什么叫做不可再生能源?什么叫做可再生能源?
不可再生能源,又称非再生能源、耗竭性能源,与可再生能源对应,是无法经过短时间内再生的能源,而且它们的消耗速度远远超过它们再生的速度。煤炭、石油、天然气等化石燃料与核燃料、矿产等均属于不可再生能源,如该能源一旦耗尽,将不能开采出更多的可用储备供将来使用。
不可再生能源核燃料
核能发电提供约6%和世界的13%-14%的电,核技术需要核燃料作为能源,但核燃料在世界上的浓度相对很低,开采相对困难,目前只有19个国家能够开采到铀矿。 核电厂、医院、农业、工业、食品业与科学研究等都会产生出放射性废料,世界上有许多国家虽然没有核电厂但是也有放射性废料处理厂。
化石燃料
由于使用化石燃料的内燃机技术在17世纪被迅速发展,因此化石燃料被现代社会大量使用。然而化石燃料是不可再生的,目前人类使用的主要能源仍然依赖不可再生能源,而且主要能源快速消耗的同时,需求还不断增加。可是所有耗竭性能源都需要数百万年时间慢慢形成,在人类的时间尺度上,它们都不能被及时再补充,是不可再生的资源。由于不可再生能源在短时间内无法被制造,而人类社会的许多活动都会消耗不可再生能源,导致其价格不断攀升。
可再生能源生物质能
生物质能是指能够当作燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物(Biodegradable waste)制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。
地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达摄氏7000度,而在80至100公里的深度处,温度会降至摄氏650度至1200度。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
海洋能
海洋能源(有时也简称为海洋能)是指由波浪、潮汐、洋流、海水盐度的和海洋温度的差异产生能量。海洋能是一种新兴技术,地球上的海洋运动提供庞大的动能力量或运动中的能量。可以利用这种能量发电,以供家庭、运输和工业用电。
太阳能
太阳能一般是指太阳光的辐射能量,自地球形成生物就主要以太阳提供的热和光生存,广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能,化石燃料可以称为远古的太阳能。自古人类就懂得以阳光晒干物件,也是保存食物的方法,如制盐和晒咸鱼等。太阳能使用的方式可分为光热转换(被动式利用)和光电转换两种方式。主动式太阳能技术,包括利用太阳能光伏板和太阳能集热器储存能量。被动式太阳能技术,包括导向建筑物在阳光下,选择材料具有良好的热质量或光分散性能和设计自然空气流通的空间。
水力
在水中的能量亦为人类所驱,因为水比空气的密度高800倍,即使是慢慢流的水都可以产生很大的能量。
风能
空气中随着温度高低,气流会移动,即为“风”, 风力发电机利用风能可以转变成机械能,再将机械能转成电能,现代的风力发电机一开始系由丹麦研究进入商业运行,起始于1970年代后期的石油危机,丹麦意识到自己国家缺乏自产能源,高度仰仗进口能源将危害国家中长期发展,所以在此危机意识下,大力推动风力发电。
现代的风机在1980年后至今有突飞猛进的进步,不论在技术的进步以及成本的下降,都足以和传统电能分庭抗礼。现代风机的单机容量在1.5-3MW之间。由于风的能量与其速度为2的立方比(8倍),所以风速增加一些些,其能产生的能量就大得许多。一般而言,风机的发电量每年在1500-3000满发小时之间。
石油的形成周期较为的漫长,需要上亿多年,原则上来讲,石油确实也是一种不可再生的资源,在人类文明的尺度之上,它确实是越用越少,只不过地球上到底还有多少未被探明的石油田,这个没有具体的数字,因为随时都有可能发现一处新的油田。
有人说石油是不可再生资源是骗局,我想下面需要解释一个问题,就是石油的成因。关于石油的成因,一直以来都是很受大家讨论的话题,成因有两种解释,一种是有机成因,一种是无机成因。
目前普遍认可的石油形成理论是生物化油,远古的海洋生物大量死亡,生物体的有机质经过不断的压缩和加热和淤泥混合经过漫长时间,最终被压在沉积岩下在持续的高温和高压作用下形成蜡状的油页岩。这些碳氢化合物比周围的岩石要轻得多,逐渐向上渗透聚集在一起形成油田。石油的这种形成方法需要的周期至少200万年,目前地球上的石油最早可能形成于5亿多年前,恐龙时代之前就存在。
石油是远古动物死亡后埋于大地深处,经过长时间的反应生成石油,又在地壳运动的过程中聚集在了一起生成了石油矿;石油是地球内部的原始物质形成的,并没有动物的参与,属于一种可以不断生成的物质。如果是第一种观点,那么石油的形成周期实在是太长了,长到我们可以认为石油是不可再生资源;如果是第二种观点,那石油或许可以源源不断由地球提供,因而属于一种可再生资源。
不可再生资源也叫不可更新资源,指经人类开发利用后,在相当长的时期内不可能再生的自然资源。不可更新资源的形成、再生过程非常的缓慢,并非真的彻底消失。
相对于人类历史而言,几乎不可再生。如矿石资源,土壤资源,煤,石油等。因此也叫“非可再生资源”。
不可再生资源包括金属矿产和非金属矿产,值得一提的是有人认为需要漫长岁月才能形成的基岩上的土壤也属于不可更新资源。
矿产资源由于人类不断地、越来越大量地开采,储量逐渐减少,有的已近枯竭。矿产形成的速度根本无法同人类开发的速度相比,因而矿产资源被认为是不能再生的。
可再生资源是指能够通过自然力以某一增长率保持或增加蕴藏量的自然资源。对于可再生资源来说,主要是通过合理调控资源使用率,实现资源的持续利用。可再生资源的持续利用主要受自然增长规律的制约。
可再生资源可以为人类反复利用,如植物、微生物、可降解塑料袋、水资源、地热资源和各种自然生物群落、森林、草原、水生生物等。
可再生自然资源在现阶段自然界的特定时空条件下,能持续再生更新、繁衍增长、保持或扩大其储量,依靠种源而再生。
不过一旦某种物种的种源消失,该资源就不能再生了,从而要求科学合理地利用和保护物种种源,才可能“取之不尽,用之不竭”。
大部分的可再生能源其实都是太阳能的储存和释放。可再生的意思不只是提供十年的能源,而是百年甚至千年的。随着能源危机的出现,我们要意识到可再生能源的重要性,更需要产生保护资源的意识。
用途:
太阳能:使用太阳电池,通过光电转换把太阳光中包含的能量转化为电能;使用太阳能热水器,利用太阳光的热量加热水;利用太阳光的热量加热水,并利用热水发电;利用太阳能进行海水淡化。生物质能源:就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。沼气:是各种有机物质,在隔绝空气(还原条件),并必适宜的温度、湿度下,经过微生物的发酵作用产生的一种可燃烧气体。它含有少量硫化氢,所以略带臭味。发酵是复杂的生物化学变化,有许多微生物参与。反应大致分两个阶段:(1)微生物把复杂的有机物质中的糖类、脂肪、蛋白质降解成简单的物质,如低级脂肪酸、醇、醛、二氧化碳、氨、氢气和硫化氢等。(2)由甲烷菌种的作用,使一些简单的物质变成甲烷。要正常地产生沼气,必须为微生物创造良好的条件,使它能生存、繁殖。沼气池必须符合多种条件。首先,沼气池要密闭。有机物质发酵成沼气,是多种厌氧菌活动的结果,因此要造成一个厌氧菌活动的缺氧环境。在建造沼气池时要注意隔绝空气,不透气、不渗水。其次,沼气池里要维持20~40℃,因为通常在这种温度下产气率最高。第三,沼气池要有充足的养分。微生物要生存、繁殖,必须从发酵物质中吸取养分。在沼气池的发酵原料中,人畜粪便能提供氮元素,农作物的秸秆等纤维素能提供碳元素。第四,发酵原料要含适量水,一般要求沼气池的发酵原料中含水80%左右,过多或过少都对产气不利。第五,沼气池的pH值一般控制在7~8.5。
可再生能源是重要的能源资源,开发利用可再生能源具有以下重要意义:1、开发利用可再生能源是落实科学发展观、建设资源节约型社 会、实现可持续发展的基本要求。充足、安全、清洁的能源供应是经 济发展和社会进步的基本保障。我国人口众多,人均能源消费水平低, 能源需求增长压力大,能源供应与经济发展的矛盾十分突出。从根本 上解决我国的能源问题,不断满足经济和社会发展的需要,保护环境, 实现可持续发展,除大力提高能源效率外,加快开发利用可再生能源 是重要的战略选择,也是落实科学发展观、建设资源节约型社会的基 本要求。 2、开发利用可再生能源是保护环境、应对气候变化的重要措施。 目前,我国环境污染问题突出,生态系统脆弱,大量开采和使用化石 能源对环境影响很大,特别是我国能源消费结构中煤炭比例偏高,二 氧化碳排放增长较快,对气候变化影响较大。可再生能源清洁环保, 开发利用过程不增加温室气体排放。开发利用可再生能源,对优化能源结构、保护环境、减排温室气体、应对气候变化具有十分重要的作用。 3、开发利用可再生能源是建设社会主义新农村的重要措施。农 村是目前我国经济和社会发展最薄弱的地区,能源基础设施落后,全 国还有约 1150 万人没有电力供应,许多农村生活能源仍主要依靠秸 秆、薪柴等生物质低效直接燃烧的传统利用方式提供。农村地区可再 生能源资源丰富,加快可再生能源开发利用,一方面可以利用当地资 源,因地制宜解决偏远地区电力供应和农村居民生活用能问题,另一 方面可以将农村地区的生物质资源转换为商品能源,使可再生能源成 为农村特色产业,有效延长农业产业链,提高农业效益,增加农民收 入,改善农村环境,促进农村地区经济和社会的可持续发展。 4、开发利用可再生能源是开拓新的经济增长领域、促进经济转 型、扩大就业的重要选择。可再生能源资源分布广泛,各地区都具有 一定的可再生能源开发利用条件。可再生能源的开发利用主要是利用 当地自然资源和人力资源,对促进地区经济发展具有重要意义。同时, 可再生能源也是高新技术和新兴产业,快速发展的可再生能源已成为 一个新的经济增长点,可以有效拉动装备制造等相关产业的发展,对 调整产业结构,促进经济增长方式转变,扩大就业,推进经济和社会 的可持续发展意义重大。 当前,国际石油价格一再飙升,能源消费大国苦不堪言,因此发展可再生能源成为许多国家关切的问题。
不可再生能源:泛指人类开发利用后,在现阶段不可能再生的能源资源,叫“非可再生能源”。如煤和石油都是古生物的遗体被掩压在地下深层中,经过漫长的演化而形成的(故也称为“化石燃料”),一旦被燃烧耗用后,不可能在数百年乃至数万年内再生,因而属于“不可再生能源”。除此之外,不可再生能源还有,煤、石油、天然气、核能、油页岩。
不可再生能源的用途很多了,比如煤可以用于直接取暖,化工原料,工业燃料,可以发电,现在正在研究煤转化石油的工艺,以期待通过我国储存的大量煤炭资源取代能源安全存在巨大隐患的石油。石油的各种转化产品包括汽油、煤油,航天用油等等。天然气可以发电,可以用作汽车燃料,现在很多公交车都是燃气的了,还有就是很大程度的居民用气,清洁无污染,但是不可再生。核能→水和水蒸气的内能→发电机转子的机械能→电能。
通过天然作用再生更新,从而为人类反复利用的资源叫可再生资源。比如:水资源,大气资源,森林资源,核能资源植物、微生物、可降解塑料袋、地热资源和各种自然生物群落、森林、草原等。
人类的某些资源是不可重复的开发和利用,只会消耗,而不可能保持其原有储量或再生。属于不可再生能源。比如金、银、铜、铁、铅、锌、锰等金属资源;另一些是不能重复利用的资源,如煤、石油、天然气等。
根据日本生物降解塑料研究会的资料,2002年日本生物降解塑料生产量约1万吨,2003年约2万吨,2005年约4万吨,到2010年预计达到10~20万吨左右。
根据欧洲生物塑料协会资料,2001年的数字显示,欧盟可生物降解产品的消费量为2.5~3万吨,而传统聚合物的用量高达3500万吨。欧洲生物塑料协会预计2010年传统聚合物的用量将达到5500万吨,而生物降解塑料的用量届时会达到50~100万吨。可生物降解材料最终可能会占据10%的市场份额。在生物降解材料中原料采用可再生资源的比例将占到90%以上。
按照中国塑协降解塑料专业委员会的统计,中国2003年生物降解材料的用量约15000吨,其中不添加淀粉的生物降解聚合物约1000吨。2005年从事生物降解塑料的企业约30家,生产能力6万吨/年,实际生产约3万吨,国内市场需求约5万吨,国外进口1万吨,出口2万吨。预计2010年产能将达到25万吨左右,详见《前瞻中国生物降解塑料行业深度调研与投资战略规划分析报告》。
一些发达国家还以循环经济思想为指导,使用可降解一次性用具,如瑞典在20世纪80年代末就试制马铃薯和玉米制的一次性快餐盒,韩国用法律强制性规定使用用糯米做的牙签等。欧洲制定了有关可生物降解堆肥塑料的标准EN13432《利于堆肥和生物降解来回收的包装物试验和最终评价的要求》,而其他有关推进有机废弃物堆肥处理的政令在积极制订和准备中。美国政府从1996年起设置了总统绿色化学挑战奖,鼓励发展生物降解塑料产业。纽约州1989年开始禁止使用非生物降解蔬菜袋,对生产降解塑料的厂家给予补贴,并要求市民将可再生与不可再生垃圾分开,否则罚款500美元。
其他一些国家也采取了类似对策:印度已经立法禁止在奶制品行业使用塑料包装;南非法律已经全面禁止使用塑料包装袋。随着各国立法的发展,可生物降解的新型包装材料可望日益普及。
在中国,随着对降解塑料理解的加深,已充分认识到这种材料及其产业对中国可持续发展的战略作用。可生物降解塑料的普及应用已是众望所归。中国人大于2004年通过了《可再生能源法(草案)》和《固废法(修订)》,鼓励再生生物质能的利用和降解塑料推广应用。在国家发展和改革委员会2005年的40号文件中,也明确要鼓励生物降解塑料的使用和推广。2006年,国家发展和改革委员会又启动了关于推广生物质生物降解材料发展的专项基金项目。
都说化石能源是不可再生资源,你知道吗?实际上它们是可以再生的。
碳诞生于恒星内部,它随着剧烈的爆炸散布到宇宙空间,然后因为尘埃的聚集慢慢成为地球的一部分。地球上的碳含量几乎是恒定的,几十亿年来只有极少量的增加,这是因为强烈宇宙射线中的中子辐射9000~15000米的高层大气,使一部分氮-14分解为碳-14和氢。碳-14本身不稳定,它会通过β衰变变回到氮-14。地球上碳-14的含量极少,据计算全球碳-14的存量大约仅有50吨,其中大气层有840千克,其它全被固定在陆地材料中。
50吨的碳-14与地球碳总量相比微不足道。 地球上的碳主要是碳-12和碳-13,这是碳的两种稳定同位素,其中碳-12约占碳总量的99%,碳-13约为1% 。科学家们估计有超过6亿亿吨的元素碳以碳酸盐的形式被储存在岩石中,另有约1.5亿亿吨碳存在于一种叫做“油母质”或“干酪根”的固体有机混合物里;在地球中心的铁核中还有大量的碳,它与地核的铁结合成碳化铁Fe₇C₃;地球表面广阔的海洋中溶解和储存了大量碳化合物,其中含有38.4万亿吨碳;相比之下大气中的元素碳含量则要少得多,2000年测量的数值约为7200亿吨。
值得注意的是: 在2018年中期最新测量数据中,大气中二氧化碳的质量浓度达到622ppm 。我们知道地球表面大气总质量约为5.15×10¹⁸千克,这意味着大气中二氧化碳总质量约为32033亿吨,其中 元素碳的质量达到8736亿吨 ,远超过2000年的水平。科学家们认为这主要是由于人类活动每年向大气中排放超过290亿吨CO₂的结果,另外由火山喷发每年向大气贡献了不超过3亿吨二氧化碳。
地球的大气层中最早是没有碳的 ,当它开始形成时,包裹在周围的主要是氢气,还有少量的水蒸汽、甲烷和氨。 随着小行星不断地碰撞,频繁的火山活动将地下大量氮、二氧化碳以及少量惰性气体带到地球表面,形成新的大气层 。这些二氧化碳中的大部分溶解在水里形成早期的碳酸盐岩石,另一部分作为温室气体为早期的地球保温,这也为后来地球生命的产生创造了条件。早期的太阳光度只有今天的70%,更多的温室气体有利于保持地球表面的温度,在大约34亿年前,地球就已经存在早期生命的迹象,这与地下碳的大量排放时间基本吻合。
大量的地质证据表明,在大约24亿年前太古代晚期的数亿年时间里,地球大气和浅海区域大量氧气开始聚集,被称为“大氧化事件”,这是因为 大量蓝藻通过光合作用吸收空气中的二氧化碳,将碳固定在它们体内并向空气中释放氧气 。这些远古藻类和浮游动物死亡后沉入水底,经过数亿年的堆积和几十亿年的地质变化,这些成分复杂的有机化合物的混合物慢慢变成今天被称为“干酪根(Kerogen)”的固体物质。
干酪根是原始藻类、浮游生物和原始陆地植物固定地球大气层中碳的证据,它固定了超过10¹⁶吨(约1.5亿亿吨)元素碳,这些有机物质聚集在地下深处原始的沉积岩中,当其中一部分在地壳中被加热到合适的温度时( 油窗 :50-150 °C, 气窗 :150-200°C,两者都取决于烃源岩加热的速度),某些类型的干酪根会释放原油或天然气,形成油田或气田。
由此我们知道, 石油和天然气本身就是地球碳循环的其中一个产物 。
在地球 历史 的每一个地质时期,都有藻类和浮游生物沉积演化所形成的石油,从这个角度看,地球的石油储藏应当是源源不绝的。今天的渔民们不喜欢大量繁殖的水藻和浮游生物,它们会大量消耗浅层海水中的氧,导致鱼类死亡绝收,但十数亿年之后,这些海藻有可能就是后人的石油。
我此前在《煤炭与钻石,哪个更有价值?》一文中介绍了煤炭的来源,陆地上繁茂的植物在死亡之后慢慢堆积,将它们从空气中吸收的碳固定在地面,随着漫长岁月的地质演化,这些死亡植物在被微生物降解前变成泥碳,进而演化为III型干酪根,也就是我们通常所说的煤炭。
地球表面的碳循环与大量微生物、动植物的生长繁衍密不可分 。植物和藻类通过光合作用将空气中的二氧化碳转化为体内的有机碳,当它们死亡时,这些有机碳的大部分被保存在地面、深埋进泥土、进入地壳,然后变为泥炭和煤;动物和浮游生物通过吃植物和藻类完成碳的转移,它们会呼出二氧化碳,同时也会将一部分碳转化为碳酸盐固定下来,当大量浮游生物的尸体沉积到海底深处,加上某些种类细菌协助分解,它们有机会转化为干酪根或石油。大约有2万亿吨的碳被储存在生物圈、化石燃料中元素碳的存量达到4.13万亿吨,这比空气中的碳要多得多。
植物不只通过光合作用捕获空气中的二氧化碳,它还会通过呼吸作用释放二氧化碳,只不过它们吸收的碳更多;动物会吸入氧气呼出二氧化碳,这些碳大多来自它们所吃的植物。这使得大气中的碳基本保持平衡状态。
由于人类生产活动燃烧大量化石能量,将亿万年来积聚在地下的碳快速释放到大气中;同时又通过砍伐森林获取木材、发展农业减少了植物转化碳的能力,因此在工业革命后大气中碳的存量呈现快速上升的趋势,这将导致全球气候变暖。
照目前的势头,大气中二氧化碳的浓度会不会无限制地上升呢?不一定。土壤通过呼吸作用每年向大气中释放超过1000亿吨元素碳,比人类碳排放要多出十倍以上,但大气中二氧化碳的增量并没有那么多,这在本文的开始部分我们就已经做了计算。这是因为大气中有一多半的二氧化碳被海洋和陆地吸收了,二氧化碳或溶解在水里中和了海水的碱性(海洋的PH值约为8.2),或在阳光的照射下以碳酸盐的形式被封存在了土壤里。随着太阳光照度的增强,被土壤吸收的碳会越来越多,据计算,大气中的二氧化碳浓度有可能在6亿年后达到一个 历史 低点,这对于植物来说并不是件好事情。
我们通过分析地球碳循环的过程,可以发现石油和煤炭是能够再生的,为什么几乎所有的宣传资料甚至包括我们的教科书中都将化石能源列为不可再生资源呢?
因为 化石能源的再生过程是以亿年为时间单位计算的,对于人类来说这个过程太漫长了 。我们人类从智进化至今仅仅20万年,人类利用化石能源的 历史 仅数千年,大规模开采煤炭石油也只有数百年时间。相对于石油和煤炭的产生,人类消耗它们的速度简直快如闪电,即使今天海洋中的浮游生物、森林中的树木有可能再变成石油与煤炭,到那时候人类是否还能存在都将是未知数。从人类发展的角度看,化石能源是不可再生的。
我们的脚下埋藏着超过4万亿吨的煤炭、有数千亿吨碳储存在石油里,更有1.5亿亿吨的碳被封存于干酪根,它们会在合适的地下转化为新的油气田,看起来石油与煤炭是取之不尽的。问题是当这些碳被开采出来燃烧后,它们会被排放到大气中,二氧化碳浓度的升高有可能导致全球变暖,并由此引发严重的气候问题,我们必须要加以重视并努力避免。
生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。“纸”是一种典型的生物降解材料,而“合成塑料”则是典型的高分子材料。因此,生物降解塑料是兼有“纸”和“合成塑料”这两种材料性质的高分子材料。
二 主要产品分类
生物降解塑料又可分为完全生物降解塑料和破坏性生物降解塑料两种。
1. 完全生物降解塑料主要是由天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子制得,如热塑性淀粉塑料、脂肪族聚酯、聚乳酸、淀粉/聚乙烯醇等均属这类塑料。
2. 破坏性生物降解塑料当前主要包括淀粉改性(或填充)聚乙烯PE、聚丙烯PP、聚氯乙烯PVC、聚苯乙烯PS等。
三 生物降解塑料代表产品
从原材料上分类,生物降解塑料至少有以下几种:
1. 聚己内酯(PCL)
2. 聚丁二酸丁二醇酯(PBS)及其共聚物
3. 聚乳酸(PLA)
4. 聚羟基烷酸酯(PHA)
5. 脂肪族芳香族共聚酯
6. 聚乙烯醇(PVA)
7. 二氧化碳共聚物
8. 聚-β-羟基丁酸酯(PHB)
四 产业发展:
在我国,随着对降解塑料理解的加深,已充分认识到这种材料及其产业对我国可持续发展的战略作用。可生物降解塑料的普及应用已是众望所归。我国人大于2004年通过了《可再生能源法(草案)》和《固废法(修订)》,鼓励再生生物质能的利用和降解塑料推广应用。在国家发展和改革委员会2005年的40号文件中,也明确要鼓励生物降解塑料的使用和推广。2006年,国家发展和改革委员会又启动了关于推广生物质生物降解材料发展的专项基金项目。
在行业内的代表性企业有:广州长康环保科技有限公司、广东上九、南京比澳格、广东金发、浙江鑫富、内蒙古蒙西集团等等,还有更多已在市场上大放异彩和在筹划中的企业,相信在不久的将来,生物降解塑料---我们人人都将用到。
伴随着生命科学的新突破,现代生物技术已经广泛地应用于工业、农牧业、医药、环保等众多领域,产生了巨大的经济和社会效益。
(一)生物技术的应用
1、生物技术在工业方面的应用
食品方面
首先,生物技术被用来提高生产效率,从而提高食品产量。
其次,生物技术可以提高食品质量。例如,以淀粉为原料采用固定化酶(或含酶菌体)生产高果糖浆来代替蔗糖,这是食糖工业的一场革命。
第三,生物技术还用于开拓食品种类。利用生物技术生产单细胞蛋白为解决蛋白质缺乏问题提供了一条可行之路。目前,全世界单细胞蛋白的产量已经超过3000万吨,质量也有了重大突破,从主要用作饲料发展到走上人们的餐桌。
材料方面
通过生物技术构建新型生物材料,是现代新材料发展的重要途径之一。
首先,生物技术使一些废弃的生物材料变废为宝。例如,利用生物技术可以从虾、蟹等甲壳类动物的甲壳中获取甲壳素。甲壳素是制造手术缝合线的极好材料,它柔软,可加速伤口愈合,还可被人体吸收而免于拆线。
其次,生物技术为大规模生产一些稀缺生物材料提供了可能。例如,蜘蛛丝是一种特殊的蛋白质,其强度大,可塑性高,可用于生产防弹背心、降落伞等用品。利用生物技术可以生产蛛丝蛋白,得到与蜘蛛丝媲美的纤维。
第三,利用生物技术可开发出新的材料类型。例如,一些微生物能产出可降解的生物塑料,避免了“白色污染”。
能源方面
生物技术一方面能提高不可再生能源的开采率,另一方面能开发更多可再生能源。
首先,生物技术提高了石油开采的效率。
其次,生物技术为新能源的利用开辟了道路。
1、 生物技术在农业方面的应用
现代生物技术越来越多地运用于农业中,使农业经济达到高产、高质、高效的目的。
农作物和花卉生产
生物技术应用于农作物和花卉生产的目标,主要是提高产量、改良品质和获得抗逆植物。
首先,生物技术既能提高作物产量,还能快速繁殖。
其次,生物技术既能改良作物品质,还能延缓植物的成熟,从而延长了植物食品的保藏期。第三,生物技术在培育抗逆作物中发挥了重要作用。例如,用基因工程方法培育出的抗虫害作物,不需施用农药,既提高了种植的经济效益,又保护了我们的环境。我国的转基因抗虫棉品种,1999年已经推广200多万亩,创造了巨大的经济效益。
畜禽生产利用生物技术以获得高产优质的畜禽产品和提高畜禽的抗病能力。首先,生物技术不仅能加快畜禽的繁殖和生长速度,而且能改良畜禽的品质,提供优质的肉、奶、蛋产品。其次,生物技术可以培育抗病的畜禽品种,减少饲养业的风险。如利用转基因的方法,培育抗病动物,可以大大减少牲畜瘟疫的发生,保证牲畜健康,也保证人类健康。农业新领域基因工程不仅提高了农牧产品的产量和质量。利用转基因植物生产疫苗是目前的一个研究热点。科研人员希望能用食用植物表达疫苗,人们通过食用这些转基因植物就能达到接种疫苗的目的。目前已经在转基因烟草中表达出了乙型肝炎疫苗。利用转基因动物生产药用蛋白同样是目前的研究热点。科学家已经培育出多种转基因动物,它们的乳腺能特异性地表达外源目的基因,因此从它们产的奶中能获得所需的蛋白质药物,由于这种转基因牛或羊吃的是草,挤出的奶中含有珍贵的药用蛋白,生产成本低,可以获得巨额的经济效益。
2、 生物技术在医药方面的应用目前,医药卫生领域是现代生物技术应用得最广泛、成绩最显著、发展最迅速、潜力也最大的一个领域。疾病预防利用疫苗对人体进行主动免疫是预防传染性疾病的最有效手段之一。注射或口服疫苗可以激活体内的免疫系统,产生专门针对病原体的特异性抗体。20世纪70年代以后,人们开始利用基因工程技术来生产疫苗。基因工程疫苗是将病原体的某种蛋白基因重组到细菌或真核细胞内,利用细菌或真核细胞来大量生产病原体的蛋白,把这种蛋白作为疫苗。例如用基因工程制造乙肝疫苗用于乙型肝炎的预防。我国目前生产的基因工程乙肝疫苗,主要采用酵母表达系统产生疫苗。