建材秒知道
登录
建材号 > 能源科技 > 正文

地热能的开发怎样利用

热心的黑米
激昂的玫瑰
2023-02-07 14:06:15

地热能的开发怎样利用?

最佳答案
儒雅的发夹
粗暴的钻石
2025-08-27 03:45:23

我们居住的地球,很像一个大热水瓶,外凉内热,而且越往里面温度越高。因此,人们把来自地球内部的热能,叫地热能。地热能地球通过火山爆发和温泉等途径,将它内部的热能源源不断地输送到地面。人们所热衷的温泉,就是人类很早开始利用的一种地热能。然而,目前对地热能大规模的开发利用还处于初始阶段,所以说地热还属于一种新能源。

在距地面25~50千米的地球深处,温度为200℃~1000℃;若深度达到距地面6370千米即地心深处时,温度可高达4500℃。

据估算,如果按照当今世界动力消耗的速度,完全只消耗地下热能,那么即使使用4100万年后,地球的温度也只降低1℃。由此可见,在地球内部蕴藏着多么丰富的热能。地球温度分布是很规律的,通常,在地壳最上部的十几千米范围内,地层的深度每增加30米,地层的温度便升高约1℃;在地下15~25千米之间,深度每增加100米,温度上升1.5℃;25千米以下的区域,深度每增加100米,温度只上升0.8℃;以后再深入到一定深度,温度就保持不变了。

地球深层为什么储存着如此多的热能呢?它们是从哪里来的?对于这个问题,目前还处于探索阶段。不过,大多数学者认为,这是由于地球内部放射性物质自然发生蜕变的结果。在核反应的过程中,放出了大量的热能,再加上处于封闭、隔断的地层中,天长日久,经过逐渐的积聚,就形成了现在的地热能。值得指出的是,地热资源是一种可再生的能源,只要不超过地热资源的开发强度,它是能够补充而再生的。

通常,人们将地热资源分为4类:

(一)水热资源。这是储存在地下蓄水层的大量地热资源,包括地热蒸汽和地热水。地热蒸汽容易开发利用,但储量很少,仅占已探明的地热资源总量的0.5%。而地热水的储量较大,约占已探明的地热资源的10%,其温度范围从接近室温到高达390℃。

(二)地压资源。这是处于地层深处沉积岩中的含有甲烷的高盐分热水。由于上部的岩石覆盖层把热能封闭起来,使热水的压力超过水的静压力,温度约为150℃~260℃之间,其储量约是已探明的地热资源总量的20%。

(三)干热岩。这是地层深处温度为150℃~650℃左右的热岩层,它所储存的热能约为已探明的地热资源总量的30%。

(四)熔岩。这是埋藏部位最深的一种完全熔化的热熔岩,其温度高达650℃~1200℃。熔岩储藏的热能比其他几种都多,约占已探明地热资源总量的40%。

到目前为止,对于地热资源的利用主要是水热资源的开发。近年来,一些国家开始进行干热岩的开发研究和试验,开凿人造热泉就是干热岩的具体应用之一。而地压资源和熔岩资源的利用尚处于探索阶段。

我国是世界上开发利用地热资源较早的国家,发展也很快。北京就是当今世界上6个开发利用地热较好的首都之一(其他5个是法国的巴黎、匈牙利的布达佩斯、保加利亚的索菲亚、冰岛的雷克亚未克和埃塞俄比亚的亚的斯亚贝巴)。

北京地热水温大都在25℃~70℃。由于地热水中含有氟、氢、镉、可溶性二氧化硅等特殊矿物成分,经过加工可制成饮用的矿泉水。有些地区的地热水中还含有硫化氢等,因而很适于浴疗和理疗。

目前,北京的地热资源已得到广泛利用。例如,用于采暖的面积已达32万多平方米,可节省建造锅炉房投资300余万元,年节约煤1.8万吨,而且每年还可减少烧煤取暖带来的粉尘污染7.6吨。现有地热泉洗浴50多处,日洗浴60000多人次;利用地热水养的非洲鲫鱼,生长快,肉味鲜美。北京一些印染厂还利用地热水进行印染和退浆,每年可节约煤几千吨。

除北京外,我国许多地区也拥有地热资源,仅温度在100℃以下的天然出露的地热泉就有3500多处。在西藏、云南和台湾等地,还有很多温度超过150℃以上的高温地热田。台湾省屏东县的一处热泉,温度曾达到140℃;在西藏的羊八井建有我国最大的地热电站,这个电站的地热井口温度平均为140℃,发电装机容量为10000千瓦,今后在这里还将建设更大的地热电站。

从温泉分布来看,我国地热资源主要集中在东南沿海诸省和西藏、云南、四川西部等地,这里形成了两个温泉数量多、温度高、埋藏浅的地热带,分别称为滨太平洋地热带和藏滇地热带。前一个地热带共有温泉600多处,约占全国热水泉总数的1/3,其中温泉水超过90℃的有几十处,有的还超过100℃;后一个地热带是我国大陆上水热活动最活跃的一个地区,有大量的喷泉和汽泉。这一地带共有温泉700多处,其中高于当地沸点的水热活动区有近百处,是一个高温水汽分布带。此外,在我国东部的一些盆地内,也蕴藏着较丰富的地下热水,这一地区的范围很广,北起松辽平原、华北平原,南到江汉平原、北部湾海域。例如,天津市区及郊区附近有总面积近700平方千米的地热带,其中深度超过500米、温度在30℃以上的热水井达380多口,最高水温为94℃,年总开采量近5000万吨,可利用的热量相当于30多万吨标准煤。

地热在世界各地的分布也是很广泛的。美国阿拉斯加的“万烟谷”是世界上闻名的地热集中地,在24平方千米的范围内,有数万个天然蒸汽和热水的喷孔,喷出的热水和蒸汽最低温度为97℃,高温蒸汽达645℃,每秒喷出2300万公升的热水和蒸汽,每年从地球内部带往地面的热能相当于600万吨标准煤。新西兰有近70个地热田和1000多个温泉。温泉的类型很多,有温度可达200℃~300℃的高温热泉;有时断时续的间歇喷泉;还有沸腾翻腾的泥浆地。横跨欧亚大陆的地中海—喜马拉雅地热带,从地中海北岸的意大利、匈牙利经过土耳其、俄罗斯的高加索、伊朗、巴基斯坦和印度的北部、中国的西藏、缅甸、马来西亚,最后在印度尼西亚与环太平洋地热带相接。

有人做过计算,如果把全世界的火山爆发和地震释放的能量,以及热岩层所储存的能量除外,仅地下热水和地热蒸汽储存的热能总量,就为地球上全部煤储藏量的1.7亿倍。在地下3千米以内目前可供开采的地热,相当于29000亿吨煤燃烧时释放的全部热量。可以看出。地热能的开发与利用有着广阔的前景。

对于地热能的开发与利用,如果从1904年意大利建成世界第一座地热发电站算起,已有近100年的历史了。但是,只有近二三十年来地热能的开发利用才逐渐引起世界各国的普遍注意和重视。

据统计,目前世界上已有120多个国家和地区发现或打出地热泉与地热井7500多处,使地热能的利用得到不断地扩大。地热能的利用,当前主要是在采暖、发电、育种、温室栽培、洗浴等方面。美国一所大学有3口深600米的地热水井,水温为89℃,可为总面积达46000多平方米的校舍供暖,每年节约暖气费25万美元。冰岛虽然处在寒冷地带,但有着丰富的地热资源,目前全国人口的70%以上已采用地热供暖。

利用地热能发电,具有许多独特的优点:建造电站的投资少,通常低于水电站;发电成本比水电、火电和核电站都低;发电设备的利用时数较长;地热能干净,不污染环境;发电用过的蒸汽和热水,还可以用于取暖或其他方面。

现在,美国、日本、俄罗斯、意大利、冰岛等许多国家都建成了不同规模的热电站,总计约有150座,装机总容量达320万千瓦。

地热发电地热发电的原理与一般火力发电相似,即利用地热能产生蒸汽,推动汽轮发电机组发出电来。目前,全世界约有3/4的地热电站是利用高温水蒸气为能源来发电的。这种电站是将地热蒸汽引出地面后,先进行净化,除掉所含的各种杂质,然后就可以推动汽轮发电机发电。以高温蒸汽为能源的地热电站,大多采用汽水分离的方法发电;对于以地下热水为能源的电站,一般通过一定的途径用地下热水为热源产生蒸汽,然后用蒸汽来推动汽轮发电机组发电。

另外,地热能在工业上可用于加热、干燥、制冷与冷藏、脱水加工、淡化海水和提取化学元素等;在医疗卫生方面,温泉水可以医治皮肤和关节等的疾病,许多国家都有供沐浴医疗用的温泉。

由于天然热泉较少,而且不是各地都有,因而在一些没有天然热泉的地区,人们就利用广泛分布的干热岩型地热能人工造出地下热泉来。人造热泉是在干热岩型的热岩层上开凿而成的,世界上最早的人造热泉是在美国新墨西哥州北部开凿的,井深达3000米,热岩层的温度为200℃。

美国已建造了人造热泉热电厂,发电量为5万千瓦。另外,还在洛斯阿拉莫斯国立实验所钻了2眼深4389米的地热井,先把水泵入井内,12小时后再抽上来,这时水温已高达375℃。法国先后开凿了6眼人造热泉,其中每眼井深6000米,每小时可获得温度达200℃热水100吨。

目前,美国的地热发电站的装机容量已达930万千瓦,到2020年将增加到3180万千瓦。

现在,随着科学技术的发展,人们开始在岩浆体导热源周围建立人工热能存积层,以便开发利用热源蒸汽的高温岩体来发电。人们预计,到21世纪末,全世界地热发电的总能力可达1亿千瓦。

最新回答
生动的鞋垫
结实的发卡
2025-08-27 03:45:23

地热能是一种洁净的可再生能源。它具有热流密度大、容易收集和输送、参数稳定(流量、温度)、使用方便等优点,已成为人们争相开发利用的热点。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。近年来,随着国民的经济迅速发展和人民生活水平的提高,采暖、空调、生活用热的需求越来越大,是城市建筑物用能的主要部分。建筑物污染控制和节能已是城市发展面临的一个重大问题。特别是冬季采暖用的燃煤锅炉的大量使用,给大气环境造成了极大的污染。因此,地热能直接利用,实现采暖、供冷和供生活热水及娱乐保健,建成地热能综合利用建筑物,已是改善城市大气环境、节省能源的一条有效途径,也是这几年来全球地热能利用的一个新的发展方向和趋势。

2002年在广东省某地投入运行了以75℃地热水为驱动的地热制冷、采暖示范系统,机组制冷量为100千瓦,耗电仅18千瓦,系统节能效果显著。而北京市和天津市为减少化石燃料的使用,改善两市的大气环境,利用地热水进行冬季供暖也取得了良好的效果。

地热能的另一种形式主要是地源能,包括地下水、土壤、河水、海水等,地源能的特点是不受地域的限制,参数稳定,其温度与当地的年平均气温相当,不受环境气候的影响,由于地源能的温度具有夏季比气温低、冬季比气温高的特性,因此是用于热泵夏季制冷空调、冬季制热采暖的比较理想的低温位冷热源。

地热能的另一大用途就是用来发电,根据1996年6月世界可再生能源大会统计,全世界地热发电的装机容量为6543兆瓦。目前,有21个国家在利用地热能发电,其中装机容量在500兆瓦以上的国家有美国、菲律宾、匈牙利、冰岛。除此之外,许多发展中国家也在积极利用地热发电以补能源的不足。

上个世纪末,联合国(UN)就与世界银行共同发起建立基金,出资帮助能源勘探人员到非洲大裂谷开采地热资源,以开发大裂谷的地热发电潜力,满足东非国家的生产和生活用电。

在美国,已经有许多州县准备对自己境内的潜在地热能进行开采和利用。美国阿拉斯加州州政府正在对阿拉斯加州境内最大的火山群进行勘测,旨在找出可利用的地热能源。据有关专家预计,这些火山群和附近的温泉能够解决州内超过25%的能源供应。

我国适于发电的高温地热资源主要分布在西藏、云南、台湾等地区。全国地热电站总装机容量为304兆瓦,发电量排名世界第12位。著名的西藏羊八井地热电厂已建成一座25兆瓦以上的工业型地热电站,到1996年底已发电11亿千瓦时,为缺煤少油的拉萨名城供电作出重大贡献,不愧为世界屋脊上的一颗明珠。

可以想见,随着地热能开发力度的不断加大,地热能必将在我们未来的城市生活中扮演重要角色。

称心的酒窝
文静的帽子
2025-08-27 03:45:23

多吉1郑克棪2

(1.西藏地质矿产勘查开发局;2.中国能源研究会地热专业委员会)

摘要:西藏自治区首府拉萨市的冬季供暖水平很低,有供暖设施的建筑不到10%。西藏缺乏常规的化石燃料煤炭、石油、天然气资源,传统以自然采光集热勉强过冬,普通居民以烧牛粪、柴薪取暖。利用浅层地热的地源热泵或水源热泵技术,完全有能力解决拉萨市全部建筑物的冬季供暖。

1 前言

拉萨是西藏自治区的首府,虽然年最低气温-16℃,但冬季供暖水平很低,具供暖设施的建筑不到10%。西藏缺乏常规的化石燃料煤炭、石油、天然气能源资源,生活水平较高的家庭现用电采暖,传统则以自然采光集热勉强过冬,普通居民多靠燃烧牛粪、柴薪取暖。曾考虑过利用羊八井地热发电的尾水输送至拉萨可用作建筑物的冬季采暖,但当前更简捷的方法是利用浅层地热,靠地源热泵或水源热泵技术完全有能力解决拉萨市全部建筑物的冬季供暖。

2 拉萨市冬季供暖现状

拉萨市总面积2.95万km2,人口约50万人;拉萨市区建成面积逾50km2,人口超过20万人。拉萨位于西藏高原中部,受喜马拉雅山脉北侧下沉气流影响,全年多晴朗天气,降雨稀少,冬无严寒,夏无酷暑,属高原季风半干旱气候。年最高气温 29℃,最低-16℃,年平均气温7.4℃,采暖设计室外温度-6℃,供暖期室外平均温度0.7℃,全年低于5℃者149天。这是设计标准的供暖天数。

拉萨是国务院首批公布的24个历史文化名城之一,布达拉宫已列入联合国教科文组织的《世界文化遗产名录》,虽作为祖国西南边陲的重要城市,但拉萨的经济还不够发达。拉萨市现有住宅面积279万m2,人均居住面积约10m2,另有公共建筑面积94万m2,原有建筑大多为单层和二层,少数为三层,新建的机关和企事业单位公共建筑以及商品房为多层建筑,很少有高层建筑。拉萨的城市供暖长期没有统一规划,过去基本没有冬季供暖设施,多数建筑以自然采光取暖为主,即传统的集热墙、集热窗、暖廊等形式,在白天靠采集阳光积聚一定热量,可维持室温10℃左右,勉强过冬;近年来拉萨一些新的公建开始配建供暖设施,有小型锅炉、空气热泵(空调机)和水源热泵,这部分建筑不到总建筑面积的10%;当地新建民居在生活水平较高的家庭采用多种形式的电采暖;大部分普通居民家庭在旧式房屋燃烧牛粪和柴薪取暖,不但人居质量低下,而且污染环境,影响景观,不利于城市的可持续发展。

3 热泵系统利用浅层地热能供暖

按国际能源利用分类,地源热泵属于可再生能源的地热能利用,也称为地热热泵。国内将利用抽水井和回灌井从水源提取热量的“开系统”地源热泵称之为水源热泵;将利用循环管线从土壤中提取热量的“闭系统”称之为(狭义的)地源热泵。拉萨市位于拉萨河北岸呈东西向长条形延伸,地貌上属于拉萨河冲积和洪积形成的阶地,这样的水文地质条件对于水源热泵或地源热泵都是适宜的,是对解决拉萨供暖的最佳选择。

3.1 热泵系统节能高效环保

近10余年来世界上地(水)源热泵的技术和应用都得到飞速的发展,1995~2000年世界地(水)源热泵应用每年累进增长9.6%,2000~2005年世界地(水)源热泵应用更每年累进增长30%。近几年来热泵系统在国内的发展也相当迅速。其原因有三。

(1)地(水)源热泵技术是可再生能源利用的一种新技术。地球上的石油、天然气、煤炭都属于化石燃料能源,终有一天它会耗尽,人类需要发现和应用新能源,特别是价格便宜的可再生能源。

(2)地(水)源热泵系统消耗1kW电能可以产生3~4kW的(热)能量,是任何其它能源利用技术都无法达到的高效率,因而其运行成本低廉。

(3)地(水)源热泵技术减少了原供暖锅炉的空气污染和废渣排放,也减轻了操作人员的劳动负担。

对于拉萨来说,这些优点全都成立,西藏缺乏常规能源,又打算建造可再生能源利用的示范,并保持良好的天然生态环境,因此利用少量电力发展地源热泵或水源热泵是完全可行的。从另一方面来说,是开发地(水)源热泵的利用具有资源保障。

3.2 浅层地热能资源保障

如果拉萨全市都用地(水)源热泵来解决供暖,对于391.1万m2现有建筑面积和60W/m2的供热指标,总计需要热负荷234.66MW。

按西藏水源热泵利用5℃温差考虑,对于水源热泵需要水井提供40354m3/h的总出水量。这不是难题,拉萨河阶地上单井出水量可达80m3/h,所以共计需要504 眼开采井,加上同样数量的回灌井,总计需要1008眼井。按拉萨市区现建成面积51km2摊算,井密度不足20井/km2;即使按市中心区14.15km2折算,则71 井/km2,相当于井距120m,对于在拉萨河阶地上松散层中取水,这样的密度是许可的,井与井之间不会产生明显干扰。

对于狭义的地源热泵,通常用5m×5m的网格状布置地温热交换孔,相当于25m2钻一个孔,钻孔深度200m。我们采集地温5℃温差,按土壤和岩石的热导率通常是2.1W/m·℃考虑,则一个钻孔中的U形管道可采集4kW的热量,按60W/m2的供热指标,它可以解决67m2的房屋供暖,相当于说每1m2的土地面积,安装地源热泵后可解决2.7m2的建筑供暖。按此计算,即使拉萨391.1万m2建筑全部采用闭系统地源热泵,也只需要实际占地1.5km2布置5m×5m的地温热交换孔,拉萨市中心区有14.15km2,完全能满足需要。

我们在这里采用的供暖热指标60W/m2是比较保守、可靠的,取采集5℃温差也是很容易做到的,总之,在这样的保险系数下,在拉萨市利用水源热泵或地源热泵的浅层地温资源都是有保障的。

4 热泵系统利用浅层地热能的经济分析

依靠热泵系统利用浅层地热能供暖的一次性投资略偏高,但其运行成本较低,因此在供暖方案选择中仍然是有竞争力的。

4.1 初投资估算

水源热泵的建设费用在北京、天津地区,供暖和制冷面积在1万m2以上者,可以摊低总费用至300元/m2;若面积太小则单位成本会增高。在西藏拉萨已经做了个别地源热泵工程,面积在1万m2左右,其单位成本为440元/m2。

按此计算,利用水源热泵解决拉萨全部391万m2的供暖,需要投资17.2亿元。一般来说,利用浅层地下水的水源热泵系统的造价相对较低,埋管利用土壤温度的地源热泵系统造价要相对高些。

4.2 运行成本对比

参照内地目前运行状况,热泵系统估算的年运行成本肯定比传统燃油、燃气锅炉便宜得多,甚至可以低于燃煤锅炉,因为燃煤锅炉所烧的全部煤燃料全部要长途运输进藏。西藏多种方式供暖运行成本的具体比较见表1。

表1 西藏多种方式供暖成本比较 单位:元/m2

5 建设西藏可再生能源示范样板

拉萨的冬季供暖可以利用拉萨城区就地的常温地下水或土壤、岩石中的低温热量,用水源热泵或地源热泵装置就能采集到足够的热量作为供暖所需。这种地热供暖的一次性投资成本与传统燃油燃气锅炉基本相当,但运行费用很低。

利用水源热泵或地源热泵解决拉萨供暖的重大意义还在于这是在西藏进行的可再生能源利用。可再生能源利用可以解决122万km2西藏(除交通车辆外)的能源需要,这将是世界上最大的可再生能源利用示范基地。拉萨有太阳城之称,但太阳能的优势主要在太阳灶和热水器等小型利用,虽已有试验利用储水罐将太阳能加热的水循环用于供暖,然而效率较低,成本较高。西藏的风能资源以藏西为佳,拉萨风能的品位和潜力在解决供暖问题上尚有欠缺。拉萨所在的藏中电网以水电为主,西藏水电的主要缺陷就是冬季河水流量骤减,不能满负荷发电,因此冬季电采暖依赖水电是勉为其难。由此综合比较,依靠水源热泵或地源热泵的浅层地热能利用可以说是解决拉萨冬季供暖的最佳选择。

参考文献

中国国际工程咨询公司,2005,拉萨城市供热研究。

中国能源研究会地热专业委员会,2006,西藏地热能开发利用咨询报告。

活泼的酒窝
怕孤单的铃铛
2025-08-27 03:45:23
1、太阳能:直接来自于太阳辐射.主要是提供热量和电能.

2、生物能:由绿色植物通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉.通过燃烧和厌氧发酵获得沼气来取得能量.

3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成.主要是通过风力发电机来获得能量.

4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能.主要是通过水力发电机来获得能量.

5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的.潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响.主要是通过潮汐的动能来发电.

6、地热能:来自于地球内部放射性元素的衰变.可以用于地热发电和供暖.

7、氢能:通过燃烧或者是燃料电池来获得能量.

8、核能:通过核能发电站来取得能量.

上述能源都是可再生能源,而且是直接来自于自然界的一次能源.

利用以上这些能源的技术

尊敬的抽屉
合适的大树
2025-08-27 03:45:23

R.Curtis(英)、J.Lund(美)、B.Sanner(德)、L.Rybach(瑞士)、G.Hellström(瑞典)

徐巍(译)郑克棪(校)

摘要:1995年在意大利佛罗伦萨举行的世界地热大会上,一篇论文引起了世界地热界对地热热泵增长状况的广泛关注。随着降低建筑能耗压力的增加,以及减少建筑物二氧化碳排放指标的提高,安装地热热泵的趋势正在逐渐兴起。应用地热热泵的国家数量也不断上升,其中一些国家并没有传统意义上的地热资源,但现在他们有了生气勃勃的地热热泵项目。另外,还有一些国家正在探索其应用潜力。从小的家庭安装到大功率的系统安装,各种型号的地热热泵都在增加。这篇文章主要对近10年这些高效率、长寿命、低污染的可再生能源系统的发展和安装进行评价。

1 介绍

地热热泵是世界上发展最快的可再生能源利用技术之一,在过去的10年里,大约30个国家平均增长速率达到10%。它主要的优点是可以利用平常的地温或地下水的温度(5~30℃)就可以运行,而这些资源全世界各个国家都可以获得。在1995年的佛罗伦萨世界地热大会上,人们尝试着总结了当时的这项技术状况和发展水平,到2005年,地热热泵已经进一步提升为新能源和可替代能源的重要角色。它们尤其已经被作为一种高效的可再生供热装置,而且更重要的是它们在减少二氧化碳方面得到认可。来自加拿大的一篇文章中提到:“当前在市场上不可能有任何其他的单项技术比地热热泵在减少温室气体排放和导致全球变暖效应方面的潜力更大。”这句话同当前流行的一种认识相一致:热泵作为供热装置可以减少全球6%以上的二氧化碳排放量,它是目前市场上可获得的减少二氧化碳排放量最大的单项技术之一。这样的说法正好适合当前提倡的把更多的注意转移到可再生热能的利用上来,就像现在提倡可再生电能一样。2005年9个欧洲组织和贸易协会共同提倡采用可再生能源进行供热和制冷的行动。三个主要的技术被提到:生物能、太阳能和地热能。过去10年已经进行的工作,说明正确设计的热泵系统,无论是对单孔安装还是多孔安装,都可以确保从地下汲取的热能是真正可再生和永久可持续的。最近,世界能源组织公布了多种可再生技术的生命周期分析,对于加热技术,地热热泵的生命期二氧化碳排放量是第二低,仅次于木屑。

在这篇文章里,我们简短介绍了地热热泵技术,提出当前流行的一些综合信息。读者会发现2005年世界地热大会论文集第14章收集了比以前大会论文集更多的关于地热热泵的论文,反映了它在世界范围内的快速增长。尽管地热热泵有比较高的应用潜力,但在一个国家或地区的优势条件取决于当地的经济生存能力、应用能力和增长率。我们介绍了几个不同地理区域和国家的发展情况。一些地区已经安装了很多的地热热泵,而且显示了不断增长的趋势,有些地区才刚刚开始。开发利用较好的国家有美国、北欧、瑞士、德国,尤其是瑞典。刚开始开发利用的国家包括英国和挪威。其他有大量装机的国家还有加拿大和奥地利,法国、荷兰也显示了比较快的增长速度。中国、日本、俄罗斯、英国、挪威、丹麦、爱尔兰、澳大利亚、波兰、罗马尼亚、土耳其、韩国、意大利、阿根廷、智利、伊朗等国开始意识到地热热泵技术。论文集第一部分里许多国家介绍了他们的开发利用状况。

2 装机

尽管许多国家都开始对热泵产生兴趣,但热泵的增长主要还是发生在美国和欧洲。据不完全统计,目前全世界范围内的装机容量可能接近10100MWt,年均利用的能量大约59000TJ(16470GWh)。实际安装的机组数量大约900000个。表1列举了地热热泵利用率最高的几个国家。

表1 利用地热热泵领先的国家

3 地热热泵系统

热泵系统利用相对不变的地下温度来为家庭、学校、政府和公共建筑供热、制冷和提供生活热水。输入少量的电能驱动压缩机后,可以产生相当于输入能量4倍的能量。这样的机器使热能从低温区流向高温区,实际上是一台能倒流的制冷机。“泵”说明已经做功,温差称为“抬升”,抬升越大,输入的能量越多。该项技术并不是一项新技术,1852年Lord Kelvin提出了这个概念,20世纪40年代Rober Webber修改成地热热泵,60、70年代获得商业推广。图1是典型的水-气型热泵系统。这样的热泵在北美应用很广泛,但在北欧家庭供暖市场主要利用水-水热泵。

热泵有两种基本的配置:土壤偶极系统(闭路系统)和地下水系统(开路系统),地下系统可以水平或垂直安装,取用井水或湖水。系统的选择依赖安装地点的土壤和岩石类型,能否经济施工水井或现场已有水井,还需场地条件。图2是这些系统的示意图。如前面的水-气型热泵所示,对于热水加热系统,家用热水交换器可以在夏天利用回灌的热量,冬天利用输出的热量来加热生活用水,水-水型热泵一般只能通过转换供热模式到生活热水模式,将输出温度提高到最大来加热生活热水。

图1a 制冷循环中的水-气型地热热泵

图1b 供暖循环中的水-气型地热热泵

图2a 密闭环路热泵系统

图2b 开放环路热泵系统

在土壤偶极系统里,一条封闭的管路被水平的或者垂直的埋在地下,防冻液通过塑料管循环,或者在冬天从地下获得热量,或者在夏天将热量灌入地下。开放环路系统利用地下水或湖水直接通过热交换器后灌入另一眼井(或者河渠、湖里,或者直接用于灌溉),主要按照当地法规执行。

其他种类的热泵系统正在兴起,如竖井和本次大会上提到的一种新类型。这些系统效率很高,但大多需要更加精细的水文地质信息和比闭路系统更加专业的设计。

热泵机组的效率在供暖模式通过运行系数COP来表示,在制冷模式下用能量效率比(EER)来表示,它是输出能量与输入能量(电能)之比,目前的设备基本在3和6之间变化。这样COP为4意味着输入每个单位的电能可以产生4个单位的热能。经过对比,空气源热泵的COP大约为2,取决于高峰供暖和制冷需要的备用电能。在欧洲,这个比率有时候作为“季节性运行参数”,即供暖季和制冷季的平均COP,同时要考虑系统特性。

4 地热热泵的可再生讨论

随着热泵装机的稳定增加,使人认识到它们对可再生能源利用的贡献。这只是部分的认识,因为它们只涉及了供暖和制冷的表面,所以没有可再生电能的考虑。然而,这里面有两个其他的因素——一个是关于地下能源的可持续问题,一个是基于空气源热泵的问题,在能量输出时没有纯能量的增加,所以它们仅仅是一种能量效率技术。

20世纪50、60年代,当空气源热泵风靡的时候,在城市里的化石燃料电厂发电的效率接近30%。当时空气源热泵的COP一般在1.5~2.5之间变化。表2显示了在建筑物里能量释放的情况,60%的能量来自于空气,而用来发电的原生能量只有75%作为有用的热能得到利用。这样,从空气中提取的可再生能量已经高效地释放了热能,但没有剩余能量。表2的第二列是当前的数据。新型的组合或联合循环发电厂发电效率已超过40%。土壤源热泵的SPF已超过3.5。这导致了140%的效率,其中最终能量的71%来自地下。更重要的是,超过40%的剩余量已高于发电消耗的原始能量。

表2 能量和效率对比表

水源热泵和新型发电效率的联合才构成剩余可再生能源的释放。

如果从一开始就用可再生能源发电,则所有传递的能量就都是可再生的。为了释放可再生的能量最多,建议应该尽快使可再生电能变得经济,并与地源热泵结合起来。

能量讨论可能是有争议的,但二氧化碳排放量的减少却很容易证实。举个例子,当前英国电网和地热热泵联合供暖相对于传统的化石燃料供暖技术可以减少50%的二氧化碳排放量。这归功于当前英国电网的联合。由于目前发电所排放的二氧化碳在减少,所以通过利用地热热泵而排放的二氧化碳会更少。随着利用可再生能源发电,建筑供暖将不再需要排放二氧化碳。

如果要计算一下世界范围内可节约的石油当量和当前地热热泵装机容量所能减少的二氧化碳排放量,则需要有几个假设条件。如果每年地热能被利用28000TJ(7800GWh),将此量与30%效率的燃油发电相比,则会节约15.4百万桶石油,或者2.3百万吨石油当量,减少700万吨二氧化碳的排放量。如果我们假想每年同样长时间的制冷,则这个数字会翻倍。

5 美国的经验

在美国,大多数系统都是根据高峰制冷负荷设计的,它高于供暖负荷(主要是北方地区),这样,估计平均每年有1000个小时满负荷供暖。在欧洲,绝大多数系统是根据供暖负荷设计的,所以经常据基础荷载设计,另加化石燃料调峰。结果,欧洲的系统每年可以满负荷运行2000到6000个小时,平均每年2300个小时。尽管制冷模式将热量灌入地下,它不是地热,但它仍然节省能量,有利于清洁环境。在美国,地热热泵装机容量能稳定在12%,大多数安装在中西部地区和从北达科他州到佛罗里达州的东部地区。目前,每年接近安装50000个热泵机组,其中46%是垂直闭路循环系统,38%是水平闭路循环系统,15%是开路系统。超过600个学校安装了热泵系统进行供暖和制冷,尤其在得克萨斯州。应该注意到这一点,热泵按照吨(1吨冰产生的制冷量)来分等级,这个吨相当于12000Btu/hr或3.51kW(Kavanaugh和Rafferty,1997)。一个典型的家庭需要的热泵机组应该是3吨或者是105kW的装机容量。

美国装机容量最大的热泵是在肯塔基州路易斯维尔市的一个宾馆。通过热泵为600个宾馆房间、100个公寓和89000m2的办公区(整个宾馆161650m2)提供冷热空调服务。热泵利用出水量177l/s、出水温度14℃的4口水井,提供15.8MW的冷负荷和196MW的热负荷。消耗的能量是没有热泵系统附近相似建筑的53%,每月节约25000美元。

6 欧洲的状况

地热热泵实际上可在任何地方既供热又制冷,可以满足任何的需求,具有很大的灵活性。在西欧和中欧,直接利用地热能对众多客户进行区域供暖受限于区域的地质条件。在这种情况下,通过分散的热泵系统采集到处都有的浅层地热是一个明智的选择。相应的,在欧洲各个国家,热泵正在快速增长和发展起来。热泵系统的市场正在蔓延,从事该项工作的商业公司也在增长,他们的产品已经进入“黄页”。

欧洲超过20年对热泵的研究开发为该项技术的可持续性建立了一个完善的概念,还解决了噪音问题,制定了安装标准。图3是一个典型的井下热交换器型热泵(BHE)。这个系统每输出1kWh的热或冷需要0.22~0.35kWh的电能,它比季节性利用大气做热源的空气源热泵少需要30%~50%的能量。

图3 中欧家庭中BHE热泵系统的典型应用,典型的BHE长度大于100m

根据欧洲许多国家的天气条件来看,目前大多数的需求是供暖,空调很少需要。所以热泵通常只是用于供暖模式。然而随着大型商业利用数量的增加,制冷的需要以及这项技术推广到南欧,将来供暖和制冷双重功效就会越来越重要。

在欧洲统计热泵安装的可靠数量是相当困难的,尤其是个人的利用。图4是欧洲主要利用热泵的几个国家安装热泵的数量。2001年瑞典大幅增加的热泵主要是空气源热泵,然而瑞典在欧洲也是安装地热热泵最多的国家(见表1)。总的情况,除了瑞典和瑞士,地热热泵的市场扩展在整个欧洲还不太大。

7 德国的经验

1996年之后,根据热泵的销售统计,德国各种热源的热泵销售情况各不相同(图5)。在经过1991年销售量小于2000台的低迷后,热泵的销售量呈现稳定的增长。地热热泵的份额从80年代少于30%上升到1996年的78%,2002年达到82%。而且从2001年到2002年,当德国的房地产由于经济萧条正在缩水的时候,地热热泵的销售量仍然有所增长。将来它在市场上仍然有增长的机会,因为有较好技术前景做保证。

图4 一些欧洲国家热泵机组的安装数量对比图

图5 每年德国热泵的销售数量对比图

德国地热热泵在住宅利用的数量是巨大的,许多小型系统安装在独立的房子里,而较大系统用于一些需要供暖和制冷的办公楼等商业区域。德国的大部分地区夏季的湿度允许制冷不带除湿,例如冷却顶棚。热泵系统就很适合直接利用地下的冷能,不需要冷却器,它们显示了非常高的制冷效率,COP能达到20以上。第一个利用井下热交换器和直接制冷的系统在1987年安装的,同时该项技术成为一个标准设计选择。一些最新的德国地热热泵的例子Sanner和Kohlsch有文章介绍。

在德国,地热热泵已经走过了研究、开发和开发现状阶段,当前的重点是选型和质量安全性。像技术准则VDI4640、合同规范以及质量认证等工作正开始被强制执行来保护工业和消费者,避免质量不合格和地热热泵系统无法长期运行等问题。

8 瑞士地热热泵的繁荣

地热热泵系统在瑞士已经以每年15%的速度快速增长。目前,有超过25000台热泵系统在运行。来自地下有三种热能供应系统:浅层水平管(占所有安装热泵的比例小于5%)、井下换热器系统(100~400m深,占65%)、地下水水源热泵(占30%)。仅仅在2002年,就施工钻孔600000m,并安装了井下换热器系统。

地热热泵系统非常适于开发到处都有的浅层地热资源。热泵系统长期运行的可靠性现在已经通过理论和实践研究以及通过在几个供暖季的测试得到证明。季节运行因素已大于3.5。

各种测试和模型模拟证明这种系统可以持续性的吸取热量。长期运行的可靠性保证了系统可以无故障应用。热泵系统所配备井下换热器的合理尺寸也有利于广泛的应用和选择。实际上,热泵系统的安装在1980年从零开始,经过快速发展,现在是瑞士地热直接利用里最大的部分。

地热热泵系统的安装自从20世纪70年代末期开始认识以来发展很快,这种印象深刻的增长可见图6和图7。

图6 1980~2001年瑞士地热热泵安装的发展趋势图

图7 1980~2001年瑞士井下换热装置和地下水的地热热泵系统装机容量发展趋势图

每年的增长非常显著:新安装系统的数量以每年大于10%的速度增长。小型系统(<20kW)显示了最高的增长速度(大于15%,见图1)。2001年地热热泵系统的装机容量是440MWt,产生的能量为660GWh。2002年施工了大量的钻孔(几千个),并安装了双U型管的井下热交换器。井下换热器的平均深度大约150~200m;超过300m深度的钻孔也越来越多。平均每米的造价是45美元左右,包括钻井、下入U型管和回填。2002年,井下换热器的进尺达到600000m。

热泵快速进入瑞士市场的原因

热泵系统在瑞士市场上快速发展的原因主要是那里除了这种到处都有的地热以外,在地壳浅层没有其他地热能资源。另外,也有许多其他的原因,包括技术上的、环境上的以及经济上的原因。

技术原因

大多数人口居住的瑞士高原合适的天气条件:大气温度在0℃附近,冬天日照很少,

地下浅层温度在10~12℃之间,长供暖期。

恒定的地下温度通过正确选型尺寸,可以提供热泵最好的季节运行因素和长期使用寿命。

地热热泵以分散方式进行安装,适合于独立用户需要,避免了如同区域供暖系统的昂贵的热分配。

安装位置在建筑物附近(或建筑物地下),相对自由,在建筑物内对空间的要求也不高。

至少对小型系统来说,不需要进行回灌,因为在系统闲置期(夏天)地下的热能可以自动恢复。

环境原因

没有交通运输、储藏和运行的危险(与石油相比);

没有地下水污染的危险(与石油相比);

系统运行可以减少温室气体二氧化碳的排放。

经济原因

环境友好的地源热泵安装成本比得上传统(燃油)系统的安装(赖贝奇,2001);

比较低的运行成本(与利用化石燃料供暖进行比较,不需购买石油或天然气,和燃烧器控制);

对环境友好的热泵,当地给予对用电费用优惠。

二氧化碳的排放税预计要实施。

进一步快速推广地热热泵的刺激因素是公用事业的“能量合同”。它暗示了利用热泵的公司以自己的成本设计、安装、运行和维护地热热泵,同时以合同价格卖热能或冷能给合适的用户。

尽管绝大多数地热热泵是为单独住宅供暖(生活热水),但一些新的利用方式正在出现(包括各种井下换热器系统,联合太阳能进行热量采集和储存、地热供暖和制冷,“能量堆”)。对于每2km2一台机组,它们的地区密度是世界上最高的。这保证了瑞士在地热直接利用方面是有优势的(在世界上前五个国家中人均装机容量)。相信瑞士的地热热泵在相当长的一段时间内会兴盛下去。

9 英国的地热热泵

在英国,路特·开尔文努力发展了热泵理论,但利用热泵进行供暖却进展缓慢。第一个安装地热热泵的记载要追溯到1976年夏天。小型闭路系统的先锋设置是在90年代初期苏格兰的住宅进行安装的。英国花了很长时间发现为什么到目前为止在英国该项技术要落后于北美和北欧。首要的原因是相对温暖的天气、房屋材料的保温性较差、缺少适合的热泵机组和与天然气庞大管网的竞争。

在20世纪90年代中期,通过吸取加拿大、美国和北欧地区利用热泵的经验教训,英国的地热热泵开始缓慢发展。他们利用很长时间确定合理的技术来适用于本国的住宅材料,以及克服英国特有的各种问题。另外的一个难题就是英国的地质条件复杂。

过去的两年时间里,热泵已经被公认在几个英国政策里扮演着重要的角色,例如供热保障程序、可再生能源以及能源效率目标。

在英国,很少人知道其实热泵系统比起传统的那些系统可以大量减少二氧化碳的排放。利用英国电网的地热热泵系统将会立刻减少40%~60%的二氧化碳排放量。随着英国电网在将来几年变得越来越清洁,长寿热泵的排放量也会进一步下降。建筑师和发展商发现新的建筑评价标准正开始考虑二氧化碳这个新参数。

从非常小的起步,目前地热热泵系统已经出现在整个英国,从苏格兰到Cornwall。私人建筑家、房地产商和建筑协会现都成为这些系统的消费者。室内安装热泵系统一般在25kW到2.5kW之间,主要选择各种水对水和水对空气的热泵,安装在几种不同地质条件的地区。

最近宣称有拨款计划(清洁天空项目)会帮助建立该项技术的部门鉴定,会建立可信的安装队伍、技术标准以及适用于英国室内的热泵。随着去年英国主要的用户发起了热泵安装发展到1000家的活动,希望对于该项技术的兴趣能够快速增长,同时希望在将来几年能够大量涌现出室内地热热泵安装的成功案例。

另一个利用地热热泵的重要领域就是供暖和制冷都需要的商业和公共建筑。2002年国际能源协会热泵中心安排了首批国家级研究,对热泵可能减少二氧化碳的排放量进行研究(IEA,2002)。其中第一个就是在英国展开的,研究结论是热泵系统应用于办公室和小商店效果最好。第一个不在室内安装的热泵仅25kW,是在Scilly的Isles的健康中心。这个系统在接下来的2000年到今天得到迅速发展,设备尺寸和型号目前已经达到300kW。

热泵的利用已经发展到学校、单层或者多层的办公楼和展览中心。显著的一个例子就是Derbyshire的国家森林展览中心、Chesterfield、Nottingham、Croydon地区的办公楼以及Cornwall的Tolvaddon能源公园。一个大型的系统已经在Peterborough地区的新宜家销售中心进行安装。这些系统的安装采用了各种各样的类型,有简单利用地板供暖的,反循环热泵供暖和制冷的,也有复杂的整合机组同时进行供暖和制冷的。单独的或者是混合的配置都已经被采用,包括利用大型地下水平循环和其他相互联系的钻孔网。

10 瑞典的地热热泵

20世纪80年代初期,地热热泵在瑞典开始盛行。到1985年,已有50000台热泵机组被安装。随后较低的能源价格和技术质量问题使热泵市场萎缩,在接下来的10年里,平均每年安装2000个热泵机组。1995年,由于瑞典政府的支持和补贴,公众对地热热泵的兴趣开始增强。根据占住宅销售市场约90%的瑞典热泵机构(SVEP)统计的销售数据显示,2001年和2002年大约有27000个热泵机组被安装(见图8)。因此,安装的机组数量估计达到200000台。

目前,热泵是瑞典小型住宅区最流行的采用液体循环的供暖方式,由于当前的油价,它替代了烧油;由于电费高昂,它又替代了电;由于方便而替代了木炭火炉。直接利用电加热的发展速度已相当减慢。除了住宅方面,还有一些大型的系统安装(包括闭路和开路循环)用于区域供暖网。所有热泵机组平均输出的热能估计大约10kW。

瑞典地热热泵的安装通常建议占标称负荷的60%,即每年大约3500~4000个小时满负荷运行。整合在热泵里的电加热器提供剩余的负荷,有将热泵负荷增加到80%~90%的趋势。大约80%的热泵采用的是垂直类型(钻孔类型)。在住宅里,钻孔的平均深度大约125m,水平类型平均循环长度大约350m。开式、充满地下水的单U型管(树脂管,直径40mm,压力正常6.3bar)几乎用于所有的热泵安装。当热量需要被回灌入地下时,双U型管有时候被采用。热反应测试已经显示自然对流在充满地下水的钻孔中比填满砂(砾石)的钻孔热交换更强烈。地源热泵的盛行已经使人们逐渐关注相邻钻孔之间长期热影响的问题。

图8 每年瑞典热泵销售数量对比图

用于客户住所的大型系统正在变得越来越流行。用来制冷的垂直式安装正在占据市场,但在住宅方面仍然没有引起人们的兴趣。在商业和工业上制冷的需求为地热热泵打开了一个崭新的市场。

热泵技术上的发展有由涡轮式压缩机逐渐代替活塞式压缩机的趋势,它的优点是运行平稳、设计简洁。另外人们对各种容量控制也产生了兴趣,例如在同一个机组里分别安装一个小型压缩机和一个大型压缩机,夏天,生活热水可以通过小型压缩机来供给。绝大多数进口的热泵利用的工质是R410A。瑞典生产商仍然利用的是R407C,但有向R410A转变的趋势,还有的对丙烷也感兴趣。目前正在研究利用极少量的工质来组建热泵。一些生产商通过利用废气和土壤作为热源的热泵抢占市场。废气可以被用来预加热从钻孔开采出来的热运移流体,或者热泵闲置时灌入地下。

在大型钻孔型热泵系统里,为了确保系统长期运行,不得不考虑地下热能的平衡。如果主要是满足热负荷,则在夏天必须向地下回灌热能。自然界的可再生能源,如室外空气、地表水和太阳能都应该被考虑。在Nasby公园,在建筑物下面安装了一套系统,施工了48个200m深的钻孔,利用400kW的一个热泵基本提供热负荷,每年运行6000个小时。夏天,从附近的湖引来的地表温水(15~20℃)通过钻孔灌入地下。

11 挪威的例子

在奥斯陆的Nydalen,180个基岩井将会是给一个接近20万m2的建筑进行供热和制冷的关键。这是欧洲这种类型的系统里最大的项目。

一个能量供应站将为Nydalen的这个建筑供暖和制冷。通过利用热泵和地热井,热能既可以从地下采集,也可以将能量储存地下。夏天,但有制冷需要时,热能可以灌入地下。基岩的温度可以从平常的8℃上升到25℃。在冬天,热能可以用来供暖。供暖的输出功率是9MW,而制冷是7.5MW。与电、石油和天然气供暖相比,每年供暖的成本可以减少60%~70%。供暖和制冷的联合调用确保了能量站的高效利用。

这个项目最独特的地方是地热能量储藏。这里的180个井,每个都深200m,可以提供4~10kW能量。整个储热基岩的体积是180万m3,主要在建筑物的下面。塑料管形成封闭环路,用来传递热能。

该项目总投资是6千万挪威克朗(相当于750万欧元)。这比起传统方式(即没有能量井和收集装置)多投资1700万挪威克朗。然而,每年购买的能量减少约400万挪威克朗,项目还是有利润的。这个项目由政府实体Enova SF和奥斯陆能源基金拨款支持了1100万挪威克朗。

能量站按计划在2003年4月开始建设,包括施工一半的基岩井。剩下的井可能安排在2004年的建设中。

该项目的细节可以在项目组www.avantor.no和热能储存www.geoenergi.no两个网站上查询。

结论

地热热泵是一个刚兴起的技术,有能力利用地下巨大的可再生贮存能量,提供高效率的供暖和制冷。它们正逐渐被认为是替代化石燃料的一种选择,在许多国家,它们在对建筑进行供暖和制冷时可以极大地减少二氧化碳的总排放量。相信安装热泵系统的数量和国家都会快速增长起来。

参考文献(略)