太阳能和可再生能源的关系
太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。
二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。
70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。
太阳内部进行着剧烈的由氢聚变成氦的热核反应,以E=MC2 (M为物质的质量,C为光速)的关系进行质能转换(1克物质可转化为9´ 1013焦耳能量),并不断向宇宙空间辐射出巨大的能量。太阳每秒钟向太空发射的能量约3.8´ 1020 MW,其中有22亿分之一投射到地球上。投射到地球上的太阳辐射被大气层反射、吸收之后,还有约70%投射到地面。尽管如此,投射到地面上的太阳能一年中仍高达1.05´ 1018kWh,相当于1.3´ 106亿吨标煤,其中我国陆地面积每年接收的太阳辐射能相当于2.4´ 104亿吨标煤。按照目前太阳质量消耗速率计,太阳内部的热核反应足以维持6´ 1010年,相对于人类发展历史的有限年代而言,可以说是“取之不尽、用之不竭”的能源。
地球上太阳能资源的分布与各地的纬度、海拔高度、地理状况和气候条件有关。资源丰度一般以全年总辐射量(单位为千卡/厘米2·年或千瓦/厘米2·年)和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。
三、地热能
一、地热资源概念
地热资源是指在当前技术经济和地质环境条件下,地壳内能够科学、合理地开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组分。
地热资源按其在地下的赋存状态,可以分为水热型、干热岩型和地压型地热资源;其中水热型地热资源又可进一步划分为蒸汽型和热水型地热资源。
各种类型地热资源,均要通过一定程序的地热地质勘查研究工作,才能查明地热资源数量、质量和开采技术条件以及开发后的地质环境变化情况。从技术经济角度,目前地热资源勘查的深度可达到地表以下5000m,其中2000m以浅为经济型地热资源,2000m至5000m为亚经济型地热资源。资源总量为;可供高温发电的约5800MW以上,可供中低温直接利用的约2000亿吨标煤当量以上。总量上我国是以中低温地热资源为主。
二、成生与分布
地热资源的成生与地球岩石圈板块发生、发展、演化及其相伴的地壳热状态、热历史有着密切的内在联系,特别是与更新世以来构造应力场、热动力场有着直接的联系。从全球地质构造观点来看,大于150℃的高温地热资源带主要出现在地壳表层各大板块的边缘,如板块的碰撞带,板块开裂部位和现代裂谷带。小于150℃的中、低温地热资源则分布于板块内部的活动断裂带、断陷谷和坳陷盆地地区。
地热资源赋存在一定的地质构造部位,有明显的矿产资源属性,因而对地热资源要实行开发和保护并重的科学原则。
通过地质调查,证明我国地热资源丰富,分布广泛,其中盆地型地热资源潜力在2000亿吨标准煤当量以上。全国已发现地热点3200多处,打成的地热井2000多眼,其中具有高温地热发电潜力有255处,预计可获发电装机5800MW,现已利用的只有近30MW。
目前全国29个省区市进行过区域性地热资源评价,为地热开发利用打下了良好基础。几十年来地矿部门列入国家计划,进行重点勘探,进行地热储量评价的大、中型地热田有50多处,主要分布在京津冀、环渤海地区、东南沿海和藏滇地区。全国已发现:
1)高温地热系统,可用于地热发电的有255处,总发电潜力为5800MW·30A,近期至2010年可以开发利用的10余处,发电潜力300MW。
2)中低温地热系统,可用于非电直接利用的2900多处,其中盆地型潜在地热资源埋藏量,相当于2000亿吨标准煤当量。主要分布在松辽盆地、华北盆地、江汉盆地、渭河盆地等以及众多山间盆地如太原盆地、临汾盆地、运城盆地等等,还有东南沿海福建、广东、赣南、湘南、海南岛等。目前开发利用量不到资源保有量的千分之一,总体资源保证程度相当好。
四、海洋能
海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。究其成因,潮汐能和潮流能来源于太阳和月亮对地球的引力变化,其他均源于太阳辐射。海洋能源按储存形式又可分为机械能、热能和化学能。其中,潮汐能、海流能和波浪能为机械能,海水温差能为热能,海水盐差能为化学能。
近20多年来,受化石燃料能源危机和环境变化压力的驱动,作为主要可再生能源之一的海洋能事业取得了很大发展,在相关高技术后援的支持下,海洋能应用技术日趋成熟,为人类在下个世纪充分利用海洋能展示了美好的前景。
我国有大陆海岸线长达18000多公里,有大小岛屿6960多个,海岛总面积6700平方公里,有人居住的岛屿有430多个,总人口450多万人。沿海和海岛既是外向型经济的基地,又是海洋运输和开发海洋的前哨,并且在巩固国防,维护祖国权益上占有重要地位。改革开放以来,随着沿海经济的发展,海岛开发迫在眉睫,能源短缺严重地制约着经济的发展和人民生活水平的提高。外商和华侨因海岛能源缺乏,不愿投资;驻岛部队用电困难,不利于国防建设;特别是西沙、南沙等远离大陆的岛屿,依靠大陆供应能源,因供应线过长,诸多不便,非常艰苦。为了保证沿海与海岛经济持久快速地发展及人民生活水平的不断提高,寻求解决能源供应紧张的途径已刻不容缓。
我国海洋能开发已有近40年的历史,迄今建成的潮汐电站8座,80年代以来浙江、福建等地对若干个大中型潮汐电站,进行了考察、勘测和规化设计、可行性研究等大量的前期准备工作。总之,我国的海洋发电技术已有较好的基础和丰富的经验,小型潮汐发电技术基本成熟,已具备开发中型潮汐电站的技术条件。但是现有潮汐电站整体规模和单位容量还很小,单位千瓦造价高于常规水电站,水工建筑物的施工还比较落后,水轮发电机组尚未定型标准化。这些均是我国潮汐能开发现存的问题。其中关键问题是中型潮汐电站水轮发电机组技术问题没有完全解决,电站造价急待降低。
我国波力发电技术研究始于70年代,80年代以来获得较快发展,航标灯浮用微型潮汐发电装置已趋商品化,现已生产数百台,在沿海海域航标和大型灯船上推广应用。与日本合作研制的后弯管型浮标发电装置,已向国外出口,该技术属国际领先水平。在珠江口大万山岛上研建的岸边固定式波力电站,第一台装机容量3kW的装置,1990年已试发电成功。“八五”科技攻关项目总装机容量20kW的岸式波力试验电站和8kW摆式波力试验电站,均已试建成功。总之,我国波力发电虽起步较晚,但发展很快。微型波力发电技术已经成熟,小型岸式波力发电技术已进入世界先进行列。但我国波浪能开发的规模远小于挪威和英国,小型波浪发电距实用化尚有一定的距离。
潮流发电研究国际上开始于70年代中期,主要有美国、日本和英国等进行潮流发电试验研究,至今尚未见有关发电实体装置的报导。我国潮流发电研究始于70年代末,首先在舟山海域进行了8kW潮流发电机组原理性试验。80年代一直进行立轴自调直叶水轮机潮流发电装置试验研究,目前正在采用此原理进行70kW潮流试验电站的研究工作。在舟山海域的站址已经选定。我国已经开始研建实体电站,在国际上居领先地位,但尚有一系列技术问题有待解决。
海洋被认为是地球上最后的资源宝库,也被称作为能量之海。21世纪海洋将在为人类提供生存空间、食品、矿物、能源及水资源等方面发挥重要作用,而海洋能源也将扮演重要角色。从技术及经济上的可行性,可持续发展的能源资源以及地球环境的生态平衡等方面分析,海洋能中的潮汐能作为成熟的技术将得到更大规模的利用;波浪能将逐步发展成为行业。近期主要是固定式,但大规模利用要发展漂浮式;可作为战略能源的海洋温差能将得到更进一步的发展,并将与海洋开发综合实施,建立海上独立生存空间和工业基地;潮流能也将在局部地区得到规模化应用。
潮汐能的大规模利用涉及大型的基础建设工程,在融资和环境评估方面都需要相当长的时间。大型潮汐电站的研建往往需要几代人的努力。因此,应重视对可行性分析的研究。目前,还应重视对机组技术的研究。在投资政策方面,可以考虑中央、地方及企业联合投资,也可参照风力发电的经验,在引进技术的同时,由国外贷款。
波浪能在经历了十多年的示范应用过程后,正稳步向商业化应用发展,且在降低成本和提高利用效率方面仍有很大技术潜力。依靠波浪技术、海工技术以及透平机组技术的发展,波浪能利用的成本可望在5—10年左右的时间内,在目前的基础上下降2—4倍,达到成本低于每千瓦装机容量1万元人民币的水平。
中国在波能技术方面与国外先进水平差距不大。考虑到世界上波能丰富地区的资源是中国的5-10倍,以及中国在制造成本上的优势,因此发展外向型的波能利用行业大有可为,并且已在小型航标灯用波浪发电装置方面有良好的开端。因此,当前应加强百千瓦级机组的商业化工作,经小批量推广后,再根据欧洲的波能资源,设计制造出口型的装置。由于资源上的差别,中国的百千瓦级装置,经过改造,在欧洲则可达到兆瓦级的水平,单位千瓦的造价可望下降2—3倍。
从21世纪的观点和需求看,温差能利用应放到相当重要的位置,与能源利用、海洋高技术和国防科技综合考虑。海洋温差能的利用可以提供可持续发展的能源、淡水、生存空间并可以和海洋采矿与海洋养殖业共同发展,解决人类生存和发展的资源问题。需要安排开展的研究课题为:基础方面,重点研究低温差热力循环过程,解决高效强化传热及低压热力机组以及相应的热动力循环和海洋环境中的载荷问题。建立千瓦级的实验室模拟循环装置并开展相应的数值分析研究,提供设计技术;在技术项目方面,应尽早安排百千瓦级以上的综合利用实验装置,并可以考虑与南海的海洋开发和国土防卫工程相结合,作为海上独立环境的能源、淡水以人工环境(空调)和海上养殖场的综合设备。
中国是世界上海流能量资源密度最高的国家之一,发展海流能有良好的资源优势。海流能也应先建设百千瓦级的示范装置,解决机组的水下安装、维护和海洋环境中的生存问题。海流能和风能一样,可以发展“机群”,以一定的单机容量发展标准化设备,从而达到工业化生产以降低成本的目的。
五、生物质能
生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。直接燃烧生物质的热效率仅为10%一30%。目前世界各国正逐步采用如下方法利用生物质能:
1.热化学转换法,获得木炭、焦油和可燃气体等品位高的能源产品,该方法又按其热加工的方法不同,分为高温干馏、热解、生物质液化等方法;
2.生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;
3.利用油料植物所产生的生物油;
4.把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。
生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
目前,生物质能技术的研究与开发已成为世界重大热门课题之一,受到世界各国政府与科学家的关注。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,其中生物质能源的开发利用占有相当的比重。目前,国外的生物质能技术和装置多已达到商业化应用程度,实现了规模化产业经营,以美国、瑞典和奥地利三国为例,生物质转化为高品位能源利用已具有相当可观的规模,分别占该国一次能源消耗量的4%、16%和 l0%。在美国,生物质能发电的总装机容量已超过10000兆瓦,单机容量达10—25兆瓦;美国纽约的斯塔藤垃圾处理站投资2 OOO万美元,采用湿法处理垃圾,回收沼气,用于发电,同时生产肥料。巴西是乙醇燃料开发应用最有特色的国家,实施了世界上规模最大的乙醇开发计划,目前乙醇燃料已占该国汽车燃料消费量的50%以上。美国开发出利用纤维素废料生产酒精的技术,建立了 l兆瓦的稻壳发电示范工程,年产酒精2500吨。
我国是一个人口大国,又是一个经济迅速发展的国家,21世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。
开发利用生物质能对中国农村更具特殊意义。中国80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998年农村生活用能总量3.65亿吨标煤,其中秸秆和薪柴为2.07亿吨标煤,占56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。
1991年至1998年,农村能源消费总量从5.68亿吨标准煤发展到6.72亿吨标准煤,增加了18.3%,年均增长2.4%。而同期农村使用液化石油气和电炊的农户由1578万户发展到4937万户,增加了2倍多,年增长达17.7%,增长率是总量增长率的6倍多。可见随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切。传统能源利用方式已经难以满足农村现代化需求,生物质能优质化转换利用势在必行。
太阳能是可再生能源。可再生能源包括太阳能、生物质能、水能、风能、潮汐能、波浪能、海洋温差能、地热能等。这些能源在自然界中可以循环再生,不需要人力参与便会自动再生,是相对于非可再生能源的一种能源。
太阳能
太阳能,是一种可再生能源,指的是太阳的热辐射能,主要表现是太阳光线。在现代一般用作发电或为热水器提供能源。
太阳能的利用有光热转换和光电转换两种方式。太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
太阳能是由太阳内部氢原子发生氢氦聚变释放出巨大核能而产生的,来自太阳的辐射能量。人类所需能量的绝大部分都直接或间接地来自太阳。
2.向空气中排放CO2,等各种有毒气体,形成温室效应,破坏臭氧层。
3.过度开采石油和煤
4.对大量濒危动的灭绝负有直接责任
5.污染水源
1992年,全国废气排放量 l0.5万化标立方米(不包括乡镇工业,下同)。废气中烟尘排放量 1111万吨,比上年增长 7.6%二氧化硫排放量 1685万吨,比上年增长 3.9%工业粉尘排放量 576万吨,比上年下降 0.5%。
全国城市大气中总悬浮微粒年日均值范围为 90一663微克/立方米,北方城市平均403微克/立方米,与上年相比下降6.1%南方城市平均243微克/立方米,与上年相比增长 8%。据67个城市统计,51% 的城市年日均值超标,尤以吉林、济南、太原、兰州、包头、延安、西安等城市为重。
据66个城市统计,降上半月均值在 3.8一55.8吨/平方公里·月之间,较上年略有增加,比方城市明显重于南方城市。降尘年月均值在 30吨/平方公里·月以上的城市有三明、鞍山、长春、大同、石家庄、哈尔滨、银川、吉林、鹤岗、沈阳、兰州和唐山。
据72个城市统计,二氧化硫年日均值范围为 7—]63微克/立方米,北方城市平均97微克/立方米,南方城市平均90微克/立方米,与上年相比略有上升。超过国家三级标准的城市有贵阳、重庆、太原、乌鲁木齐、宜宾、南充、济南、石嘴山、青岛、天津、长沙和大同。
据72个城市统计,氮氧化物年日均值范围为 l1一129微克/立方米,北方城市平均56微克/立方米,南方城市平均40微克/立方米,与上年基本持平,其中长春、济南和运城污染明显加重,兰州、宝鸡和南充咯有好转。
2000年,酸雨仍限于局部地区。据58个城市统计,降水pH年均值范围为3.85一7.43,pH年均值低于5.6的占52%,均为南方城市。赣州、长沙和厦门市酸雨出现频率高达90%以上,南充、宜昌、南昌、怀化、百色、南京、重庆和广州市酸雨出现频率在70%以上。
2007年下旬,国际油价已上升至100美元一桶;虽说美元疲软、中东政局不稳是其中不可轻视的诱因,但世界能源日益短缺是更不能逃避的问题!有研寒报告指出:石油会在41年后枯竭,天然气会在67年后耗尽;煤矿是比较丰富的资源,还可用192年;但煤却是三者之中二氧化碳排放量最多的,是温室效应的最大元凶。
其实能源短缺已不是今天才发生的事,具有远见的国家,例如日本及德国,它们居安思危,除了意识到能源枯竭的问题外,更考虑到石油这种资源是地区性的:地球上只在有限的几个地区才拥有石油这种珍贵的资源,而这种珍贵的能源其实是掌握在某几个国家手中的。为了尽早摆脱依赖产油国的状况,它们早在数十年前已着手开发新能源,并选择了再生能源②为发展的重点。到了近20年,各国在研究再生能源上都取得了成果,其中太阳能发电产业的发展更是一日千里。所谓太阳能发电,就是把光能转化为电能的一种技术。太阳能发电或许在现今还未能十分普及,但我们发现,它有着无限的潜力。现今的石化能源价格日渐昂贵,加上石化能源所排放的污染物正不断威胁我们居住的环境;而太阳能用之不竭,几乎不产生任何污染。我们预计太阳能在未来将会是其中一种最有效及最常用的能源。
从2000年开始,基于太阳能发电技术的日趋成熟,人们生态环保的意识亦渐渐增强,加上各国政府政策上的推动,太阳能发电产业正步入高速增长期。根据调查显示,太阳能发电产业在过去五年的平均增长率超过40%!借这个太阳能发电产业的春风,各国企业都如雨后春_般跑到这个朝阳行业来;其间企业与企业之间的竞争、并购过程非常激烈。我们对太阳能发电行业的产业链进行了仔细研究,通过剖析原材料生产、加工、制造、装嵌、推广以至销售等等,我们发现太阳能发电产业的行业本质是如何把太阳能发电技术融入生活。先介绍太阳能发电行业的概况,然后会从太阳能发电技术的发展及供应链管理去详细剖析行业的本质——解释龙头企业如何应用及发展太阳能发电技术,从而把太阳能带进我们的生活;接着,我们以不同的企业去印证太阳能发电行业的本质;最后,我们将为这个行业的研究做个总结。
一、太阳能发电的优势
太阳能属于再生能源。目前常见的再生能源主要有风能、水能、太阳能和地热,其中,太阳能是总体上最可利用的再生能源。与风能相比,太阳能稳定性较强,受季节、季风影响较小。与水能相比,太阳能地理位置局限性较小。地热跟水能一样,受到位置的局限性,而且有足够的地热可以发电地方并不多。
太阳能发电还有以下优点:属于可再生能源,不必担心能源枯竭。太阳能本身并不会给地球增加热负荷。运行过程稳定、低污染、无噪声。所产生的电力既可供家庭单独使用,也可并入电网供大众使用。太阳能发电产品用途广泛,例如,可安装于建筑物、衣服和运输工具上使用。
二、太阳能发电产业的历史及现状
利用太阳能的发展自2000年起慢慢起步,过去5年世界平均年增长超过40%。其中日本的发展尤为迅速,太阳能的利用在该国受到很大的重视。
在20世纪90年代初期,全世界太阳能电池的产量在100MW之下。当时日本已经是全球最大的太阳能电池生产国,1990年的年产量为16.8MW,占全球产量的:36.1%,紧随其后的是美国和欧洲,分别占全球产量的31.8%及21.9%。我们可以推断,早在20年前,日本已大力推广太阳能发电技术了。到了20世纪90年代末,太阳能电池的全球产量已飙升至287.7MW,比1990年的产量足足增长了6倍,年均增长率达20%!更惊人的是,从2000年至2006年这6年间,太阳能电池的年产量又增加了9倍:从2000年的287.7MW到2006年的2500MW,年均增长率超过40%!要留意的是,时至今日,日本依然是全球最大的太阳能电池生产国,在2006年占全球产量的37.1%。由此可见,日本仍保持着20年前的领先地位,而且其领先地位更加稳固了,与其他国家相比,优势愈来愈大。相比之下,美国就给人以原地踏步的感觉:1990年它的市场占有率为31.8%,到了2006年已缩减至8.1%。从这个现象我们可以知道,各国政府对太阳能发电产业有着不同的态度和目标。而事实上,在国家政策上,我们发现日本的资助计划的确比美国更加全面。日本在太阳能发电产业的领导地位可以说是毋庸置疑。
太阳能发电产业链分上、中、下游三个部分。上游事业包括提炼太阳能级硅、制造硅棒和硅碇、切割硅片;中游企业负责制造电池;下游则着重装嵌电池模块及销售太阳能发电系统。太阳能发电产业是典型的金字塔模式:即上游的企业数量比较少,从事中游业务的企业数量比上游多,而下游企业的数目也最多。原因很简单:在产业的上、中、下游三个部分中,上游业务所需要的技术、成本都是最高的。正因为如此,进人上游业务的门坎相对中游及下游业务要高得多。图3-3显示了典型的金字塔模式。
在最顶的部分是晶体硅(在这里我们用多晶硅来做例子)的制造,属于最上游的业务。从事多晶硅提炼的企业全球大概有8家,而其中前5强的企业产量占整个行业的85%!从事硅片制造的企业大概有18家,其中前5强的企业产量占整个行业的60%。太阳能电池制造商超过85家,前5强企业的产量占全行业的55%。太阳能电池模块制造商更多,超过130家,前5强企业的产量占整个行业的比例只有50%。最后,系统安装商无疑最多,可达数百家。所以,我们说太阳能发电产业的确是典型的金字塔模式。
就提炼太阳能级硅来说,美国HSC和挪威REC是其中的佼佼者;硅棒和硅碇制造及硅片切割的代表则有日本京瓷(Kyocem)和日本夏普(SHARP);而日本夏普更是制造太阳能电池的龙头企业,紧随其后的是德国Q-Cells和日本京瓷。而下游的市场则比较分散,除了德国SMA占整个下游的不足20%外,其余企业的市场占有率都不太突出。我们会集中讨论中游部分:太阳能电池制造商。
根据2006年的资料,太阳能电池制造商五强依次是日本夏普、德国Q-Cells,日本京瓷、中国尚德电力(Suntech Power)及日本三洋(Sanyo)。我们看到,2006年的五强中日本企业占了3家,这正印证了日本在太阳能发电产业领导群雄的地位。我们以日本夏普、德国及中国尚德电力作为本章的重点案例。为了集中讨论世界的太阳能发电行业,而不要变成只研究日本太阳能发电行业的报告,我们把日本京瓷公司的内容从本章剔除。而我们的确从不同国家的企业身上找到它们符合行业本质的线索,而这就是它们从竞争激烈的行业中脱颖而出的原因。日本夏普的业务涉及硅棒、硅碇的制造,太阳能电池的制造及装嵌;德国Q-Cells把资源集中在太阳能电池的制造;而中国尚德电力则主要是制造太阳能电池及模块装嵌。我们会仔细研究它们在企业策略上的取向,了解它们成功之处。在本章的最后部分,我们将以日本夏普、中国尚德电力及德国Q-Cells作为案例,让读者能从案例中了解太阳能发电行业的本质。
三、太阳能发电技术
太阳能发电技术是将太阳能转化为电力的技术。当太阳光照射在P型半导体和N型半导体之间时,基于物理效应,电极之间就会产生电压。只要把P型半导体和N型半导体连接起来,就能把得到的电流传送到其他地方(即发电)。虽说太阳能电池的设计日新月异,但硅系太阳能电池都是运用了这一基本原理。电池主要分为数层,其中最要紧的是N型及P型半导体,其他的涂层主要作用是保护、支持电池。目前,太阳能发电技术的应用有联网和离网两类。联网意即与地方电网连接,将所产生之电力供应给地方电网。这使得依赖太阳能发电的地方需要24小时运作,因为晚间没有阳光,用电可向地方电网购买。这可解决太阳能技术在没有阳光时的难题。离网意即不与地方电网连接,通过与蓄电池连接,可将日间产生的电力储蓄起来供晚间使用。离网主要应用于偏远地区或固定电网未能到达的地区,这可使当地人过上拥有电力的生活。离网太阳能发电技术对中国偏远农村发展现代化农业具有重要意义。
国际能源处的数据显示,2006年世界前十大太阳能电池生产商中,日本生产商占4名、德国生产商占3名、中国占2名、英国占1名。这说明,在太阳能发电技术上,日本和德国占有领导地位。厂商方面,日本夏普占全世界生产份额的17.4%、德国Q-Cells占10.1%。中国尚德电力是唯一能进入前10名的中国内地公司。在2006年,它的市场份额占全世界的6.3%。到了今天,虽说太阳能发电行业正步人强劲的增长期,但太阳能还不能取代传统石化能源,原因是太阳能发电成本太高。以我国为例:以煤发电,每度电成本为0.2~0.3元人民币;水力发电每度电成本为0.2元人民币;太阳能发电每度电成本为2元人民币,故降低成本是推广太阳能发电技术的关键。
行业本质
太阳能行业的本质是融入生活。在解释行业本质前,让我们先了解这个行业特别的产业链在整条产业链上,各厂商利用整合生产开发(IPD)和整合供应链(ISC)去追随这个行业的本质,最终达到行业领先的地位。现以整合生产开发和整合供应链两方面去分析行业本质及其重要性。
—、整合生产开发(IPD)1.IPD的概念
首先我们看看什么是整合生产开发(Integrated Product Development,IPD)。在传统的产品开发过程当中,各部门各自运作。产品设计部门开发出来的产品不一定完全符合市场需要,釆购部门对新产品所需的材料不一定有完善的供应计划,生产部对于新产品不一定有一套完整的工序。产品设计部设计出来的“新”产品,到了消费者手中,可能已是一种完全不同的产品了。IPD的概念在美国最先兴起,目的是为了优化开发新产品的流程。IPD针对各部门在开发新产品中不协调的情况,把产品开发的程序与市场需要、企业策略以及材料供应相结合。推行IPD首先确认市场需要,如以太阳能发电行业为例,各企业认定市场的要求是融入生活;然后制定企业策略,如日本夏普推行自家的技术研究,德国Q-Cells则着重与其他企业合作或通过并购取得技术;最后把生产程序以及材料供应等等元素加入设计新产品的过程当中,从而使新产品面世后既能符合市场需要,又能以最短的时间生产并拿到消费者手中。
2.太阳能发电的困难及未来
让我们想一想,太阳能发电至今为止都需要政府进行各种补贴,其中一个最大的原因是发电成本极高。如前所述,在现今国内,太阳能发电的平均成本为每度电2元人民币,水电及火电每度电却只需要0.2~0.3元人民币。消费者现在所付出的电费为0.6~0.8元人民币。太阳能发电需要如此巨大的成本,如果没有政府的补贴,消费者到底要付多少钱呢?
虽说各国政府已意识到发展新能源的迫切性,并实行了一系列的补贴计划以推动太阳能发电。但归根结底,太阳能发电之所以尚未普及,很大程度上是因为技术不够成熟,发电成本还不足以使太阳能发电融入社会每个阶层的生活。在太阳能发电产业价值链中的每一个阶段、每一个制造程序,尤其是属于上游的硅材料提炼阶段,成本仍然偏高。成功的太阳能发电企业当然意识到这个症结所在,于是为了降低成本,各大企业研发的研发,并购的并购,务求在最短的时间里得到最新的技术,在众多的企业中领先其他对手,以获得支配整个行业的地位。以下,我们把太阳能发电的技术、困难以及未来逐一进行探讨。太阳能发电技术可分为四代,简介如下:第一代为硅系太阳能电池,现有产品为单晶硅和多晶硅太阳能电池,其转换效率(即将太阳能转化为电力的效率)最高。由于第一代电池的发展技术已相当成熟,故现在市场上超过90%之太阳能发电均使用第一代技术。
第二代为多元化合物薄膜太阳能电池,现有产品为:非晶硅薄膜太阳能电池、碲化镉、砷化镓III-V化合物和铜铟镓硒。由于其厚度比传统太阳能电池薄,故原料需求量少。由于这是新技术,故普及程度不高。
第三代太阳能电池包括:聚合物多层修饰电极型电池、光电化学电池、聚合物、纳米晶、染料敏化太阳能电池。此技术的特点是不依赖于传统的PN结分离光生电荷,但相比第二代技术,第三代技术的普及程度更低。
第四代太阳能电池包括:纳米晶化学太阳能电池、多光谱太阳能电池。多光谱太阳能电池能吸收红外线光谱部分热量使太阳能电池更有效。但此新技术仍在实验室试验阶段。
(1)第一代太阳能电池的问题
第一代的太阳能电池主要以硅为材料,而硅料则是由石英砂提炼而成。第一个步骤是把石英砂通过数个程序制成晶硅。晶硅主要可分为单晶硅及多晶硅,在提炼过程中进行晶体提拉可形成单晶硅,进行晶体铸造可形成多晶硅。单晶硅和多晶硅两者都是硅,只是晶体间的排列方式不同罢了。单晶硅的组成原子均按照一定的规则周期性地排列;多晶硅的硅原子堆积方式不止一种,它是由多种不同排列方向的单晶所组成。制成晶硅以后,再加热把晶硅制成晶圆、硅锭,然后进行切割切成一块块薄薄的硅片。有了硅片,就有了太阳能发电的基础。太阳能电池生产商把薄薄的硅片加以排列、加工、合成以制成太阳能电池。到了这里,以后的程序就比较简单了。模块生产商把太阳能电池组成不同的排列,加上转换器等装置,制成电池模块。太阳能电池模块已是能独立运作的“小型系统”了,如果把大量的小型系统连合起来,就是用来发电的大型联网系统。这个制造流程是现今最常见、最成熟的生产技术,可以说是第一代的太阳能电池制造技术。但它的缺点就是太阳能电池不能普及的最大障碍:提炼成本昂贵!
为什么昂贵呢?在生产“晶硅”的过程当中,需要加热至1900℃以加速相应的化学作用;接下来的晶圆制造,亦需要额外加热至1400℃。单单是头两个工序已经极其消耗能源!以现今技术来说,一片晶圆直径大概为200μm(微米),即0.0002m。但当中只有2μm有发电的效应。换句话说,一片晶圆中只有1%的硅材料有用,其余99%的硅材料都是浪费掉的!此外,太阳能电池模块体积又大又笨重,由此可见,太阳能发电的应用范围亦会比较狭窄。在种种不同的条件限制下,加上不断上升的硅材料价格,第一代太阳能电池的制造成本居高不下。
(2)第一代太阳能电池的演变
看过了第一代太阳能电池的制造流程,我们发现,如要减低成本,可以从三方面着手:减低在生产太阳能电池过程中所损耗的材料;改善太阳能电池设计以提升转换效率;研发新的太阳能发电技术。A.减少耗材发电效应只在晶圆表面2μm的地方进行,所以晶圆厚度愈少,所浪费的硅材料也就愈少。根据德国Q-Cells的年报,它们的晶圆厚度已由2003年的300μm,改进到2006年的200μm。而在未来数年,晶圆的厚度可望进一步减少。其次是使用新研发的技术减少硅材料的消耗。例如德国Q-Cells通过与Evergreen Solar合组企业EverQ GmbH,获得了的丝带状硅晶提拉技术。如前文提及,常规生产硅片技术是基于能源密集型铸造、加工和切割大型硅块的技术,制造过程并不环保而且会消耗硅材料。丝带状硅晶提拉技术可帮助减低在加热时所消耗的能源及硅料的浪费。它的制造工艺是从一个小型硅熔炉(图3-8的下部)中提拉硅片,从而制成200μm~300μm厚的晶硅薄片,然后再切成小段硅片。故此,省去了硅棒切片的步骤,显然,这种新研发的技术可减少硅材料的损失。况且此技术只需小规模加热即可,因此可以减少能源消耗。
丝带状硅晶技术是源自自然科学的“表面张力”概念。简单来说,制作一个丝带状硅晶就像制作一个肥皂泡——水的表面张力将冼剂液制成泡泡。Evergreen Solar用两条耐热平行金属线垂直通过一个小型硅溶炉,其中间形成一层薄的硅晶,并向上提拉。过程是连续的,提拉出来的丝带状硅晶可切成小段,然后进一步加工成太阳能电池。这是小型硅熔炉实际情况,两片丝带状硅晶正在提拉中。提拉速度是每分钟约1英寸。将来提高产能的发展是可同时提拉多条硅晶带。
B.提升太阳能发电转换效率
另一项有效减低成本的方法便是改善太阳能电池的设计,继而提升太阳能发电的效率。例如中国尚德电力研究出了专利“PLUTO”技术。在2006年测试生产中,单晶硅太阳能电池的转换效率已达18%~19%,并可望于2008年达到20%,与实验室中的极限25%愈来愈近。然而,转换效率的提升如何帮助太阳能电池融入生活当中?作为最终使用太阳能发电技术的终端客户,要使太阳能发电系统安置到我们家中,最直接的方法是让我们消费者能够清楚计算出太阳能发电可替我们节省多少金钱。毕竟,能否节省金钱对消费者来说最容易理解,亦最有说服力!在此我们首先介绍还付期的计算,并从转换效率对还付期进行灵敏度分析去证明转换效率的重要性。“还付期”是指一个太阳能发电系统需要运作多少年时间,才能让节省下来的电费总和与整个系统的安装成本相等。方程式是这样的:
还付期=太阳能发电系统成本/每年节省的电费举个例子:美国加州旧金山某住宅的太阳能发电系统价格为16357美元,每年所节省的电费为1070美元。那么还付期大约是15年。由于目前已运作的太阳能发电系统中,太阳能电池转换效率普遍为15%,因此我们从15%的转换效率开始分析,如转换效率每增加1%,在其他条件保持不变的情况下,还付期会有怎样的改变呢?这代表当转换效率在增加的时候,还付期是会相对减少的。如果太阳能电池制造商能把转换效率由15%提升至化%,那还付期则可减少0.9年。所以中国尚德电力利用“PLUTO”技术把太阳能电池转换效率由15%增加至20%,那还付期便能由15年缩减至11.3年,下降达25%。如果转换效率由15%增强至30%,那么还付期会减少50%,从15年缩短至7.5年。如未来有技术突破,能把能量转换效率提升至50%,那么,还付期更能骤减至4.5年!根据研究所得,消费者一般可以接受3至5年的还付期。无可置疑,还付期的减少是吸引更多的消费者使用太阳能发电系统的关键。另一方面,利用光学技术也能提升转换效率至35%。我们将简略介绍这方面的技术。
在太阳能电池顶部加上菲涅尔透镜,将80%~90%的太阳光线聚焦于太阳能电池上,使每个太阳能电池能接受更多光能,而太阳能电池则使用了一种被称为“III-V化合物”的材料去增加转换效率。太阳能电池转换效率高达35%,相比普通太阳能电池转换效率增加了2倍。因为新增的透镜是普通光学玻璃,所以额外增加的成本是非常低的。这种技术可以有效地提升转换效率。然而,这技术亦有弊端,它不能使用分散的阳光,即是它要求光线垂直射于菲涅尔透镜上。为了使太阳能电池能持续并直接接受太阳光的照射,它需要一个机械跟踪系统使太阳能电池系统能调整到能与太阳精确对应的位置。这将增加整个系统的维修成本和造成额外的维修问题。另一方面,当太阳能电池在高能量光线下工作的时候,会产生高温,因此需要散热片去说明散热,但这额外装置将令成本进一步增加。同时,由于太阳能电池长时间在高温之下运作,令电池加速老化,对电池的可靠性造成问题,这将显著减低太阳能电池的寿命。所以说,没有更新的技术突破,提高太阳能发电转换效率是不容易的。
C.研发新技术
第一代太阳能电池技术是硅片型太阳能电池,如前所述,所需的能源和材料都很多。因为近年硅料的暂时短缺,迫使厂商利用其他可减少使用硅的技术,甚至是不用硅做原料的太阳能电池技术。因而我们开始使用第二代太阳能电池技术——薄膜技术。
a.薄膜太阳能电池
薄膜太阳能电池是在便宜的基板上(如廉价的玻璃、不锈钢或塑料)沉积一层可产生太阳能发电效应的薄膜,厚度只需数微米。目前薄膜太阳能电池从材料上可分为三类:硅基薄膜电池、化合物半导体薄膜电池和染料敏化的光化学太阳能电池。其中又只有非晶硅(a-Si)、碲化镉(CdTe)和铜铟镓硒(CIGS)已商业化。非晶硅(a-Si)是硅基薄膜电池,而碲化镉(CdTe)和铜铟镓硒则是化合物半导体薄膜电池。非晶硅在众多薄膜技术中研究时间最长,市场占有率达64%,市场份额最大。在其余的两种化合物薄膜技术中,碲化镉有26%的市场份额并正在急剧增加。铜铟镓硒也占有10%的份额市场。但铟及碲是稀有金属,蕴藏量有限;镉是有毒物质,并且研究时问尚短,故采用这两种技术的电池制造商很少。
类型 2005年薄膜市场份额 特点
非晶硅(a-S) 64% 它的研究进行时间最长,可能是3个技术中最为人所能理解的材料,商业化的时间也是最长的。碲化镉(CdTe) 26% 虽然镉是有毒的,但其市场份额正在急剧增加。该产品商业化的时间也较长。铜铟镓硒(CIGS) 10% 在理论上是最具潜力的,转换效率也较髙,但现阶段技术掌握不足,因此开发商较少非晶硅是指硅原子的排列非常紊乱,它是以电浆式化学气相沉积法,在玻璃等的基板上成长厚度约1μm的非晶硅薄膜。它对于可见光谱的吸光能力很强,所以只需要薄薄的一层非晶硅就可以把光子的能量有效地吸收。第一代传统太阳能电池所用的晶圆厚度要200~300μm,非晶硅太阳能电池硅材料节省达200倍!可是非晶硅的太阳能发电转换效率非常低,只有6%~7%,而且长时间光照会令转换效率大幅降低,导致电池可靠性不高。不过,以多结式(Mulitjunction)结构为基础的太阳能电池可改善非晶硅太阳能电池的缺点。
如今,日本夏普就在制造多结式薄膜太阳能电池。夏普在传统迭式两层薄膜电池(一层非晶硅加上一层微晶硅)的基础上,成功开发了新的迭式三层薄膜电池(两层非晶硅加上一层微晶硅),并能大量生产。这新结构令薄膜电池的转换效率从11%增加到13%,模块转换效率从8.6%增加到10%。另一方面,碲化镉和铜钢镓硒并不是以硅作原材料,它们都是化合物半导体。碲化镉目前在实验室中的转换效率可达16%,而商业成品的转换效率大约是11%。但是因碲的天然蕴藏量有限,未必能支持太阳能电池的需求量。镉是各国管制的高污染性重金属,因此,该技术的发展受到限制。铜铟镓硒在实验室的转换效率亦很高,可达19%。但与碲一样,铟的天然蕴藏量也很有限。
薄膜技术不仅具有减少甚至不倚赖硅料的优点,而且不需要经过高耗能的提炼过程,亦可以减少能源的损耗。关于耗能,在太阳能发电产业中,很多时候都用EPBT(能源回收期,Energy Pay-Back Time)来量化制造太阳能电池所损耗的能源。EPBT的意思是,需要多少年的时间才可让该太阳能发电系统所产生的能量与制造该系统所消耗的能量相等。
太阳能电池技术 EPBT/年 系统生产能源比制造该系统所需能源/倍
单晶硅 2.7 10
多晶硅 2.2 12
丝带晶硅 1.7 16
碲化镉 1 27
如果各类电池所能生产的能源都是相同的,那么最短的能源回收期是碲化镉薄膜电池,为期1年。而最长则是单晶硅的能源回收期,为2.7年。第三列的数字代表该系统可产生的能源是制造该系统所需能源的多少倍。单晶硅的太阳能发电系统可生产的全部能量只是制造该系统所用能量的10倍;而碲化镉最高可达27倍。这代表制造碲化镉的能源消耗是最少的,而制造单晶硅的能源所需是最多的。这是因为,单晶硅在提炼硅料及提拉晶体时都要耗费大量能源。
薄膜技术还有其他好处,它能以卷动的形式生产大面积太阳能电池。如图3-12,薄膜技术以好像是打印的方式将感光材料沉积在大面积的塑料上,因而可生产大面积的太阳能电池,几乎可以满足任何形态的产品使用。如可在不锈钢上喷上薄膜;将之安装在汽车外壳;也可把薄膜涂在玻璃上,既作装饰,又能发电;更广泛的应用是把薄膜配搭在建筑物料上或将其预先融入建筑物料中。图3-13显示的是太阳能电池结合地面砖照明(MPV)。虽然它的太阳能转换效率远比第一代硅系太阳能电池低,基于薄膜太阳能电池的种种优点,仍有不少研究单位和厂商在进行新材料或生产流程的研发,期望能改善薄膜技术种种的缺点。无论如何,它的用途及灵活性足以使它成为未来太阳能发展的新方向。
b.第三代和第四代太阳能电池
第三代和第四代太阳能电池多在研究阶段,还未能够完全商业化。但第三代及第四代的太阳能电池的概念却非常清楚:把太阳能发电效应推广至更多材料中,使得太阳能发电不受原料限制,能将其融入社会不同阶层的生活中。
C.各大企业的技术取向
我们知道提升太阳能电池技术是产业本质,可大大帮助减低成本,实现太阳能发电的低价格化,使更多消费者愿意利用太阳能发电。但怎样达到提升技术的目标,各大企业却各显神通:业界的龙头日本夏普自行研发客户所需技术,例如BIPV,把薄膜技术融入到建筑材料里。德国Q-Cells着重从控制及并购其他公司而得到不同的技术,例如和瑞典Silbro AB合组公司取得铜铟镓硒薄膜技术。而中国尚德电力集中资源去提升太阳能电池转换效率:发展“PLUTO”专利技术,期望单晶硅的发电效率在2008年达至20%。各大企业的取向或许不一样,但殊途同归,都是为了提高太阳能电池技术,把太阳能发电成本降低,争取让太阳能发电融入生活。
二、整合供应链(ISC)
前面,我们谈过了太阳能发电产业的IPD,并得出这样的结论:技术改进是最重要的。但在太阳能发电产业里,除了技术的稳固,还需要供应链的灵活性以实践融入生活。整合供应链便是从整个供应链中选取最重要的步骤并加以管理,提高工作效率从而使企业得益.
可再生能源的五种有:
1、太阳能发电
太阳能是一种可再生能源,五千多年来,一直在人类的生产生活中发挥巨大作用。随着时间的推移,太阳能的用途发生了很大变化,从取暖到为太空中的卫星供电。
但是,目前家庭房屋和各类建筑中,仍然缺乏能效高且价格低廉的太阳能发电设备。
太阳能电池板的工作方式非常简单,它是由数百万个太阳能电池组成的面板。当太阳照射到这些电池板时,通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能。
这些电能可以为家庭供电,并且价格十分低廉。
2、风力发电
人们看向大海时,会发现海平面上有很多风力涡轮机。虽然它们可能不是最吸引人的,但它们效率非常高。因为欧洲和一些地区有绵延不绝的海岸线,所以风力发电在这些地方比较普遍。
风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,它能把空气引导进一套可转动的叶片。
空气推动叶片并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。
快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。
3、水力发电
水力发电系利用河流、湖泊等位于高处具有势能的水流至低处,将其中所含势能转换成水轮机之动能,再借水轮机为原动力,推动发电机产生电能。水的高度,水的重量,甚至水的流动速度都可以用来发电。
地球上有大量的河流和不同类型的水流,这意味着我们可以大量安装水力发电站。
4、生物质能
生物质能的应用在日常生活中越来越普遍。生物柴油可以为汽车、公共汽车和商业车辆提供动力;生物质发电机可以提供家庭用电,此外,人们每天都发现新的生物质能。
5、地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。
因为放射性粒子会慢慢衰变,所以地热能是一种可再生能源。并且只要地球还在旋转,地热能就会一直存在,完全不用担心它们会耗尽。
但太阳必竟只是一颗恒星,恒星的氢氦聚变迟早会耗尽太阳能,一旦耗尽了太阳能,太阳也就变成了一颗红巨星,最后坍缩变成黑洞。因此,太阳能也就不再是再生能源。
再生能源是一种可长期使用、并且循环转换的能源,氢氦聚变可转换成电能、热辐射、光能等,现在的太阳能无疑正是再生能源。
太阳能是可再生能源。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
扩展资料:
一、可再生能源分类
1、水能
水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。磨坊就是利用水能的好例子。而水力发电更是现代的重要能源,尤其是中国、加拿大等满是河流的国家。
2、风能
风能是指风所负载的能量,风能的大小决定于风速和空气的密度。我国北方地区和东南沿海地区一些岛屿,风能资源丰富。据国家气象部门有关资料显示,我国陆地可开发利用的风能资源为2.53亿千瓦,主要分布在东南沿海及岛屿、新疆、甘肃、内蒙古和东北地区。
此外,我国海上风能资源也很丰富,初步估计是陆地风能资源的3倍左右,可开发利用的资源总量为7.5亿千瓦。人类已经使用了风力几百年了。如风车,帆船等。
3、太阳能
太阳能是指太阳所负载的能量,它的计量一般以阳光照射到地面的辐射总量,包括太阳的直接辐射和天空散射辐射的总和。
太阳能的利用方式主要有:光伏(太阳能电池)发电系统,将太阳能直接转换为电能;太阳能聚热系统,利用太阳的热能产生电能;被动式太阳房;太阳能热水系统;太阳能取暖和制冷。自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。
二、发展缘由
1、科技的进步让此类能源更加“好用”。
2、化石能源是有限的,不仅其价格会日渐增涨,而且终会有枯竭的时候。
3、某些再生能源(如风能、水力、太阳能)不会排放温室气体(如二氧化碳),因此不会增加温室效应的风险。
4、为了增进能源供应安全,减少对进口化石能源的依赖,并满足对可持续性能源的需求。
参考资料来源:百度百科-再生能源
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生,是取之不尽,用之不竭的能源,不需要人力参与便会自动再生。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。