排放即使是加上CCUS捕集制备的蓝氢,一旦甲烷在制备过程中发生泄漏,对气候的影响比碳排放更大。而利用可再生能源进行电解水制氢,生产过程基本不会产生温室气体。

2、中端储运氢环节:固态储运安全性更好

储运氢气的方式主要分为气态储运、液态储运和固态储运。相比于气氢储运和液氢储运,固态储运在安全性方面优势明显。

3、后端加氢及氢燃料电池

(1)加氢:站内制氢成本优势大

加氢基础设施是氢能利用和发展的中枢环节,是氢能产业发展的核心配套设施。根据氢气来源不同,加氢站可分为外供氢加氢站和站内制氢加氢站。相较于外供氢而言,站内制氢能够大幅减小氢气的运输成本。

(2)氢燃料电池:质子交换膜燃料电池是主流发展方向

按电解质的种类不同,燃料电池可分为碱性燃料电池、质子交换膜燃料电池、硝酸型燃料电池、碳酸型燃料电池、固体氧化物燃料电池等。其中,质子交换膜燃料电池是当前燃料电池的主流技术发展方向。

氢能产业技术发展痛点及突破

1、氢能产业技术发展痛点

(1)高成本是制约氢能大规模发展的关键

当前,经济性为氢能产业发展最大的挑战因素,即使是成本相对较低的氢气($0.5/kg),除了转化成氨用作肥料以外,绝大多数氢能应用场景都比现有化石能源技术昂贵。解决氢能产业在绿氢制备、储运氢、加氢站建设、燃料电池电堆等关键环节的经济性问题,是未来氢能大规模发展必须要攻克的一道难题。

(2)制氢技术:先进电解技术发展不成熟

目前国内电解水制氢的成熟技术为碱性电解水制氢技术,碱性水电解槽难以响应瞬态负载,因而难以与波动大的可再生电力配合。另外,PEM电解水制氢技术也面临着匹配可再生能源电力而进行的电解槽设计、控制技术以及电源系统设计等尚不成熟的局面。

2、氢能产业技术发展突破

(1)先进电解技术:PEM电解槽设计改进突破

PEM电解槽设计改进策略方向包括更轻更稳定的端板和双极板、经济且耐腐蚀的集电器等。据Yagya N

Regmi博士的研究小组研究发现,PEM电解中发生不含铂族金属催化的析氧反应在短期内是无法实现的,因此,尽可能使铱的质量活性最大化才是目前的可行策略。

(2)氢能储运:固态储氢和潜液式液氢泵突破储运氢技术瓶颈

氢能储运技术突破在于提高储氢密度和安全性,以及降低运输成本。固态储氢是利用物理或化学吸附将氢气储存在固体材料之中。固态储氢具有体积储氢密度高、安全性更好的优势,因此是一种有前景的储氢方式。因此,固态储氢得到了越来越多的研究和关注,主要工作集中在储氢材料的研发与改性等方面。以氢枫能源的镁基固态储氢为例,镁基固态储氢具有资源、性能及技术优势。

液氢泵为液氢储运的重要部件,用于对液体氢气进行传输分配。从氢能全产业链来看,氢气输配成本和初始资本支出为降本的最主要环节。潜液式液氢泵取代了外置泵,减少了氢蒸发,去掉了气氢压缩机且用液氢的冷源省去制冷系统。此外,潜液式液氢泵大流量液氢泵直接加注,不用高压储罐,去除级联储存最终的结果是减少初始投资和运行成本,使氢气的售价与汽油、柴油比肩。

氢能产业技术发展方向及趋势:氢能各环节技术加快突破

氢能供应体系发展路径以实现绿色经济高效便捷的氢能供应体系为目标,中国将在氢的制储运加各环节上逐渐突破。从长远看,随着用氢需求的扩大,结合可再生能源的分布式制氢加氢一体站、经济高效的集中式制氢、液氢等多种储运路径并行的方案将会是主要的发展方向。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《氢能产业技术趋势前瞻及投资价值战略咨询报告》。