安徽深电能售电有限公司怎么样?
安徽深电能售电有限公司是2017-08-17注册成立的有限责任公司(自然人投资或控股),注册地址位于安徽省池州市站前区池州国际汽车城4幢124、124复式。
安徽深电能售电有限公司的统一社会信用代码/注册号是91341700MA2NYAR57A,企业法人舒金水,目前企业处于开业状态。
安徽深电能售电有限公司的经营范围是:供电、售电;电力工程设计服务;电力设备、高低压电气设备、电气机械销售;电力咨询服务;电力产品的开发与销售;新能源技术咨询服务;可再生能源领域技术咨询、技术服务;电力技术研发。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。
通过爱企查查看安徽深电能售电有限公司更多信息和资讯。
电子信息产业:重点发展新型显示、智能家电、集成电路、软件、信息服务和物联网,打造中国(合肥)国家级新型平板显示产业基地,提升合滁芜信息家电产业带,建设合肥语音产业基地,形成一批电子元器件产业园区。节能环保产业:重点发展节能环保装备、节能产品,促进资源综合利用和循环利用,建设芜湖节能环保和绿色照明产业基地、滁马铜池绿色照明产业带,发展合肥水泥成套设备和环保设备。新能源产业:重点发展光伏、生物质能源、洁净煤、核电和风电,适度建设抽水蓄能电站,建设一批国家级绿色能源县。建设一批光伏及生物质能等新能源基地。生物产业:重点发展生物制药、现代中药、生物育种等产业,做大做强蚌埠生物产业基地、亳州现代中药产业基地、芜湖生物医药产业基地、合肥生物医药产业基地。高端装备制造产业:重点发展数字化、柔性化及系统集成的重大基础装备,工业领域重大成套技术装备,新型基础零部件,全面优化装备集成协作配套体系,提升合肥工程机械及工业机器人、两淮煤机装备、沿江船舶、芜湖大型铸锻件、马鞍山冶金装备等装备制造基地。新材料产业:重点发展高性能金属材料、硅基材料、膜材料、纳米材料、碳纤维材料、新型显示材料、稀土永磁材料、复合材料及特种材料等,培育和打造铜陵铜基新材料产业基地、马鞍山高性能铁基新材料产业基地、滁州硅基新材料产业基地、安庆化工新材料产业基地、池州高分子聚合材料产业基地、黄山新型包装材料产业基地。新能源汽车:重点发展纯电动汽车、混合动力汽车,加快发展动力电池、高性能电机、电控系统,打造合肥、芜湖新能源汽车产业基地,促进新能源汽车整车产业化。公共安全产业:重点发展通讯安全、生产安全、食品安全、信息和交通安全、矿山安全等产业,促进量子通信技术产业化,建成具有重大战略意义的信息安全堡垒,打造合肥公共安全产业基地。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电(Small-hydro)、太阳能(Solar)、风能(Wind)、现代生物质能(Modern biomass)、地热能(Geothermal)、海洋能(Ocean)(潮汐能);传统生物质能(Traditional biomass)。
太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 潮汐能 二甲醚 可燃冰等。
问题二:新型能源有哪些? 新型能源是相对于常规能源说的,有核能、太阳能、风能、生物质能、氢能、地热能和潮汐能等许多种。新能源的共同特点是比较干净,除核裂变燃料外,几乎是永远用不完的。由于煤、油、气常规能源具有污染环境和不可再生的缺点,因此,人类越来越重视新能源的开发和利用。
问题三:新型燃料包括哪些能源 新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。1、新能源按其形成和来源分类:(1)、来自太阳辐射的能量如:太阳能、水能、风能、生物能等。(2)、来自地球内部的能量,如:核能、地热能。(3)、天体引力能,如:潮汐能。2、新能源按开发利用状况分类:(1)、常规能源,如:水能、核能。(2)、新能源,如:生物能、地热、海洋能、太阳能、风能。3、新能源按属性分类:(1)、可再生能源,如:太阳能、地热、水能、风能、生物能、海洋能。(2)、非可再生能源,如:核能。4、新能源按转换传递过程分类:(1)、一次能源,直接来自自然界的能源。如:水能、风能、核能、海洋能、生物能。(2)、二次能源,如:沼气、蒸汽、火电、水电、核电、太阳能发电、潮汐发电、波浪发电等。
问题四:新能源包括哪些能源啊? 新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
问题五:新能源产业包括哪些 1、新能源按其形成和来源分类:
(1)、来自太阳辐射的能量,如:太阳能、水能、风能、生物能等。
(2)、来自地球内部的能量,如:核能、地热能。
(3)、天体引力能,如:潮汐能。
2、新能源按开发利用状况分类:
(1)、常规能源,如:水能、核能。
(2)、新能源,如:生物能、地热、海洋能、太阳能、风能。
3、新能源按属性分类:
(1)、可再生能源,如:太阳能、地热、水能、风能、生物能、海洋能。
(2)、非可再生能源,如:核能。
4、新能源按转换传递过程分类:
(1)、一次能源,直接来自自然界的能源。如:水能、风能、核能、海洋能、生物能。
(2)、二次能源,如:沼气、蒸汽、火电、水电、核电、太阳能发电、潮汐发电、波浪发电等。
来源
太阳能
太阳能有广义狭义之分:狭义太阳能是指现代能用现代技术直接利用转化的太阳辐射;广义的太阳能除包括狭义太阳能还包括间接获得到太阳能量,如由于太阳辐射引起的大气流动――风能、远古植物形成煤等。
风能
风能(wind energy)地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。
水能
广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;
狭义的水能资源指河流的水能资源。是常规能源一次能源。
生物质能
生物质能(biomass energy )就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
核能
核能(或称原子能)是通过转化其质量从原子核释放的能量。
地热能
地热能〔Geothermal Energy〕是由地壳抽取的天然热能这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。
问题六:目前地球上有哪些新能源? 太阳能 太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式 <br>广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。 利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。 太阳能可分为2种: 1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。 2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。 核能 核能是通过转化其质量从原子核释放的能量,符合阿尔伯特・爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式: A.核裂变能 所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量 B.核聚变能 由两个或两个以上氢原子核(如氢的同位素―氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。 C.核衰变 核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用 核能的利用存在的主要问题: (1)资源利用率低 (2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决 (3)反应堆......>>
问题七:新能源股都有哪些? 天威 (600550)形成太阳能原材料、电池组件的全产业布局
小天鹅 (000418)大股东参股无锡尚德太阳能电力
岷江水电 (600131) 参股 *** 华冠科技涉足太阳能产业
生益科技 (600183)控股的东海硅微粉公司是国内最大硅微粉生产企业
维科精华 (600152)成立的宁波维科能源公司专业生产各种动力、太阳能电池
安泰科技 (000969)与德国ODERSUN公司合作薄膜太阳能电池产业
长城电工 (600192)参股长城绿阳太阳能公司涉足太阳能领域
乐山电力 (600644)参股四川新光硅业主要生产多晶硅太阳能硅片
华东科技 (000727)国内最大的太阳能真空集热管生产商
春兰股份 (600854)大股东计划投资30亿开发新能源
威远生化 (600803)实际控股股东新奥集团从事太阳能等新能源产品生产
力诺太阳 (600885)太阳能热水器的原材料供应商 *** 药业8.181.11% (600211)发起股东之一为 *** 科光太阳能工程技术公司
新华光 (600184)太阳能特种光玻基板
特变电工 (600089)控股的新疆新能源从事太阳能光伏组件制造
航天机电 (600151)控股的上海太阳能科技电池组件产能迅速提升
南玻A (000012) 05年10月拟首期2亿元建设年产能30兆瓦太阳能光伏电池生产线。
交大南洋 (600661)控股的交大泰阳从事太阳能电池组件生产
杉杉股份 (600884)参股尤利卡太阳能,掌握单晶硅太阳能硅片核心技术
王府井 (600859)全资子公司深圳王府井联合了中国最大的太阳能专业研究开发机构――北京太阳能研究所成立了北京桑普光电技术公司
风帆股份 (600482)投巨资参与太阳池、锂电、太阳能电池等项
(2)风能
金山股份 (600396)风力发电,风力发电设备安装及技术服务
湘电股份 (600416)控股股东与德国莱茨鼓风机有限公司签订了合资生产离心风机协议,目前风电资产主要在控股股东中
粤电力 (000539)
(3)风力发电
特变电工 (600089)与沈阳工业大学等设立特变电工沈阳偿大风能有限公司
京能热电 (600578)为国华能源第二大股东,间接参与风能建设
东方电机 (600875)
(4)风电设备制造
核能中核科技 (000777)大股东为中国核工业总公司
中成股份 (000151)与清华大学等共同研究开发核能源,科技含量高
G申能 (600642)投资33601万元收购核电秦山联营公司12%股权以及投资10559万元收购秦山第三核电公司10%的股权
(5)地热
京能热电 (600578)为北京地区主要供电单位,具备地热发电和风力发电等题材
(6)乙醇汽油
丰原生化 (000930)是安徽省唯一一家燃料乙醇供应单位
华润生化 (600893)控股股东华润集团控股吉林燃料乙醇和黑龙江华润酒精二大定点企业。
广东甘化 (000576)利用甘蔗、玉米等可再生性糖料资源生产燃油精,成为汽油代替品
华资实业 (600191)利用可再生性糖料资源生产燃油精,成为纯车用汽油代替
荣华实业 (600311)赖氨酸(豆粕的替代品)新增产能最大的企业之一
华冠科技 (600371)在国内率先拥有了玉米深加工多项最新技术的所有权或使用权(7)氢能
同济科技 (600846)公司与中科院上海有机化学研究所、上海神力科技合资组建中科同力化工材料有限公司开发燃料电池电动车。
中炬高新 (600872)子公司中炬森莱生产动......>>
问题八:新能源发电有哪些类型 与广泛使用的常规能源(如煤、石油、天然气、水能等)相比,新能源是指在新技术基础上开发利用的非常规能源,包括风能、太阳能、海洋能、地热能、生物质能、氢能、核聚变能、天然气水合物能源等。 新能源发电是指把新能源转换为电能的过程。 风力发电和太阳能发电作为技术成熟、具有规模化开发和商业化应用的新能源发电方式,发展速度居于新能源前列,其主要特点有:可再生、分布广、低污染;能量密度低、单机容量小;间歇性、周期性、随机性、波动性;大量采用电力电子技术;有分散和集中开发两种典型的接入电网方式。 ◎名词解释: 可再生能源:在自然界中可以不断再生并有规律地得到补充或重复利用的能源。例如太阳能、风能、水能、生物质能、潮汐能等非化石能源。 清洁能源:消耗后不产生或很少产生污染物的可再生能源、低污染的化石能源(如天然气),以及采用清洁能源技术处理后的化石能源(如清洁煤、清洁油)。 信息来源:《智能电网知识问答》
问题九:现在的新能源有哪些 正在开发太阳能、地热能、风能、海洋能、生物质能和核聚变能等新能源。 新能源( NE):又称非常规能源。一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能
问题十:我们现今使用的有哪些新型能源 新能源是指和长期广泛使用,技术上较为成熟的常规能源(如煤、石油、天然气、水能等)对比而言,以新技术为基础,系统开发利用的能源,即人类新近才开发利用的能源,包括太阳能、潮汐能、波浪能、海流能、风能、地热能、生物能、氢能、核聚变能等,是一种已经开发但尚未大规模使用,或正在研究试验,尚需进一步开发的能源。 科学家认为,21世纪,波能、可燃冰、煤成气、微生物、绿藻将成为人类广泛应用的新能源。 波能:即海洋波浪能。这是一种取之不尽、用之不竭的无污染再生能能源。据科学家推测,地球上海洋波浪蕴藏的电能高达90万亿千瓦。 可燃冰:这是一种与水结合在一起的固体化合物,它的外形与冰相似,故称“可燃冰”。据科学家测算:可燃冰蕴藏量比地球上的煤、石油和天然气的总和还多。煤成气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。科学家估计,地球上煤成气可达2000万亿立方米。 微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,科学家利用微生物发酵,可将它们制成酒精,用其稀释汽油所配制的“乙醇汽油”,功效可提高15%左右,而且制作酒精的原料丰富,成本低廉。科学家还研究成功利用微生物制取氢气,开辟了能源的新途径。 绿藻:当石油和天然气耗尽时,氢也许是一种理想的燃料,问题在于要找到一个廉价地生产氢燃料的方法,科学家称,这个问题的答案可能是一种普通的池塘绿藻。目前,一升绿藻培养液每小时可以生产出3毫升氢气。研究人员认为, 绿藻生产氢气的效率至少可以提高100倍,而这一点有待于技术的进一步提高。
脱硫技术:
近年来,随着机动车的增多,汽车尾气已成为主要的大气污染源,酸雨也因此更加频繁,严重危害到了建筑物、土壤和人类的生存环境。因此,世界各国纷纷提出了更高的油品质量标准,进一步限制油品中的硫含量、烯烃含量和苯含量,以更好地保护人类的生存空间。
随着对含硫原油加工量的增加及重油催化裂化的普及,油品含硫量超标及安定性不好的现象也越来越严重。由于加氢脱硫在资金及氢源上的限制,对中小型炼油厂来说进行非加氢精制的研究具有重要的意义。本文简单介绍了非加氢脱硫技术进展及未来的发展趋势。
2 燃料油中硫的主要存在形式及分布
原油中有数百种含硫烃,目前已验证并确定结构的就有200余种,这些含硫烃类在原油加工过程中不同程度地分布于各馏分油中。
燃料油中的硫主要有两种存在形式:通常能与金属直接发生反应的硫化物称为“活性硫”,包括单质硫、硫化氢和硫醇;而不与金属直接发生反应的硫化物称为“非活性硫”,包括硫醚、二硫化物、噻吩等。对于汽油馏分而言,含硫烃类以硫醇、硫化物和单环噻吩为主,其主要来源于催化裂化(简称FCC)汽油。因此,要使汽油符合低硫汽油的指标必须对FCC汽油原料进行预处理或对FCC汽油产品进行后处理。而柴油馏分中的含硫烃类有硫醇、硫化物、噻吩、苯并噻吩和二苯并噻吩等,其中二苯并噻吩的4,6位烷基存在时,由于烷基的位阻作用而使脱硫非常困难,而且随着石油馏分沸点的升高,含硫化合物的结构也越来越复杂。
3 生产低硫燃料油的方法
3.1 酸碱精制
酸碱精制是传统的方法,目前仍有部分炼厂使用。由于酸碱精制分离出的酸碱渣难以处理,而且油品损失较大,从长远来看,此技术必将遭到淘汰。
(1)酸精制
该法用一定浓度的硫酸、盐酸等无机酸从石油产品中除去硫醚和噻吩,从而达到脱硫的目的。反应如下所示:
R2S+H2SO4 R2SH++HSO-4
(2) 碱精制
NaOH水溶液可以抽提出部分酸性硫化物,在碱中加入亚砜、低级醇等极性溶剂或提高碱的浓度可以提高萃取效率。如用40%的NaOH可除去柴油中60%以上的硫醇及90%的苯硫酚,其中苯硫酚对油品的安定性影响很大。
3.2 催化法
在酞菁催化剂法中,目前工业上应用较多是聚酞菁钴(CoPPC)和磺化酞菁钴(CoSPc)催化剂。此催化剂在碱性溶液中对油品进行处理,可以除去其中的硫醇。夏道宏认为聚酞菁钴(CoPPC)和磺化酞菁钴(CoSPc)在碱液中的溶解性不好,因而降低了催化剂的利用率,为此合成出了一种水溶性较好的新型催化剂——季铵磺化酞菁钴(CoQAHPc)n,该催化剂分子内有氧化中心和碱中心,二者产生的协同作用使该催化剂的活性得到了明显的提高〔1〕。此外,金属螯合剂法和酸性催化剂法都能使有机硫化物转化成硫化氢,从而有效的去除成品油中的硫化物〔2〕。
以上这几种催化法脱硫效率虽然较高,但都存在着催化剂投资大、制备条件苛刻、催化活性组分易流失等缺点。目前炼厂使用此方法的其经济效益都不是很好,要想大规模的应用催化法脱硫技术,尚需克服一些技术上的问题。
3.3 溶剂萃取法
选择适当的溶剂通过萃取法可以有效地脱除油品中的硫化物。一般而言,萃取法能有效地把油品中的硫醇萃取出来,再通过蒸馏的方法将萃取溶剂和硫醇进行分离,得到附加值较高的硫醇副产品,溶剂可循环使用。在萃取的过程中,常用的萃伞液是碱液,但有机硫化物在碱液和成品油中的分配系数并不高,为了提高萃取过程中的脱硫效率,可在碱液中添加少量的极性有机溶剂,如MDS、DMF、DMSOD等,这样可以大大提高萃取过程中的脱硫效率。夏道宏等人提出了MDS-H2O-KOH化学萃取法,用这三种萃取剂对FCC汽油进行了萃取率及回收率的实验,结果表明该方法在同一套装置中既能把油品中的硫醇萃取出来,还可以高效回收萃取液中的单一硫醇以及混合硫醇,得到高纯度的硫醇副产品,具有很高的经济效益和社会效益〔3〕。福建炼油化工公司把萃取和碱洗两种工艺结合起来,采用甲醇-碱洗复合溶剂萃取法显著提高了FCC柴油的储存安定性,萃取溶剂经蒸馏回收甲醇后可循环使用。此种方法投资低,脱硫效率高,具有较高的应用价值〔4〕。
3.4 催化吸附法
催化吸附脱硫技术是使用吸附选择性较好且可再生的固体吸附剂,通过化学吸附的作用来降低油品中的硫含量。它是一种新出现的、能够有效脱除FCC汽油中硫化物的方法。与通常的汽油加氢脱硫相比,其投资成本和操作费用可以降低一半以上,且可以从油品中高效地脱除硫、氮、氧化物等杂质,脱硫率可达90%以上,非常适合国内炼油企业的现状。由于吸附脱硫并不影响汽油的辛烷值和收率,因此这种技术已经引起国内外的高度重视。
Konyukhova〔5〕等把一些天然沸石(如丝光沸石、钙十字石、斜发沸石等)酸性活化后用于吸附油品中的乙基硫醇和二甲基硫,ZSM-5和NaX沸石则分别用于对硫醚和硫醇的吸附。Tsybulevskiy〔5〕研究了X或Y型分子筛进行改性后对油品的催化吸附性能。Wismann〔5〕考察了活性炭对油品的催化吸附性能。而在这些研究中普遍在着脱硫深度不够,吸附剂的硫容量较低,脱硫剂的使用周期短,且再生性能不好,因而大大限制了其工业应用。据报道,菲利浦石油公司开发的吸附脱硫技术于2001年应用于258 kt/a的装置,经处理后的汽油平均硫含量约为30 μg/g,是第一套采用吸附法脱除汽油中硫化物的工业装置,并准备将这一技术应用于柴油脱硫。
国内的催化吸附脱硫技术尚处于研究阶段。徐志达、陈冰等〔6〕用聚丙烯腈基活性炭纤维(NACF)吸附油品中的硫醇,结果只能把油品中的一部分硫醇脱除。张晓静等〔7〕以13X分子筛为吸附剂对FCC汽油的全馏分和重馏分(>90℃)进行了研究,初步结果表明对硫含量为1220 μg/g的汽油的全馏分和重馏分进行精制后,与未精制的轻馏分(<90℃)混合可得到硫含量低于500 μg/g的汽油。张金岳等〔8〕对负载型活性炭催化吸附脱硫进行了深入的研究。
总之,催化吸附脱硫技术在对油品没有影响的条件下能有效的脱除油品中的硫化物,且投资费用和操作费用远远低于其他(加氢精制、溶剂萃取,催化氧化等)脱硫技术。因此,研究催化吸附脱硫技术具有非常重要的意义。
3.5 络合法
用金属氯化物的DMF溶液来处理含硫油品时可使有机硫化物与金属氯化物之间的电子对相互作用,生成水溶性的络合物而加以除去。能与有机硫化物生成络合物的金属离子非常多,其中以CdCl2的效果最好。下面列举了不同金属氯化物与有机硫化物的络合反应活性顺序为:Cd2+>Co2+>Ni2+>Mn2+>Cr3+>Cu2+>Zn2+>Li+>Fe3+。由于络合法不能脱除油品中的酸性组分,因此在实际应用中经常采用络合萃取与碱洗精制相结合的办法,其脱硫效果非常显著,且所得油品的安定性好,具有较好的经济效益。
3.6生物脱硫技术
生物脱硫,又称生物催化脱硫(简称BDS),是一种在常温常压下利用需氧、厌氧菌除去石油含硫杂环化合物中结合硫的一种新技术。早在1948年美国就有了生物脱硫的专利,但一直没有成功脱除烃类硫化物的实例,其主要原因是不能有效的控制细菌的作用。此后有几个成功的“微生物脱硫”报道,但却没有多少应用价值,原因在于微生物尽管脱去了油中的硫,但同时也消耗了油中的许多炭而减少了油中的许多放热量〔9〕。科学工作者一直对其进行了深入的研究,直到1998年美国的Institute of Gas Technology(IGT)的研究人员成功的分离了两种特殊的菌株,这两种菌株可以有选择性的脱除二苯并噻吩中的硫,去除油品中杂环硫分子的工业化模型相继产生,1992年在美国分别申请了两项专利(5002888和5104801)。美国Energy BioSystems Corp (EBC)公司获得了这两种菌株的使用权,在此基础上,该公司不仅成功地生产和再生了生物脱硫催化剂,并在降低催化剂生产成本的同时也延长了催化剂的使用寿命。此外该公司又分离得到了玫鸿球菌的细菌,该细菌能够使C-S键断裂,实现了脱硫过程中不损失油品烃类的目的〔10〕。现在,EBC公司已成为世界上对生物脱硫技术研究最广泛的公司。此外,日本工业技术研究院生命工程工业技术研究所与石油产业活化中心联合开发出了柴油脱硫的新菌种,此菌种可以同时脱除柴油中的二苯并噻吩和苯并噻吩中的硫,而这两种硫化物中的硫是用其它方法难以脱除的〔11〕。
BDS过程是以自然界产生的有氧细菌与有机硫化物发生氧化反应,选择性氧化使C-S键断裂,将硫原子氧化成硫酸盐或亚硫酸盐转入水相,而DBT的骨架结构氧化成羟基联苯留在油相,从而达到脱除硫化物的目的。BDS技术从出现至今已发展了几十年,目前为止仍处于开发研究阶段。由于BDS技术有许多优点,它可以与已有的HDS装置有机组合,不仅可以大幅度地降低生产成本,而且由于有机硫产品的附加值较高,BDS比HDS在经济上有更强的竞争力。同时BDS还可以与催化吸附脱硫组合,是实现对燃料油深度脱硫的有效方法。因此BDS技术具有广阔的应用前景,预计在2010年左右将有工业化装置出现。
4 新型的脱硫技术
4.1 氧化脱硫技术
氧化脱硫技术是用氧化剂将噻吩类硫化物氧化成亚砜和砜,再用溶剂抽提的方法将亚砜和砜从油品中脱除,氧化剂经过再生后循环使用。目前的低硫柴油都是通过加氢技术生产的,由于柴油中的二甲基二苯并噻吩结构稳定不易加氢脱硫,为了使油品中的硫含量降到10 μg/g,需要更高的反应压力和更低的空速,这无疑增加了加氢技术的投资费用和生产成本。而氧化脱硫技术不仅可以满足对柴油馏分10 μg/g的要求,还可以再分销网点设置简便可行的脱硫装置,是满足最终销售油品质量的较好途径。
(1) ASR-2氧化脱硫技术
ASR-2〔12〕氧化脱硫技术是由Unipure公司开发的一种新型脱硫技术,此技术具有投资和操作费用低、操作条件缓和、不需要氢源、能耗低、无污染排放、能生产超低硫柴油、装置建设灵活等优点,为炼油厂和分销网点提供了一个经济、可靠的满足油品硫含量要求的方法。
在实验过程中,此技术能把柴油中的硫含量由7000 μg/g最终降到5 μg/g。此外该技术还可以用来生产超低硫柴油,来作为油品的调和组分,以满足油品加工和销售市场的需要。目前ASR-2技术正在进行中试和工业实验的设计工作。其工艺流程如下:含硫柴油与氧化剂及催化剂的水相在反应器内混合,在接近常压和缓和的温度下将噻吩类含硫化合物氧化成砜;然后将含有待生催化剂和砜的水相与油相分离后送至再生部分,除去砜并再生催化剂;含有砜的油相送至萃取系统,实现砜和油相分离;由水相和油相得到的砜一起送到处理系统,来生产高附加值的化工产品。
尽管ASR-2脱硫技术已进行了多年的研究,但一直没有得到工业应用,主要是由于催化剂的再生循环、氧化物的脱除等一些技术问题还没有解决。ASR-2技术可以使柴油产品的硫含量达到5 μg/g,与加氢处理技术柴油产品的硫含量分别为30 μg/g和15 μg/g时相比,硫含量和总处理费用要少的多。因此,如果一些技术性问题能够很好地解决,那么ASR-2氧化脱硫技术将具有十分广阔的市场前景。
(2) 超声波氧化脱硫技术
超声波氧化脱硫 (SulphCo)〔13〕技术是由USC和SulphCo公司联合开发的新型脱硫技术。此技术的化学原理与ASR-2技术基本相同,不同之处是SulphCo技术采用了超声波反应器,强化了反应过程,使脱硫效果更加理想。其流程描述为:原料与含有氧化剂和催化剂的水相在反应器内混合,在超声波的作用下,小气泡迅速的产生和破灭,从而使油相与水相剧烈混合,在短时间内超声波还可以使混合物料内的局部温度和压力迅速升高,且在混合物料内产生过氧化氢,参与硫化物的反应;经溶剂萃取脱除砜和硫酸盐,溶剂再生后循环使用,砜和硫酸盐可以生产其他化工产品。
SulphCo在完成实验室工作后,又进行了中试放大实验,取得了令人满意的效果,即不同硫含量的柴油经过氧化脱硫技术后硫含量均能降低到10 μg/g以下。目前Bechtel公司正在着手SulphCo技术的工业试验。
4.2 光、等离子体脱硫技术〔14〕
日本污染和资源国家研究院、德国Tubingen大学等单位研究用紫外光照射及等离子体技术脱硫。其机理是:二硫化物是通过S-S键断裂形成自由基,硫醚和硫醇分别是C-S和S-H键断裂形成自由基,并按下列方式进行反应:
无氧化剂条件下的反应:
CH3S- + -CH3 CH4+CH2 ==== S
CH3S- + CH3CH2R CH3SH+CH2 ==== SCH2R
CH3S- + CH3S- CH3SSCH3
CH3S- + CH2 ==== S CH3SCH2S- -CH3 CH3SCH2SCH3
有氧化剂条件下的反应:
CH3S- + O2 CH3SOO- RH CH3SOOH + R-
SO3+ -CH3
CH3SOOH Rr CH3SO- + -OH
CH3SO- + RH CH3SOH + R-
3CH3SOOH CH3SOOSCH3 + CH3SO3H
此技术以各类有机硫化物和含粗汽油为对象,根据不同的分子结构,通过以上几种方式进行反应,产物有烷烃、烯烃、芳烃以及硫化物或元素硫,其脱硫率可达20%~80%。若在照射的同时通入空气,可使脱硫率提高到60%~100%,并将硫转化成SO3、SO2或硫磺,水洗即可除去。
5 低硫化的负面影响
汽油和柴油的低硫化大大减轻了环境污染,特别是各国对燃料油低硫化政策已达成共识。但是在燃料油低硫化的进程中,出现了人们未曾预料到的负面效应,主要表现为:
(1)润滑性能下降,设备的磨损加大。1991年,瑞典在使用硫含量为0.00%的柴油时,发现燃料泵产生的烧结和磨损甚至比普通柴油的磨损还要严重。日本也对不同硫含量的柴油作了台架试验,结果也确认了柴油润滑性能下降的问题。其主要原因是在脱硫的同时把存在于油品中具有润滑性能的天然极性化合物也脱除了,从而导致润滑性能下降,设备的磨损加大。
(2)柴油安定性变差,油品色相恶化。当柴油的硫含量降到0.05%以下时,过氧化物的增加会加速胶状物和沉淀物的生成,影响设备的正常运转,并导致排气恶化。其主要原因是由于原本存在于柴油中的天然抗氧化组分在脱硫时也被脱除掉了。同时随着柴油中硫含量的降低,油品的颜色变深,给人以恶感。
6 结论及建议
鉴于石油产品在生产和生活中的广泛应用,脱除其中危害性的硫是非常重要的。目前工业上使用的非加氢脱硫方法有酸碱精制、溶剂萃取和吸附脱硫,而这几种脱硫方法都存在着缺陷和不足。其中酸碱精制有大量的废酸废碱液产生,会造成严重的环境污染;溶剂萃取脱硫过程能耗大,油品收率低;吸附法中吸附剂的吸附量小,且需经常再生。其它的非加氢脱硫技术还处在试验阶段,其中生物脱硫、氧化脱硫和光及等离子体脱硫的应用前景十分诱人,可能是实现未来清洁燃料油生产的有效方法。由于降低燃料油中的硫含量、减少大气污染是一个复杂的过程,因此实施时应考虑各种因素,提高技术的可靠性,以取得最佳的经济效益和环保效益。
摘 要:本文通过新能源——生物质能的概述,初步展示其性质特点。同时,结合当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而提出了几点对策。
关键词:生物质能,新农村建设,秸秆应用,现状分析
生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
生物质能特点
1) 可再生性
生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2) 低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3) 广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4) 生物质燃料总量十分丰富。
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
生物质能应用
生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。
新农村建设离不开新能源发展
中国是一个农业大国,农村人口占大多数,因此农村和农民问题是关系到国家稳定与发展的关键性问题。近年来,随着农村经济的发展,农民生活水平不断提高,广大农村对于能源的需求量也在不断上升,传统能源的大量使用造成了严重的污染问题,同时日益增大的农村能源需求量也给我国本已严峻地能源形势带来了更大的挑战。根据《2004年世界BP能源统计年鉴》提供的资料,2003年世界石油探明总储量为1567亿吨,中国石油探明总储量仅占世界的2.1%,但中国的石油年消费量却占到了世界的7.6%,2003年中国石油对外依存度达到了35%,专家预计这一数字到2020年将达到60%。同时我国农村许多地区风能、太阳能、生物质能源丰富,蕴含着发展新能源的巨大潜力,因此,将可持续发展理念引入农村能源利用领域,大力推进新能源建设,则是解决农村能源与环境之间矛盾的有效途径。
新农村建设是我国现代化进程中的重大历史任务,目的在于改善农村生态环境,提高农民生活质量。其中一项重要措施就是大力发展循环农业,开发使用新能源。过去对于农村能源有一个十六字方针,即“因地制宜,多能互补,综合利用,讲求效益”,这是在短缺经济的背景下,针对能源危机而提出来的。目前,我国农村的社会、经济及其能源供需结构形势发生了重大变化,大量商品能源进入农村市场,农村能源面临着结构升级和如何现代化的问题,原十六字方针因缺少生态观和市场观,已不符合现时和未来农村能源可持续发展的实际。因而开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量3.65亿吨标煤,其中秸秆和薪柴为2.07亿吨标煤,占56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。
1991年至1998年,农村能源消费总量从5.68亿吨标准煤发展到6.72亿吨标准煤,增加了18.3%,年均增长2.4%。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达17.7%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。
生物质能在新农村建设中的应用意义
生物质能是绿色植物通过叶绿素将太阳能转化为化学能储存在生物质内部的能量。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,它通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。
以秸秆产能技术为例,秸秆产能是生物质能里面具有代表性的一种。秸秆属可再生能源,年复一年可保证能源的永续利用。有资料介绍,植物在燃烧过程中放出二氧化碳,但它在生长过程中要吸收二氧化碳,这放出和吸收是基本平衡的,所以对环境保护有利。同时从秸秆的化学成分和热值看亦有它的优势,将它燃烧产生的灰分不小于10%,而且灰分还是一种好的农作物所需的肥料,是发展循环经济的好项目。农作物的成熟期主要集中在春季和秋季,由于它们的生长期和成熟期与气候密切相关,因地区不同也有一些差异。我国秸秆的产生量主要集中在春末或春夏交替期、夏末或夏秋交替期及秋季。由于中国土地辽阔,秸秆的收获时间也存在一定的差异,但趋势是一致的。这里所谈季节性主要针对农作物成熟时产生的秸秆,至于农作物收获后,经过加工过程产生的生物质资源如稻壳等不在此列,它根据粮食的市场需求加工产生。以上秸秆产生的特点将对开发利用秸秆的管理和技术方面带来重大影响。当然对于一些具体情况,应该具体问题具体分析处理。
从实际应用来说,秸秆作为能源原材料可用于制作秸秆煤或者用于秸秆发电。秸秆煤比起普通煤炭,秸秆煤不仅投入小、生产安全,还具有易燃耐燃、热效率高、残渣少等特点,在新农村建设中推广秸秆煤,不仅能使农村的生态环境得到保护,而且能使生产秸秆煤的农民家庭带来丰厚的利润回报。目前利用秸秆发电的途径有两种:一是秸秆气化发电,二是秸秆直接燃烧发电,用得最广泛的是秸秆直接燃烧发电。秸秆发电与常规的火力发电的不同之处主要是燃料不同引起燃烧系统的变化,重点是燃烧设备的变化,而热力系统的其余部分和电气系统与常规一般火电厂类同。秸秆燃烧的另一途径是利用已经运行电厂中的锅炉进行掺烧,这既可节约煤,又可增加秸秆利用的途径。各地电厂所配炉型不同,可以由秸秆的各种成型来满足不同炉型锅炉燃烧要求。有一种在煤粉炉中掺烧秸秆的思路是炉膛中下部稍加改造增加一块炉排烧秸秆,称之为联合燃烧。还有对将按要求被关闭的小型火力发电厂,可以对其锅炉改造或重新建设锅炉装置,改造成为生物质能电厂,这也是有利的途径。在新农村建设中使用秸秆发电,能够有利于减轻农民的负担,同时可以有利于保护环境。
生物质能在新农村建设的现状与发展对策
我国政府历来重视生物质能的开发利用,将其作为能源领域的一个重要方面,纳入了国家能源发展的基本政策之中,先后签署了《里约宣言》、《气候变化框架公约》等国际公约,颁布了《中国21 世纪议程》和《中国环境与发展十大对策》,在十届全国人大第四次会议通过了《国民经济和社会发展第十一个五年规划纲要》,确定了可再生能源的发展目标,并提出要实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高可再生能源在一次能源消费中的比重,出台了一些支持可再生能源技术发展的政策性文件,这些都有力地推动着可再生能源(包括生物质能)的发展。十一届全国人大常委会第十次会议对可再生能源法修正案(草案)进行了初次审议。在审议中,常委会组成人员建议———大量消费煤炭造成环境污染, 农作物秸秆等发电利国利民。但现实却是,我国可作为能源使用的农作物秸秆、林业剩余物等却大量被废弃。资料显示,每年全国可作为能源使用的农作物秸秆资源量约为1.5亿吨标准煤,林业剩余物资源量约2亿吨标准煤,小桐子(麻疯树)、油菜籽、蓖麻、漆树、黄连木和甜高粱等油料植物和能源作物潜在种植面积,理论上可满足年产5000万吨生物液体燃料的原料需求。工业有机废水和畜禽养殖场废水资源量,理论上可以生产沼气近800亿立方米,相当于5700万吨标准煤。但到2008年底,全国生物质发电装机容仅315万千瓦,其中蔗渣发电170万千瓦,碾米厂稻壳发电5万千瓦,城市垃圾焚烧发电40万千瓦,秸秆、林木废弃物发电55万千瓦。
生物质能源技术同其他新能源技术一样,在其发展的进程中面临着众多的问题。概括而言,这些问题主要有两类:一类是共同性的问题,即绝大多数生物质能源都面临的问题另一类是特殊性问题,即生物质能各个领域中某些技术所面临的特殊问题,一般来说,由于生物质能源技术多种多样,其工艺特征不同、发展阶段不同、市场的取向不同,因此在发展过程中所面临的问题也有所不同。从共性上分析,主要存在以下几个主要问题。分别是:思想认识不到位,技术研发。创新能力弱,政府配套政策不健全,资金缺口大。投融资体系单一,市场体系建设不完善。针对这些存在的问题,为了生物质能的发展应需要做到:提高认识、理清思路、加大宣传,加强人才能力建设、加大科研投入,搞好试验示范,开展资源评价、调整种植业结构、发展能源作物。完善相关的法律法规,吸收外国的成功经验等等。
在呼唤环保建设的今天,无污染的生物质能将会成为热门的能源,为新农村建设带来经济性和环保性的双效收益。总而言之,生物质能是可再生能源,它的应用对于新农村建设有重大的意义,有利于环保工作的进行,而且产能的原材料数量多,分布广,有部分原材料还起到了变废为宝,回收利用等,加大应用生物质能的力度,能够促进调整能源结构,保障能源安全。当然,生物质能也不是没有缺点的,热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。这些缺点都需要技术的革新和政策的相应变动来进行改善,从而为新农村建设发展指向一条明亮的,无污染的发展道路。
生物质能与中国新农村建设
084386 汉语言文学 兰艳丽
摘 要:本文通过新能源——生物质能的概述,初步展示其性质特点。同时,结合当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而提出了几点对策。
关键词:生物质能,新农村建设,秸秆应用,现状分析
生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
生物质能特点
1) 可再生性
生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2) 低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3) 广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4) 生物质燃料总量十分丰富。
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
生物质能应用
生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。
新农村建设离不开新能源发展
中国是一个农业大国,农村人口占大多数,因此农村和农民问题是关系到国家稳定与发展的关键性问题。近年来,随着农村经济的发展,农民生活水平不断提高,广大农村对于能源的需求量也在不断上升,传统能源的大量使用造成了严重的污染问题,同时日益增大的农村能源需求量也给我国本已严峻地能源形势带来了更大的挑战。根据《2004年世界BP能源统计年鉴》提供的资料,2003年世界石油探明总储量为1567亿吨,中国石油探明总储量仅占世界的2.1%,但中国的石油年消费量却占到了世界的7.6%,2003年中国石油对外依存度达到了35%,专家预计这一数字到2020年将达到60%。同时我国农村许多地区风能、太阳能、生物质能源丰富,蕴含着发展新能源的巨大潜力,因此,将可持续发展理念引入农村能源利用领域,大力推进新能源建设,则是解决农村能源与环境之间矛盾的有效途径。
新农村建设是我国现代化进程中的重大历史任务,目的在于改善农村生态环境,提高农民生活质量。其中一项重要措施就是大力发展循环农业,开发使用新能源。过去对于农村能源有一个十六字方针,即“因地制宜,多能互补,综合利用,讲求效益”,这是在短缺经济的背景下,针对能源危机而提出来的。目前,我国农村的社会、经济及其能源供需结构形势发生了重大变化,大量商品能源进入农村市场,农村能源面临着结构升级和如何现代化的问题,原十六字方针因缺少生态观和市场观,已不符合现时和未来农村能源可持续发展的实际。因而开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量3.65亿吨标煤,其中秸秆和薪柴为2.07亿吨标煤,占56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。
1991年至1998年,农村能源消费总量从5.68亿吨标准煤发展到6.72亿吨标准煤,增加了18.3%,年均增长2.4%。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达17.7%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。
生物质能在新农村建设中的应用意义
生物质能是绿色植物通过叶绿素将太阳能转化为化学能储存在生物质内部的能量。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,它通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。
以秸秆产能技术为例,秸秆产能是生物质能里面具有代表性的一种。秸秆属可再生能源,年复一年可保证能源的永续利用。有资料介绍,植物在燃烧过程中放出二氧化碳,但它在生长过程中要吸收二氧化碳,这放出和吸收是基本平衡的,所以对环境保护有利。同时从秸秆的化学成分和热值看亦有它的优势,将它燃烧产生的灰分不小于10%,而且灰分还是一种好的农作物所需的肥料,是发展循环经济的好项目。农作物的成熟期主要集中在春季和秋季,由于它们的生长期和成熟期与气候密切相关,因地区不同也有一些差异。我国秸秆的产生量主要集中在春末或春夏交替期、夏末或夏秋交替期及秋季。由于中国土地辽阔,秸秆的收获时间也存在一定的差异,但趋势是一致的。这里所谈季节性主要针对农作物成熟时产生的秸秆,至于农作物收获后,经过加工过程产生的生物质资源如稻壳等不在此列,它根据粮食的市场需求加工产生。以上秸秆产生的特点将对开发利用秸秆的管理和技术方面带来重大影响。当然对于一些具体情况,应该具体问题具体分析处理。
从实际应用来说,秸秆作为能源原材料可用于制作秸秆煤或者用于秸秆发电。秸秆煤比起普通煤炭,秸秆煤不仅投入小、生产安全,还具有易燃耐燃、热效率高、残渣少等特点,在新农村建设中推广秸秆煤,不仅能使农村的生态环境得到保护,而且能使生产秸秆煤的农民家庭带来丰厚的利润回报。目前利用秸秆发电的途径有两种:一是秸秆气化发电,二是秸秆直接燃烧发电,用得最广泛的是秸秆直接燃烧发电。秸秆发电与常规的火力发电的不同之处主要是燃料不同引起燃烧系统的变化,重点是燃烧设备的变化,而热力系统的其余部分和电气系统与常规一般火电厂类同。秸秆燃烧的另一途径是利用已经运行电厂中的锅炉进行掺烧,这既可节约煤,又可增加秸秆利用的途径。各地电厂所配炉型不同,可以由秸秆的各种成型来满足不同炉型锅炉燃烧要求。有一种在煤粉炉中掺烧秸秆的思路是炉膛中下部稍加改造增加一块炉排烧秸秆,称之为联合燃烧。还有对将按要求被关闭的小型火力发电厂,可以对其锅炉改造或重新建设锅炉装置,改造成为生物质能电厂,这也是有利的途径。在新农村建设中使用秸秆发电,能够有利于减轻农民的负担,同时可以有利于保护环境。
生物质能在新农村建设的现状与发展对策
我国政府历来重视生物质能的开发利用,将其作为能源领域的一个重要方面,纳入了国家能源发展的基本政策之中,先后签署了《里约宣言》、《气候变化框架公约》等国际公约,颁布了《中国21 世纪议程》和《中国环境与发展十大对策》,在十届全国人大第四次会议通过了《国民经济和社会发展第十一个五年规划纲要》,确定了可再生能源的发展目标,并提出要实行优惠的财税、投资政策和强制性市场份额政策,鼓励生产与消费可再生能源,提高可再生能源在一次能源消费中的比重,出台了一些支持可再生能源技术发展的政策性文件,这些都有力地推动着可再生能源(包括生物质能)的发展。十一届全国人大常委会第十次会议对可再生能源法修正案(草案)进行了初次审议。在审议中,常委会组成人员建议———大量消费煤炭造成环境污染, 农作物秸秆等发电利国利民。但现实却是,我国可作为能源使用的农作物秸秆、林业剩余物等却大量被废弃。资料显示,每年全国可作为能源使用的农作物秸秆资源量约为1.5亿吨标准煤,林业剩余物资源量约2亿吨标准煤,小桐子(麻疯树)、油菜籽、蓖麻、漆树、黄连木和甜高粱等油料植物和能源作物潜在种植面积,理论上可满足年产5000万吨生物液体燃料的原料需求。工业有机废水和畜禽养殖场废水资源量,理论上可以生产沼气近800亿立方米,相当于5700万吨标准煤。但到2008年底,全国生物质发电装机容仅315万千瓦,其中蔗渣发电170万千瓦,碾米厂稻壳发电5万千瓦,城市垃圾焚烧发电40万千瓦,秸秆、林木废弃物发电55万千瓦。
生物质能源技术同其他新能源技术一样,在其发展的进程中面临着众多的问题。概括而言,这些问题主要有两类:一类是共同性的问题,即绝大多数生物质能源都面临的问题另一类是特殊性问题,即生物质能各个领域中某些技术所面临的特殊问题,一般来说,由于生物质能源技术多种多样,其工艺特征不同、发展阶段不同、市场的取向不同,因此在发展过程中所面临的问题也有所不同。从共性上分析,主要存在以下几个主要问题。分别是:思想认识不到位,技术研发。创新能力弱,政府配套政策不健全,资金缺口大。投融资体系单一,市场体系建设不完善。针对这些存在的问题,为了生物质能的发展应需要做到:提高认识、理清思路、加大宣传,加强人才能力建设、加大科研投入,搞好试验示范,开展资源评价、调整种植业结构、发展能源作物。完善相关的法律法规,吸收外国的成功经验等等。
在呼唤环保建设的今天,无污染的生物质能将会成为热门的能源,为新农村建设带来经济性和环保性的双效收益。总而言之,生物质能是可再生能源,它的应用对于新农村建设有重大的意义,有利于环保工作的进行,而且产能的原材料数量多,分布广,有部分原材料还起到了变废为宝,回收利用等,加大应用生物质能的力度,能够促进调整能源结构,保障能源安全。当然,生物质能也不是没有缺点的,热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。这些缺点都需要技术的革新和政策的相应变动来进行改善,从而为新农村建设发展指向一条明亮的,无污染的发展道路。
【1】 秦大东曹军.浅论我国生物质能发展现状及对策.安徽通报,Anhui Agri.sci.bull.2007,13(1):133-135.
【2】 闫廷满.生物质能: 秸秆发电的思考.东方电气评论第21卷,第1期,2007:1-4
【3】 田永淑. 新型秸秆气化炉及净化工艺. 河北唐山,可再生能源 2003.4
【4】 法忠勇.推进我国农村新能源推广应采取的措施, 甘肃农业2007 年第9 期
【5】 陈亚中 生物质能源应用前景分析 2008
【6】 百度百科