举例说明可再生能源的能流密度有什么特点
能流密度是在一定空间范围内,单位面积(如平方米)所能取得的或单位重量(如公斤)能源所能产生的某种能源的能量或功率。是评价能源的主要指标之一。 如能流密度很小,即很难作为主要能源。按21世纪初的技术水平,太阳能和风能的能流密度很小...
,
1、特点不同
能量密度是指在一定的空间或质量物质中储存能量的大小。
能流密度是在一定空间范围内,单位面积(如平方米)所能取得的或单位重量(如公斤)能源所能产生的某种能源的能量或功率。
2、作用不同
用来衡量电池最合适,比较单位体积的电池所储存的电量。气体燃烧热(以体积衡量的)实质上就是能量密度。
能流密度是评价能源的主要指标之一。
3、分类不同
在食品营养学的角度上,能量密度是指每克食物所含的能量,这与食品的水分和脂肪含量密切有关。食品的水分含量高则能量密度低、脂肪含量高则能量密度高。
在电磁学中,能流密度指一定单位时间内通过与传播方向垂直的单位面积的能量。
参考资料来源:百度百科-能流密度
参考资料来源:百度百科-能量密度
能源类型:
能源按期形态、特性或转换和利用的层次进行分类.世界能源委员会推介分类: 固体燃料、液体燃料、气体燃料、水能核能、电能、太阳能、生物质能、风能、海洋能和地热能.
一次能源:
从自然界取得的未经任何改变或转换的能源,如原油、原煤、天然气、生物质能、水能、核燃料, 以及太阳能、地热能、潮汐能等.
二次能源:
一次能源经过加工或转换得到的能源,如煤气、焦碳、汽油、煤油、电力、热水氢能等.
常规能源:
在现有经济和技术条件下,已经大规模生产和广泛使用的能源,如煤碳、石油、天然气、水能和核 裂变能等.常规能源相对于新能源而言, 新能源旨在新技术技术上系统开发利用的能源,如太能、 海洋能、地热能 、生物质能等.新能源大部分是天然和可再生的,是未来世界持久能源系统的基础.
商品能源:
作为商品流通环节大量消耗的能源.目前主要有煤炭、石油天然气 水电和核电5种.
非商品能源:
就地利用的薪柴 、农业废弃物等能源.通常是可再生的.
环境能源:
储存在地球环境中的能流、太阳能、 地球内的放射性源,以及太阳星系的运行,是世界上所有环境能源的 初始能源.
太阳能:太阳能是太阳内部连续不断的核聚变反应过程产生的能量。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约为3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。(中国新能源网)
风能:风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。(中国新能源网)
生物质能:生物质是讨论能源时常用的一个术语,是指由光合作用而产生的各种有机体。生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。(中国新能源网)
地热能:地热能是来自地球深处的可再生热能。它起源于地球的熔融岩浆和放射性物质的衰变。地热能是指其储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那么地热能便是可再生的。地热能在世界很多地区应用相当广泛。据估计,每年从地球内部传到地面的热能相当于100PW·h。不过,地热能的分布相对来说比较分散,开发难度大。(中国新能源网)
海洋能:通常海洋能是指依附在海水中的可再生能源,包括:潮汐能、波浪能、海洋温差能、海洋盐差能和海流能等,更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。全球海洋能的可再生量很大,上述五种海洋能理论上可再生的总量为766亿千瓦。虽然海洋能的强度较常规能源为低,但在可再生能源中,海洋能仍具有可观的能流密度。
按能源的基本形态分类,能源可分为一次能源和二次能源。一次能源是指自然界中以原有形式存在的、未经加工转换的能量资源,又称天然能源,如煤炭、石油、天然气、水能等。
基本介绍中文名 :一次能源 外文名 :Primary energy 解释 :未经加工转换的能量资源 别称 :天然能源分类,转化,简介, 分类 按能源的基本形态分类,能源可分为一次能源和二次能源。一次能源,即天然能源,指在自然界现成存在的能源,如如煤炭、石油、天然气、水能等。二次能源指由一次能源加工转换而成的能源产品,如电力、煤气、蒸汽及各种石油制品等。一次能源又可分为可再生能源(水能、风能及生物质能)和非再生能源(煤炭、石油、天然气、油页岩等)。凡是可以不断得到补充或能在较短周期内再产生的能源称之为可再生能源。风能、水能、海洋能、潮汐能、太阳能和生物质能等是可再生能源;经过亿万年形成的、短期内无法恢复的能源,称之为非再生能源。如煤炭、石油、天然气等。它们随着大规模地开采利用,其储量越来越少,总有枯竭之时。地热能基本上是非再生能源,但从地球内部巨大的蕴藏量来看,又具有再生的性质。核能的新发展将使核燃料循环而具有增殖的性质。核聚变的能比核裂变的能高出5~10倍,核聚变最适合的燃料重氢(氘)又大量地存在于海水中,可谓“取之不尽,用之不竭”。核能是未来能源系统的支柱之一。20世纪70年代出现能源危机以来,各国都重视非再生能源的节约,并加速对再生能源的研究与开发。 转化 二次能源 是指由一次能源经过加工转换以后得到的能源,包括电能、汽油、柴油、液化石油气和氢能等。二次能源又可以分为“过程性能源”和“含能体能源”,电能就是套用最广的过程性能源,而汽油和柴油是目前套用最广的含能体能源。 二次能源亦可解释为自一次能源中,所再被使用的能源,例如将煤燃烧产生蒸气能推动发电机,所产生的电能即可称为二次能源。 或者电能被利用后,经由电风扇,再转化成风能,这时风能亦可称为二次能源,二次能源与一次能源间必定有一定程度的损耗。 二次能源和一次能源不同,它不是直接取自自然界,只能由一次能源加工转换以后得到,因此严格的说它不是“能源”,而应称之为“二次能”。能源危机,可再生能源等都不涉及二次能源。 简介 煤 煤是古代的植物体因为地壳运动而埋没地下,在适宜的地质环境中经过漫长年代的演变而成的,含碳量一般为46%~97%。煤是重要的燃料和化学工业原料。煤在地球上的储量非常丰富。煤是由有机物一生长在沼泽或河流三角洲之植物残骸分解而成现今世界各主要地区之煤炭蕴藏量,以非欧洲、亚洲及大洋洲、及北美洲等三个地区所占之比例最高,整体而言,现时煤炭之蕴藏量,估计可供我们使用二百年。 煤是由有机物质和无机物质混合组成的。煤中有机物质主要由碳(C)、氢(H)氧(O)、氮(N)四种元素构成,还有一些元素则组成煤中的无机物质,主要有硫(S)、磷(P)以及稀有元素等 。在我国,煤炭资源主要分布在山西、陕西、内蒙古、黑龙江、辽宁、山东几个省区,著名的大型煤矿有大同煤矿、东胜煤矿、神府煤矿等。 石油 石油一般认为是由地层中的有机物质“油母质”,经地温长时间的熬炼,一点一滴地生成而浮游于地层中。由于浮力的关系,石油在水中每年缓慢地沿着地层或断层向上移动,直到受不透油的封闭地层阻挡而停留下来。当此封闭内的石油越聚越多。 石油是仅次于煤的化石燃料,它是一种天然的黄色、褐色或黑色的流动或半流动的黏稠的可燃液体烃类混合物。石油也称为“原油”。它可以被加工成各种馏分,包括天然气、汽油、石脑油、煤油、柴油、润滑油、石蜡以及其他许多种衍生产品,是最重要的液体燃料和化工原料。 天然气 天然气是一种碳氢化合物,多是在矿区开采原油时伴随而出,过去因无法越洋运送,所以只能供当地使用,如果有剩余只好燃烧报废,十分可惜。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。 天然气是除煤和石油之外的另一种重要的一次能源。它燃烧时有很高的发热值,对环境的污染也较小,而且还是一种重要的化工原料。天然气的生成过程同石油类似,但比石油更容易生成。 天然气主要由甲烷、乙烷、丙烷和丁烷等烃类组成,其中甲烷占80%~90%。天然气通常可以分为纯天然气、石油伴生气、凝析气和矿井气4种。 水能 水能是自然界广泛存在的一次能源。它可以通过水力发电站方便地转换为优质的二次能源—— 电能 。 “水电”既是被广泛利用的常规能源,又是可再生能源。而且水力发电对环境无污染,因此水能是世界上众多能源中永不枯竭的优质能源。 水资源的利用(即通常所说的水利开发)就是要充分合理地利用江河水域的地上和地下水源,以获得最高的综合效益。水能利用是一项系统工程,其任务是根据国民经济发展的需要和水资源条件,在河流规划和电力系统规划的基础上,拟定出最优的水资源利用方案。我国土地辽阔,河流众多,径流丰沛,落差巨大,蕴藏着丰富的水能资源。据估计,我国河流水能资源的理论蕴藏量为6.76亿kW,年发电量为59 200亿kW·h,不论是水能资源的理论蕴藏量,还是可能开发的水能资源,中国在世界各国中均居第一位。 水力资源的开发方式是按照集中落差而选定,大致有三种基本方式,即堤坝式、引水式和混合式。但这三种开发方式还要各适用一定的河段自然条件。按不同的开发方式修建起来的水电站,其枢纽布置、建筑物组成等也截然不同,故水电站也随之而分为堤坝式、引水式和混合式三种基本类型。 太阳能 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。 人类对太阳能的利用已有悠久历史。太阳能利用主要包括太阳能热利用和太阳能光利用。 太阳能热利用套用很广,如太阳能热水、供暖和制冷;太阳能干燥农副产品、药材和木材;太阳能淡化海水;太阳能热动力发电等。 太阳能光利用主要是太阳能光伏发电和太阳能制氢。 风能 太阳光从上而下照射大气层,使之升温。又由于地球的自转和公转,地面附近各处受热不均,大气温差发生变化,引起空气流动。空气在水平方向上的流动就形成了风。由于风有一定的质量和速度,并且有一定温度,因此它具有能量。太阳辐射到地球的光能大约有2%转变为风能。尽管如此,风能的数量依然很大。它相当于全球目前每年耗煤能量的1 000倍以上。 风能利用历史悠久,我国是世界上最早利用风能的国家之一。 风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、致冷和致热等。 地热能 我们人类居住的这个星球,很像是一个巨大的“热水瓶”,外凉内热,而且是越往里温度越高。人们把蕴藏于地球内部的热能称为“地热能”。地球通过火山爆发和温泉外溢等途径,将其内部蕴藏的热能源源不断地输送到地面上来。现代人们常说的温泉,就是人类的祖先在很久以前就开始利用的一种地热能。不过,人类对地热能的大规模开发利用,可以说现在才刚刚起步。因此地热能是一种开发潜力很大的新型能源。 目前世界上大约有120多个国家和地区,已经发现和开采的地热泉及地热井多达7500多处。对于地热能的开发利用,目前主要是在采暖、发电、育种、温室栽培和洗浴等方面。地热能的利用可分为地热发电和直接利用两大类。 海洋能 海洋是一个巨大的能源宝库,仅大洋中的波浪、潮汐、海流等动能和海洋温度差、盐度差能等的存储量高达天文数字。这些海洋能源都是取之不尽、用之不竭的可再生能源。海洋能源通常指海洋中所蕴藏的可再生的自然能源,主要为潮汐能、波浪能、海流能(潮流能)、海水温差能和海水盐差能。更广义的海洋能源还包括海洋上空的风能、海洋表面的太阳能以及海洋生物质能等。究其成因,潮汐能和潮流能来源于太阳和月亮对地球的引力变化,其他均源于太阳辐射。 海洋能在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。 它具有可再生性。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。 生物能 生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质能是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。 生物质是仅次于煤炭、石油、天然气的第四大能源,在整个能源系统占有重要地位。生物质能一直是人类赖以生存的重要能源之一,就其能源当量而言,是仅次于煤、油、天然气而列第四位的能源,在世界能源消耗中,生物质能占总能耗的14%,但在开发中国家占40%以上。 核能 核能也称原子能,是一种高效率持久的能源。核能发电是利用铀235的核分裂连锁反应释出大量热能,将水变成水蒸气,利用这些蒸气来推动发电机发电。核能发电的方法有许多种,台湾地区使用的是沸水式核能发电与压水式核能发电。核能除了发电为主要套用外,在农业、医学、工业科技……等各方面都有很多的用途。如农业:利用它来使蔬菜水果保持新鲜、改良品种、防止病虫害等功能在医学上可以用它来杀伤癌细胞治疗癌症等多方面的功能核电厂投资金额庞大、施工耗时、适宜兴建的厂址难求。最大的缺 点是放射性核废料处置与安全问题。优点是核燃料取得较容易、原料的运输与储存方便、需要量不多、且安全存量的开支少。 核能的实际利用有两种方法:一是目前已达到实用阶段的重核裂变方法,这就是核裂变反应堆的原理;二是目前还处于研究试验阶段的轻核聚变方法,这就是核聚变反应的原理 。
可燃冰是一种不可再生的资源,随着我们开发,石油的产量越来越少,在如今这个石油资源缺少的时代,人们纷纷寻找新的资源来代替石油。在我们现在的社会中,我们主要是采用一些新能源来代替石油,有以下这几种能源是可以代替石油的。
太阳能是一种可再生能源,它的存在是取之不尽,用之不竭的,只要太阳没有消失,那么太阳能一直都存在着。人们通过光伏板将太阳能转化为电能,从而应用于日常生活中。太阳能最大的优点是无害,开发太阳能不会污染环境,在我们这个环境污染越来越重的今天,这一点是非常宝贵的。但是虽然太阳到达地球表面的太阳辐射总量非常的多,但是他的能流密度是很低的,北回归线附近的夏天天气晴朗的正午时刻,太阳的辐射最大。
第二种代替石油的能源是风能,风能是利用空气做功,从而给人提供一种可用的能源,它也是一种可再生能源。当空气中的流速越快,所产生的动能越多。因此产生的电能越大,在一些沿海的地方,我们经常可以看到竖立着的风车,这就是风力机,人们主要靠这种东西来收集风能。
随着人们对海洋的开发,科学家在海洋中发现了一种新能源——可燃冰。可燃冰的外形像冰,而且遇到火即可点燃,因此被称为可燃冰。但是可燃冰目前运用在我们生活上依然存在着很大的问题,最大的问题是它的开发,可燃冰是固体,当我们将它一块块的搬离海面,可燃冰中的甲烷就会挥发,从而对大气造成巨大危害。各国的科学家正在努力钻研中,一旦突破这些难关,可燃冰成为我们日常使用的主要能源将不是梦想。
一、太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。利用太阳能的方法主要有:太阳能电池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。太阳能清洁环保,无任何污染,利用价值高,太阳能更没有能源短缺这一说法,其种种优点决定了其在能源更替中的不可取代的地位。
二、核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。
核能的缺陷
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
三、海洋能
海洋能特点
1.海洋能在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。
2.海洋能具有可再生性。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。
3.海洋能有较稳定与不稳定能源之分。较稳定的为温度差能、盐度差能和海流能。不稳定能源分为变化有规律与变化无规律两种。属于不稳定但变化有规律的有潮汐能与潮流能。
人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱。潮汐电站与潮流电站可根据预报表安排发电运行。既不稳定又无规律的是波浪能。
4.海洋能属于清洁能源,也就是海洋能一旦开发后,其本身对环境污染影响很小。
四、风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。风能最常见的利用形式为风力发电。风力发电有两种思路,水平轴风机和垂直轴风机。水平轴风机应用广泛,为风力发电的主流机型。
五、生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。
地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但利用率不到3%。
生物质能(又名生物能源)是利用有机物质(例如植物等)作为燃料,通过气体收集、气化(化固体为气体)、燃烧和消化作用(只限湿润废物)等技术产生能源。只要适当地执行,生物质能也是一种宝贵的可再生能源,但要看生物质能燃料是如何产生出来。
全球范围正在炒作用玉米、小麦、食糖等粮食来制造汽油等能源来满足日益增长的需求,以及过高成本带来的过高价格。当前主要是以甜高粱、木薯等为原料。
为人类的生产和生活提供各种能力和动力的物质资源,是国民经济的重要物质基础。能源的开发和有效利用程度以及人均消费量是生产技术和生活水平的重要标志。
六、地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。
放射性热能是地球主要热源。中国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
七、氢能
1、氢能的优点:
(1)安全环保:氢气分子量为2, 仅为空气的1/14, 因此,氢气泄漏于空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会聚集地面而构成易燃易爆危险。氢气无味无毒,不会造成人体中毒,燃烧产物仅为水,不污染环境。
(2)高温高能:1kg氢气的热值为34000Kcal, 是汽油的三倍。氢氧焰温度高达2800度,高于常规液气。
(3)热能集中:氢氧焰火焰挺直,热损失小,利用效率高。
(4)自动再生:氢能来源于水,燃烧后又还原成水。
(5)催化特性: 氢气是活性气体催化剂,可以与空气混合方式加入催化燃烧所有固体,液体、气体燃料。加速反应过程,促进完全燃烧,达到提高焰温、节能减排之功效。
(6)还原特性:各种原料加氢精炼。
(7)变温特性:可根据加热物体的熔点实现焰温的调节。
(8)来源广泛:氢气可由水电解制取,水取之不尽,而且每kg水可制备1860升氢氧燃气。
(9)即产即用:利用先进的自动控制技术,由氢氧机按照用户设定的按需供气,不贮存气体。
(10)应用范围广:适合于一切需要燃气的地方。
2、氢能的缺点:
(1)制取成本高,需要大量的电力;
(2)生产、存储难:氢气密度小,很难液化,高压存储不安全。
八、海洋渗透能
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、中国盐城市的大盐湖、美国的大盐湖。
当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
九、水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。
水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。
世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。可以利用电解水分子和光以及化学分解水分子的方式,来分解到可燃烧的氢气,它可作为新的,多用途的能源来替代现有的矿物质能源。
水分子的分解过程简而易行,投资少见效快。这给水能的综合利用带来了广泛的前景,在地球上,水是一种到处可见的液态物质。通过水的分解装置,制备出氢燃料,可用于汽车,航天航空,热力发电等工业和民用方面,在较大的程度上,缓解了人类对矿物质资源的过分依赖。
扩展资料:
新能源特点
1)资源丰富,普遍具备可再生特性,可供人类永续利用;比如,陆上估计可开发利用的风力资源为253GW, 而截止2003年只有0.57GW被开发利用,预计到2010年可以利用的达到4GW, 到2020年到20GW,而太阳能光伏并网和离网应用量预计到2020年可以从的0.03GW增加1至2个GW。
2)能量密度低,开发利用需要较大空间;
3)不含碳或含碳量很少,对环境影响小;
4)分布广,有利于小规模分散利用;
5)间断式供应,波动性大,对持续供能不利;
6)除水电外,可再生能源的开发利用成本较化石能源高。
参考资料来源:百度百科-新能源