怎样开发和发展新能源
开发可再生能源与提高能源使用效率相结合,将对全球经济可持续发展、解决贫困人口的能源问题、减少废气排放等做出重大贡献。可再生能源事业得到发展,可以成为继煤炭、石油、天然气之后重要的替代能源之一。
电力短缺、煤炭短缺、石油短缺……当前能源短缺正在日益成为制约许多国家经济发展的“瓶颈”,发
展能够替代煤炭、石油、天然气的可再生能源成为人们广泛关注的焦点,认为这是一项涉及子孙后代生存与发展的战略任务。
可再生能源取之不尽
自人类大规模利用矿物能源、特别是石油资源被开发之后,人类生产和生活面貌发生了巨大变化,与此同时,粗放的经济增长方式则造成全球大气、土壤、水源等诸多方面环境质量严重下降,暴露出世界上许多国家以煤炭等为主的能源结构的弊病。特别是自20世纪70年代石油出现危机后,使人们逐步觉醒,矿物能源终有耗尽之时,人类要维持自己的生产生活持续发展,必须开发新的能源,特别是可再生能源。
可再生能源利用价值非常可观。据我国专家推算,每利用一吨可再生资源可以节约原生资源120吨,少产生垃圾废水10吨,增加产值约3000元人民币,产生利润500元。利用可再生资源进行生产不仅可以节约资源,遏制废弃物泛滥,而且具有比利用原生资源进行生产消耗低、污染物排放少的特点。按国际标准测算,一座金矿每吨矿石可提取10多克黄金,而加工废电器每吨可提取50克黄金及其它贵重金属,成本不到金矿的20%,污染仅相当于开矿的几十分之一。
发展可再生资源利用产业几乎涉及所有行业,如果能够得到健康快速发展,便可带动其它相关产业的快速发展,并为城市人口创造大量就业岗位。美国的实践表明,可再生能源发电比传统发电方式劳动密集程度要高。美国全球观察研究所的报告说,10亿千瓦时发电量用煤炭或核燃料需要100到116个工人,而太阳能发电站则提供了248个工作岗位,风电场提供了542个工作岗位。根据国际经验,发展可再生能源可以安排大量剩余劳动力。
发展可再生能源可以降低发展中国家对煤炭的过分依赖,保障能源供应安全。据环境专家测算,大气中90%的二氧化碳和氮氧化物、70%的烟尘来自燃煤,煤炭开发利用过程中产生的大量的矸石、腐蚀性水、煤泥、灰渣和尘垢等,已构成对工农业生产和生态环境的危害,而可再生能源基本上不产生环境污染问题,因而发展可再生能源也是保护大气环境的迫切需要。另外,目前全球有20亿人无法享受正常的能源供应,发展中国家的农村主要依靠直接燃烧秸秆、柴草等提供生活用能,不仅造成严重的环境污染,危害人体健康,还威胁生态环境,发展可再生能源则有利于改善这些国家农村和偏远地区的生产生活条件。
开发与利用方兴未艾
自20世纪80年代以来,开发新能源逐步成为新技术革命的一项重要内容,发达国家竞相投入巨大的人力和物力开发太阳能、风能、潮汐能等可再生能源,一些发展中国家也大力开发替代石油的酒精燃料等新能源。
在可再生能源中太阳能资源取之不尽,清洁安全,是最理想的可再生能源,目前国际上对太阳能的开发十分重视。据有关资料介绍,20世纪80年代美国建成抛物面槽太阳能发电站,俄罗斯、澳大利亚、瑞士相继建立了太阳能发电厂,1992年日本太阳能发电系统和电力公司电网联网,而到2000年已有7万家庭安装了太阳能家庭发电设备。预计到2050年德国消耗的能量半数将来自太阳能。
风能是地球“与生俱来”的丰富资源,加快开发利用风能已成为全球能源界的共识。风能的利用主要是发电,目前风电在全球已发展为年产值超过50亿美元的庞大产业。风能是可再生、无污染的绿色能源,一台单机容量为1000千瓦的风机与同容量火电装机相比,每年可减少排放2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮,没有常规能源所造成的环境污染。风能还具有一次投资后的追加成本少的特点,凭借其巨大的商业潜力和环保效益,在全球可再生能源行业中创造了最快增速。风力发电技术成熟,单机容量大,建设周期短,完全是一种安全可靠的能源。从长远看,不论工程投资还是发电成本,都会逐步接近火电成本。风力发电是一个极具发展潜力的产业,全球已有50多个国家正积极促进风能事业的发展。
政府支持是发展关键
2004年6月在德国波恩召开的国际可再生能源大会,全球150多个国家和地区的政府、企业以及民间代表聚集商讨全球可再生能源开发和利用大计,这是迄今世界范围内在可再生能源领域召开的最大规模的政府间会议。大会通过的《共同宣言》提出了包含165个具体行动方案的《国际行动计划》,如果能够得到落实,到2015年全球使用可再生能源的人口将达到10亿。
为了解决可再生能源开发利用投资成本高的难题,法国政府在科研投入、技术应用和市场化等各个环节做出了巨大支持。据统计,2002年法国科研机构的能源研发总经费为9.4亿美元,其中5000万美元用于发展可再生能源,其中太阳能和地热能技术研发获科研经费最多。多年来,法国政府一直采取投资贷款、减免税收、保证销路、政府定价等措施扶持企业投资可再生能源的技术应用项目,以解决可再生资源的技术应用初期运营成本高、风险大问题。
利用可再生能源的初期成本高,风险大,其低排放与可循环等优势暂时不能体现在价格上,因此与传统能源竞争处于劣势。美国政府解决这一问题的办法主要是通过财政激励方式促进可再生能源的开发和利用,即通过减税、生产补贴、信托基金、低息贷款和政府的研究、开发项目,降低可再生能源产品和相关服务的成本和价格,培育、扩大市场。根据美国1978年《能源税收法》,购买太阳能和风能能源设备的房屋主人,所付金额中2000美元的30%和其后8000美元的20%可从当年须交纳的所得税中抵扣;开发利用太阳能、风能、地热和潮汐的发电技术投资总额的25%可以从当年的联邦所得税中抵扣。1992年《能源政策法》规定,企业用于太阳能和地热发电投资永久享受10%抵税优惠。
作为能源长期依赖进口的国家,为促进可再生能源的开发,德国政府2000年出台的《可再生能源法》规定,电力运营商有义务以一定价格向用户提供可再生能源电力,政府根据运营成本的不同对运营商提供金额不等的补助。从2004年开始,德国政府还制定了市场刺激措施,用优惠贷款及补贴等方式扶助可再生能源进入市场,迄今已投入研究经费17.4亿欧元。目前政府每年投入6000多万欧元,用于开发可再生能源,推动太阳能、风能和地热的开发。
黄鸣
(十一届全国人大代表山东皇明集团董事长)
编辑
黄鸣,国际太阳能学会(ISES)副主席,中华人民共和国第十届、十一届全国人民代表大会代表,中国可再生能源学会副理事长,中国节能协会副理事长,中国农村能源行业协会副会长,教授级高级工程师,皇明太阳能股份有限公司、山东亿家能太阳能有限公司董事长。
黄鸣
(九三学社上海市委员会专职副主委)
黄鸣,女,1961年9月出生,汉族,上海市人。大学本科学历,学士学位,研究员。2000年9月加入九三学社,1983年7月参加工作。现任九三学社上海市委员会专职副主委,上海市政协常委。
1983年7月毕业于同济大学。1983年7月起在中国船舶工业第九设计院工作,1983年7月至1990年12月任九院环境工程设计研究所助理工程师,1989年被评为工程师,1991年1月至1997年5月在九院工程总体设计研究所工作,任主任工程师,1995年3月晋升为高级工程师,任所长助理,1996年任副所长。1997年6月至2000年5月任九院全面质量管理办公室副主任(1999年主持工作),2000年6月至2001年12月任九院总工程师办公室主任,2002年1月任九院技术发展部主任,2005年12月晋升为研究员。2007年4月起任九三学社上海市委员会专职副主委。
曾任九三学社上海市第十四届委员会常委,上海市第十二届人大代表。
近日,国家能源局在国新办发布会,会上表示我国可再生能源开发利用规模稳居世界第一,可再生能源发电量达到2.2万亿千瓦时,较2012年增长14.6个百分点。据了解,可再生能源具体包括太阳能、风能、水能等。
由于世界人口在不断增多,像石油、煤这些不可再生能源终有一日会枯竭,不可再生资源不仅资源量有限,对大气的污染也不容忽视,现如今已经造成了全球能源紧张和环境恶化。要寻求可持续性发展不能只看眼下,更要着眼未来。随着环境问题和能源危机问题的日益突出,发展可再生新能源刻不容缓。近日,国家能源局在国新办发布会上表示我国可再生能源开发利用规模稳居世界第一,这和我国对可再生能源开发的重视分不开。
可再生能源指的是来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,并且对环境无害或危害极小,同时资源分布广泛,适宜就地开发利用。一、太阳能。太阳辐射能的光热、光电和光化学可直接转换为能源。 二、地热能。地热能独立于太阳能,指来自地球内部的热能资源。三、水能。指的是运用水的势能和动能转换成机械能或电能。四、风能。风力能转化为机械能、电能、热能等各种形式的能量。五、生物质能。植物通过光合作用将太阳能转化为化学能贮存在生物质内部。六、潮汐能。海水在潮涨和潮落时形成的水能。
能源是我们现代社会赖以生存和发展的基础,能源的供给能力影响着国民经济的可持续性发展,也是国家战略安全保障的基础之一。因此,开发和利用好可再生能源已成为紧迫的课题。
2、风能。人类已经使用了风力几百年了。如风车,帆船等。风能是空气流动所产生的动能,是太阳能的一种转化形式。风能利用是综合性的工程技术,通过风力机将风的动能转化成机械能、电能和热能等。
3、太阳能。自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。而在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,可以利用光热转换和光电转换两种方式,如太阳能发电。另外,广义上的太阳能也包括地球上的风能、化学能、水能等。
4、地热能。人类在很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖,以及烘干谷物等。
建筑能耗占整个能耗的40%左右,是最有潜力的节能领域.毛细管网换热器结构具有换热面积大、流量分配均匀、水流阻力小、散热效果好的优点,还能够耐高温、耐高压、耐腐蚀,是一种理想的高效换热器,用途十分广泛.毛细管网换热器换热机组突出的优点是能够有效利用低品位的能源,尤其是可再生能源(如太阳能,以及土壤、地下水、空气、污水、地表水、发电厂废水等说蕴含的能量),还可以提高空调系统的能效,做到节能减排环保并提高建筑物的品质.毛细管网换热器与地源热泵或空气源热泵结合,加上合理的控制组成一个节能系统,节能可达70%如果再配套太阳能和冷热储能系统,节能可达90%左右.毛细管网换热器与"节能减排降耗、提升建筑品质"关系密切,具有巨大推广应用前景.
第一部分:温湿度独立控制空调技术简介
一、常规空调技术存在的问题
从人体的热舒适与健康出发,要求对室内温度、湿度进行全面控制.夏季人体舒适区为25℃,相对湿度60%,此时露点温度为16.6℃.空调排热排湿的任务可以看成是从25℃的环境中向外界排热,在16.6℃的露点温度的环境下向外界排湿.目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的.常规温湿度混合处理的空调方式存在如下问题:
1、能源浪费.使用一套系统同时制冷和除湿,为了满足用冷凝方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6℃的露点温度需要约7℃的冷源温度,这是现有空调系统采用5~7℃的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5℃的原因.在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7℃的低温冷源进行处理,造成能量利用品位上的浪费.而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失.
2、难以适应热湿比的变化.通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化.一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象.过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加.
3、造成室内空气品质下降.大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的理想场所.空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因.另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题.然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的理想场所.频繁清洗过滤器既不现实,也不是根本的解决方案.
4、传统的室内末端装置有局限性.为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量.例如每平方米建筑面积如果有80 W/m2显热需要排除,房间设定温度为25℃,当送风温度为15℃时,所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感.为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织.这往往要在室内布置风道,从而降低室内净高或加大楼层间距.很大的通风量还极容易引起空气噪声,并且很难有效消除.在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而是通过另一套的暖气系统(如采暖散热器)供热.这样就导致室内重复安装两套环境控制系统,分别供冬夏使用.
5、输配能耗的问题.为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等.在中央空调系统中,风机、水泵消耗了40%~70%的整个空调系统的电耗.在常规中央空调系统中,多采用全空气系统的形式.所有的冷量全部用空气来传送,导致输配效率很低.相对而言,1m3水所输送的热量和3840 m3空气所输送的热量是相当的.
此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要.目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行.如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力.这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键.由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题.
综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战.新的空调应该具备的特点为:减少室内送风量、高效换热末端、采用低品位能源、设置冷热蓄能系统.从如上要求出发,目前普遍认为温湿度独立控制空调技术可能是一个有效的解决途径.
二、温湿度独立控制空调技术的特点
空调系统承担着排除室内余热、余湿、CO2与异味的任务.研究表明:排除室内余湿与排除CO2、异味所需要的新风量与变化趋势一致,即可以通过新风同时满足排除余湿、CO2与异味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制系统)来实现.由于无需承担除湿的任务,因而用较高温度的冷源即可实现排除余热的任务.
温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失.由于温度、湿度采用独立的控制系统,可以满足不同区域和同一区域不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象.
温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度(见图1).处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介.由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7℃,而是提高到18℃左右,从而为天然冷源的使用提供了条件.即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高.余热消除末端装置可以采用毛细管网换热器、辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度,因而不存在结露的危险.处理潜热的系统,同时去除室内CO2、室内异味等,以保证室内空气质量.此系统由新风处理机组、送风末端装置组成,换热机组,采用新风作为能量输送的媒介.在处理潜热的系统中,由于不一定需要处理温度,因而湿度的处理可能有多种方法,如冷凝除湿、吸附除湿等.
图1 温湿度独立控制空调系统
在温湿度独立控制空调系统中,采用新风来承担排除室内余湿、CO2和室内异味的任务,以保证室内空气质量.一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO2的浓度调节风量.由于仅是为了满足新风和湿度的要求,如果人均风量40 m3/hr,每人5平方米面积,则换气次数只在2~3次/hr,远小于变风量系统的风量.这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区.
室内的显热则通过另外的系统来排除(或补充).由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现.当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40 W/m2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求.由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求.
温湿度独立控制空调系统实现了室内温度和湿度的分别控制.尤其实现了新风量随人员数量的同步增减,从而避免了变风量系统冬季人员增加,热负荷降低,新风量换热机组随之降低的问题与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统,彻底消除了实际工程中经常出现问题的这一隐患,同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质.由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求.这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适度要求的问题.既降低了运行能耗,又减少了由于室内外温差过大造成的热冲击对健康的危害.
图2 毛细管网辐射
三、 高温冷源的制备
由于潜热由单独的新风处理系统承担,因而在温度控制(余热去除)系统中,不再采用7℃的冷水同时满足降温与除湿的要求,而是采用约18℃的冷水即可满足降温要求.此温度要求的冷水为很多天然冷源的使用提供了条件,如深井水、通过土壤源换热器获取冷水等,深井回灌与土壤源换热器的冷水出水温度与使用地的年平均温度密切相关,我国很多地区可以直接利用该方式提供18℃冷水.在某些干燥地区(如新疆等)通过直接蒸发或间接蒸发的方法获取18℃冷水.
即使采用机械制冷方式,由于要求的压缩比很小,根据制冷卡诺循环可以得到,制冷机的理想COP将有大幅度提高.如果将蒸发温度从常规冷水机组的2~3℃提高到14~16℃,当冷凝温度恒为40℃时,卡诺制冷机的COP将从7.2~7.5提高到11.0~12.0.对于现有的压缩式制冷机、吸收式制冷机,怎样改进其结构形式,使其在小压缩比时能获得较高的效率,则是对制冷机制造者提出的新课题.图3是三菱重工(MHI)微型离心式高温冷水机组的工作原理,采用"双级压缩+经济器"的制冷循环形式和传热性能优异的高效传热管,优化设计离心式压缩机叶轮和轴承,不仅突破了离心式冷水机组难以小型化的误区,而且还具有非常高的性能系数COP.图4示出了利用该微型离心式冷水机组制备高温冷水时的性能计算值.从图中可以看出:当冷冻水进、出水温度为21/18℃、冷却水进、出水温度为37/32℃时,其COP=7.1,在部分负荷条件下或冷却水温度降低时,其性能则更为优越.
图3 微型离心式高温冷水机组 图4 18C高温冷水机组的性能曲线
四、结论
与目前普遍使用的风机盘管加新风方式或全空气方式相比,温湿度独立控制系统的特点可总结如下:
适应室内热湿比的变化.温湿度独立控制系统分别控制房间的温度和湿度,能够满足建筑热湿比随时间与使用情况的变化,换热机组 板壳式换热器采用波纹板片作为传热元件,全面控制室内环境.并根据室内人员数量调节新风量,因此可获得更好的室内环境控制效果和空气质量.
末端方式不同.可采用辐射式末端或者干式风机盘管吸收或提供显热,采用置换通风等方式送出干燥的新风去除显热,冬夏共用同样的末端装置.处理显热的系统只需要18℃的冷水,这可通过多种低成本的和节能的方式提供,降低了运行能耗.
可以利用低品位能源,即使采用普通空调机组系统能效换热机组会大大提高.这个特点有利于能源的广泛选择利用,特别有利于开发利用低品位换热机组再生能源:如太阳能、地能、热电厂余热回收等,对节能减排降耗意义重大.
舒适度大大提高.没有强风感、没有噪声、不传播细菌,是一种健康绿色的空调方式.
第二部分 毛细管网换热器是温湿度独立控制空调技术的基石
一、毛细管网换热器的结构
毛细管网是一种集配式结构(见图5),具有以下特点:
1、换热均匀2、水力损失小
3、换热面积大4、换热效果好.
图5 集配式结构的毛细管网
因此,毛细管网是一种高效换热器.毛细管网是PP-R原料制造,因此又具备了耐高温、耐高压、耐腐蚀的特点,用途广泛.毛细管网与散热层和保温层的结合使用进一步提高换热效率,合称为毛细管网换热器,是理想的高效换热器(见图6).
图6 毛细管网换热器
二、毛细管网换热器的优点:
1、高效节能.毛细管网换热器能够有效利用低品位能源、能够大大提高空调系统的能效.建设部评估委员会专家认为:"毛细管网换热器与地源热泵或空气源热泵结合,加上合理的控制组成一个节能系统,节能可达70%如果再配合太阳能和冷热蓄能系统,节能可达90%左右."
2、高舒适度.毛细管网换热器没有强风感、没有吹风危险、没有噪声、不传播细菌、温差小、轻柔安静.
3、安装方便.毛细管网换热器薄(4.3mm)而柔软、荷载小(满水后不足900g/m2),便于与装饰层结合使用,可以方便地安装在地面、墙面或顶棚,对装饰影响最小.产品一般免维修、免清洗.
4、绿色环保.采用PP-R原料制造,可靠使用五十年以上,可回收利用,不会对环境造成污染.
三、正确应用毛细管网需要解决的问题
1、防止冷辐射表面凝露
这是人们在使用毛细管网制冷时首先要考虑的问题.实际上掌握了温湿度独立控制空调技术原理后就知道这个问题很容易解决了,有多种可靠的技术可以选择,关键在于以下两点.
(1)采用高温冷源.供水温度保证冷辐射表面在室温设计温度以下满足制冷要求,同时在室内露点温度以上不发生凝露.
(2)利用新风除湿.新风系统往往是高档建筑必备的,利用新风控制室内露点始终低于冷辐射表面的温度.
系统的组成与控制:高温冷源、毛细管网换热器、新风机组、除湿机组、温度-露点探测器、执行器.当有了露点信号的时候,通过提高循环介质的温度、加大新风量、降低新风温度等手段都可以避免凝露.
2、防止毛细管阻塞
(1) 建议采用独立的小型循环系统,与大系统连接时通过板式换热器隔开.
(2) 循环系统全部采用耐腐蚀的管道及阀部件,如塑料管、铜镀镍阀部件和连接件等.金属氧化物沉积会阻塞管道,游离的金属离子会对塑料管材老化产生影响.
(3)对系统的补充水进行过滤,防止大型颗粒物阻塞管道.如果系统始终在冷水状态下运行,不必考虑水质的软化问题.
(4)系统中需要加防冻液或除氧剂,换热机组 赛场中除了棋盘棋子,或采取真空脱气措施.原因是塑料管是透氧换热机组,采取以上措施可以防止管道内滋生微生物形成生物粘泥.
3、漏水修复
毛细管网是由PP-R原料制造,干管漏水可以热熔修复,毛细管漏水可断开通过热熔手段焊死.毛细管网一般安装在装饰层下面,漏水点寻找及恢复比较方便,但是还是建议加强成品保护及警告措施,尽量避免破坏.
4、与装饰面层结合
毛细管网与装饰面层结合时可以随面层形状随意安装,但是要与装饰层结合紧密避免产生空气隔层影响换热.面层抹灰时应该注意有一定的厚度及使用聚合物砂浆,防止开裂.
四、毛细管网推广应用的成熟性
1、产品制造技术十分可靠
毛细管网是由PP-R管道焊接成型的,PP-R原料及管道的理化性能已经通过国际国内权威机构证明是可靠的.目前的焊接工艺换热机组是十分可靠的,无数次换热机组压力测试证明爆破点一般发生在毛细管和主管上,毛细管与主管的焊点十分牢固.产品通过了国家化学建材检测中心的有关测试,而且经过建设部组织的各方专家评估得出权威结论:企业建立了质量保证体系,经用户使用反映良好,主要性能指标达到国际先进水平.
2、国内产品标准及应用技术规程正在完善
北京普来福环境技术有限公司在参考国外同类产品相关标准的基础上制定了《无规共聚聚丙烯(PP-R)毛细管网换热器企业标准》(Q/CYPLF001-2007),已经在北京市技术监督局备案发布,制定了产品应用技术规程,通过了国家空调与净化设备标准委员会组织专家的审定和建设部组织的科技成果评估.争取进一步完善和改进后尽快上升为行业标准和规程.
3、应用技术已经十分成熟和可靠
毛细管网在欧洲已使用二十年,有很多成功案例,使用面积已经超过一千万平方米以上,近年来的需求量也是越来越大.我国从2005年清华大学节能示范中心引进毛细管网产品和技术以后,各方面专家、学者和工程技术人员也作出了大量的研究和实践工作,积累了丰富的设计和施工经验,已经开始在很多项目上投入应用,反映效果很好.
第三部分:毛细管网让可再生能源
插上腾飞的翅膀广泛应用于高低档建筑
一、世界能源的历史与形势
自古以来,人类生存和发展的基本条件越来越清晰,即物质、能量和信息.尤其是近代的工业革命,使得人类进入了一个高速发展的时代,化石燃料被疯狂的开采,能源消耗从煤炭到石油和天然气,让我们在有生之年就有可能看到它们的枯竭.更可怕的是,我们在经历能源危机的同时,不得不接受它的"副产品":环境污染.
所幸的是有识之士已经在全球范围内行动起来.为防止地球温暖化(温室效应)对人类的危害,要求控制化石燃料燃烧排放出的CO2量,因为它对于地球温暖化的影响占1/2以上.1997年12月,联合国气候变化框架公约缔约方第三次会议在日本京都召开,部分国家签署了《京都议定书》,确定了发达国家温室气体的减排目标:在2008~2012年间,将其温室气体的排放量由1990年的排放水平平均降低5.2%.2004年6月在德国波恩召开了国际可再生能源大会,154个国家代表通过了《波恩宣言》,德国总理施罗德在会上讲话指出"能源的有效使用和可再生能源的开发是世界获得可持续能源供应的双重策略".
我国著名能源科学家吴仲华教授早在上世纪80年代初期就已提出"温度对口,梯级利用"的科学用能基本原则.在当前的一段时间内,化石能源仍是主要的一次性能源,尽量减少煤炭的使用,将天然气的比例增加,将石油的比例减少,到2030年前后,大规模使用可再生能源,到2050年前后,化石能源降低到次要地位,甚至于逐渐淡出能源结构.
二、我国的能耗状况
中国作为最大的发展中国家,正处于经济高速增长阶段,呈现出高储蓄、高投资、高耗能的特征.我国二氧化硫的排放量居世界第一,二氧化碳的排放量居世界第二,能耗量居世界第二.中国是一个十三亿人口的大国,我国的能耗量将很快居世界第一.能源对整个国家的发展将起到非常关键的作用,能源问题搞不好,有可能拖整个国家可持续发展的后腿.不远的将来,能源危机在中国可能不会再是危言耸听的事情.2004年,中国经济总量占世界经济总量的4.4%,而石油和煤炭的需求量则分别占世界的7.4%和31%.2005年,中国能源消费量为22.2亿吨标准煤,比2004年增长9.5%,中国现在已经成为仅次于美国的第二大石油消费国.据有关专家预测,到2020年,中国石油进口量将超过5亿吨,天然气进口量将超过1000亿立方米,两者的对外依存度将分别为70%和50%.另外,我们的能效也不容乐观,每一万元的产值所消耗的能源,是美国的3倍,日本的7.2倍,并远远高于巴西、印度等国家.为了解决这种状况,52位院士和百余位专家联名发出了节能和科学用能的倡议书:提高能源利用效率,减少能源消耗,保护生态环境.
三、我国的建筑能耗状况、特点和方展方向
我国的建筑能耗占社会总能耗的30%左右,既有建筑近400亿平方米,95%以上是高能耗建筑.目前我国是世界上最大的建筑工地,每年建成的房屋面积高达20亿平方米,换热机组,超过了发达国家年建成建筑面积的总和.到2000年底,能够达到建筑节能设计标准的建筑累计仅占全部城乡建筑总面积的0.5%,占城市既有供暖居住建筑面积的9%,绝大部分新建建筑仍是高能耗建筑.2004年,我国建筑运行能耗占社会总能耗的18.8%,北方采暖地区,采暖能耗占全国城镇建筑总能耗的40%.随着建设规模的不断扩大,建筑能耗占中国能源总消耗的比例也会持续增加.解决好北方的采暖能耗和南方的空调能耗,将是节能减排的关键所在.
一般建筑用能中,采暖空调占65%左右,生活热水供应占15%左右,电器照明等占14%左右,炊事占6%左右.除电器照明和炊事外,其他的建筑用能具有以下特点:1、 低品位能源:热能根据其温度的高低可分为低品位能源和高品位能源,越接近环境温度的热能品位越低,而高出环境温度幅度越高则热能品位越高.建筑采暖所需的温度通常低于100℃,空调所需的温度通常高于5℃,均为低品位能源.如果将化石燃料燃烧后产生的高品位能量用于建筑采暖、空调,是不符合"温度对口、梯级利用"的热力学基本原则,存在着严重换热机组能量浪费2、2、2狭窄的温度范围:
Qfw建筑空调冷冻水的温度一般为5~12℃(毛细管网系统所需温度为16~20℃),供热热水温度在55~60℃左右(毛细管网系统所需温度为30~35℃).由此可见建筑能源的温度范围非常狭窄3、www.topenergy.org Rq2|w%m vw建筑用能温度与可再生能源的温度接近:地球环境内的各种介质均含有低品位的热(冷)能,这些介质包括土壤、地下水、河流湖泊及海水、污水和空气.以北京为例:土壤的地下水温度全年约14℃左右污水厂冬季排出的处理后污水温度仍在16℃左右空气温度一般为-15~40℃.显然这个温度范围与空调供暖所需的温度相当接近,我们可以通过热泵将温度升高或降低到建筑用能的使用温度4、可直接使用太阳能:.....我国西北、华北的大部分地区,采暖季日平均太阳辐照量均在9,000~15,000kJ/m2之间.如果采用目前流行的真空管太阳能集热器,每日集热时间按8小时考虑,建筑面积热指标按50W/m2计算,采暖供回水温差15℃(毛细管网采暖供回水温差不超过5℃),每天供暖时间为8h,则可以推算出,每单位建筑面积所需要的集热器面积在0.21~0.33m2之间.由于农村地区的建筑形式和城市的别墅多为3层以下的建筑,所以按照这个面积比例是完全可以实现的对于多层建筑,也可以作为能源的补充而节省部分能源.
由此可见,低品位的可再生能源即可再生的自然能源应是建筑用能的最佳选择.一般来说自然能源可以包括以下六个来源:土壤、地下水、地表水(湖泊、河流等)、海水、污水及空气,它们所含有的热能来自太阳辐射和地热能,同时地球表面包括土壤和水体的储能作用换热机组在自然能源的应用中起到了至关重要的作用.由此可见,大力推进可再生能源在建筑中应用,是解决建筑用能最科学、最经济、最合理的选择.
四、高效采暖空调末端
要想减小建筑运行的能耗,除了要解决好围护结构(墙体、屋顶、门窗等)的保温问题外,还必须解决好暖通末端的低效利用问题.
古人从钻木取火以来,每一次取暖的发展,末端的温度都会有所下降,人类文明也向前迈进了一步.最初是用火堆,高温且烟熏火燎,采暖面积小后来,用火炉,同样的温度但室内没有了烟气,但采暖面积仍然有限再后来,用中高温度的火炕、火墙和壁炉,使整个房屋温暖到上世纪期四、五十年代普遍采用100℃以上的汽暖和80℃以上的水暖到上世纪七十年代,西方国家开始采用55℃~60℃水温的地板辐射采暖到了1986年,又开始采用16℃~40℃水温的毛细管网恒温恒湿新风技术来使建筑物一年四季保持温度和湿度的恒定不变.
随着末端的温度不断降低,末端的效率极大地提高,节能越来越显著,而舒适度也越来越高.
能源危机、环境污染、自然资源能否可持续利用是中国乃至全球性的问题.开发利用可再生能源是缓解能源危机、降低环境污染、促进自然资源可持续利用的重要手段.但仅仅是开源是不够的,必须与节流并举,开发从冷热源到末端的整个系统,使系统的整体效率提高,才能真正实现节能减排降耗的目标.这对于减少对传统能源的依赖程度、促进经济社会可持续发展、保障国家能源安全具有重要意义
● 太阳能
太阳能是来自地球外部天体的能源。人类所需能量的绝大部分,都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能,在植物体内储存下来。太阳能的利用有光热转换和光电转换两种方式。太阳能发电是一种新兴的可再生能源。
● 风能
风能地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后,气温变化不同以及空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。
● 水能
水能是清洁能源、绿色能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源,是常规能源,一次能源。人们目前最易开发和利用的比较成熟的水能,也是河流能源。水能主要用于水力发电。其优点是成本低、可连续再生、无污染。缺点是分布受水文、气候、地貌等自然条件的限制大。水容易受到污染,也容易被地形、气候等多方面的因素所影响。
● 生物质能
生物质能是太阳能以化学能形式储存在生物质中的能量形式,即以生物质为载体的能量。对于石油行业来讲,目前最为关切的是生物柴油。它是生物质能的一种,是指以油料作物、野生油料植物和水生植物油脂,以及动物油脂、餐饮垃圾油等为原料油,通过酯交换工艺制成的可代替柴油的再生性燃料。另外,燃料乙醇也越来越受到关注。
● 地热能
地热能是赋存于地球内部岩石和流体中的热能。它是驱动地球内部一切热过程的动力源,其热能以传导形式向外输送。地球内部温度高达7000℃,这些巨大的热能,透过地下水的流动和熔岩涌动至离地面1~5千米的地壳,热力得以被转送至接近地面的地方。高温的熔岩将附近的地下水加热。这些加热了的水,最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
● 海洋能
海洋能指依附在海水中的可再生能源。海洋通过各种物理过程接收、储存和散发能量。这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式,存在于海洋之中。地球表面积约为5.1亿平方千米,其中陆地表面积为1.49亿平方千米,占29%;海洋面积达3.61亿平方千米,占71%。以海平面计,全部陆地的平均海拔约为840米,而海洋的平均深度却为380米。整个海水的容积多达13.7亿立方千米。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量。它将太阳能以及派生的风能等,以热能、机械能等形式蓄在海水里,不像在陆地和空中那样容易散失。
自从原始人懂得使用火以后,能源就成了人类文明的重要物质基础。到了近代,能源技术出现了3次重大突破,即蒸汽机、电力和原子能的发明及应用。这三次突破,成为推动社会生产力飞跃发展的巨大动力。
在近代,世界能源结构有过2次大的转变:第一次是从18世纪开始从薪柴转向煤;第二次是从20世纪20年代开始,从煤转向石油和天然气。现在,世纪能源正在经历着第三次大转变,就是从石油和天然气逐步转向新能源。
煤、石油、天然气都是不能再生的矿物燃料,用去一点就会少一点,总有一天会被全部用完。另一方面,新技术革命的兴起带来了许多新的生产体系,相应地对能源系统也提出了清晰的要求,其中特别是要求尽可能地采用可以再生的、分散的、多样化的能源。因此专家们认为,新能源是世界新的产业革命的动力,是未来世界能源系统的基础。换句话说,新能源必将成为未来世界能源舞台上的主角。
据专家们预测,大约再过半个世纪,也就是到21世纪中叶前后,核能、太阳能将成为世界能源系统的支柱。
今天的人类已步入信息时代。今天的能源,已经今非昔比,已经不是指某一两种单一的物质,而是汇合煤、石油、天然气、水力、核能、太阳能、地热能、风能、海洋能以及沼气能、氢能、电能等等的总称。
1992年9月在西班牙首都马德里召开的第15届世界能源大会上,提出了“能源与生命”的响亮口号。世界各国的有识之士都在大声疾呼,呼吁各国政府尽可能限制化石能源消耗量的增长,并大力发展可再生能源。据欧盟国家统计,在这些国家中若能以可再生能源取代目前所用化石燃料发电量的1%,那么每年将可减少1500万吨二氧化碳的排放量,仅这一项所带来的环境效益就是十分惊人的。
能源问题对社会经济发展起着决定性的作用。20世纪50~70年代,由于中东廉价石油的大量供应,导致整个资本主义世界经济的飞速发展。而1973年中东战争爆发以后,由于中东各国限制石油产量,提高石油价格,带来了资本主义世界长时间的经济危机。争夺能源,成了持续8年之久的两伊冲突及1991年春天震惊世界的海湾战争等一系列国际争端的导火索。
根据国际能源专家的预测,地球上蕴藏的煤炭将在今后200年内开采完毕,石油将在今后三四十年内告罄,天然气也只能再维持五六十年。可见,能源问题必将成为长期困扰人类生存和社会发展的一个主要问题。
国际经济界提供的分析统计数据表明,由于能源短缺而造成的国民经济损失,相当于能源本身价值的20~60倍。1956年,美国由于短缺1.16亿吨标准煤,使得其国民生产总值减少了930亿美元;日本由于短缺0.6亿吨标准煤,导致其国民生产总值减少了485亿美元。1988年,我国由于缺电而导致国民生产总值减少了2000亿元人民币,这个数目相当于这一年我国国民生产总值的1/60,无怪乎人们把能源比作社会经济发展的“火车头”。
专家们预计,在今后二三十年内,将是新能源(包括核能和可再生能源)技术大发展的时期。根据世界能源会议的有关资料,目前世界新能源的开发总量大约是1.5亿吨油产量,预计到2020年将达到15亿吨油产量。
专家们还预计,在今后30年中,拉丁美洲和中国及太平洋地区可再生能源的发展比重最大,约占世界总量的45%;其次为北美和中南亚地区,约占世界总量的25%。而从新能源技术的发展来看,北美、拉美和中国及太平洋地区的发展潜力最大,约占世界新能源发展总量的65%以上。
我国作为一个人口众多的发展中国家,尽管拥有相当数量的煤和石油资源,也拥有一些天然气资源,但是按人均值来计算,我国在世界上仍属于贫能国。在当前经济迅猛发展、能耗直线上升而环境问题日趋严峻的形势下,我国更是特別需要有一个长远的能源发展战略,要在厉行节能的前提下,采取多能互补的政策,特别要下大力气开发利用新能源和可再生能源。
从长远来看,人类要在这个星球上长期生存和繁衍下去,就非大力发展可再生能源不可。因为化石能源不可能永远利用下去,只有可再生能源才是取之不尽、用之不竭的。近代物理学和天文学已经充分证明,以天体物理运动所发出的能量为基础的可再生能源,实际上是无限的,它能与日月同辉,和宇宙共存。
知识点
自然资源分类
科学家将人类所利用的自然资源分为两类:一是不可再生资源,二是可再生资源。不可再生资源是指被人类开发利用一次后,在相当长的时间,如千百万年之内都不可自然形成或产生的物质资源。这类资源包括自然界的各种金属矿物、非金属矿物、岩石、石油和天然气等。
可再生资源是指被人类开发利用一次后,在一定时间,如一年内或数十年内就通过天然或人工活动可以循环地自然生成、生长、繁衍,有的还可不断增加储量的物质资源。这类资源包括地表水、土壤、植物、动物、水生生物、微生物、森林、草原、空气、阳光、气候资源和海洋资源等。
什么是经济清洁的核能?
1954年,前苏联建成世界上第一座核电站。多年来,特别是最近一二十年来,核能技术发展很快。现在全世界有几十个国家在发展核能发电,已经建成和正在兴建的核电站总计达500多座,目前核能发电已达世界电力需求的20%左右。核能具有如下几方面特点。
1.它的能量巨大,而且非常集中。根据计算,1克铀235原子核裂变时所发出的能量相当于2.5吨标准煤完全燃烧时所释放的热能,或相当于1吨石油完全燃烧时所释放的热能。
2.运输方便,适应性强。有人把核电站与火电站做了个形象的比较:一座20万千瓦的火电站,一天要烧掉3000吨煤,这些燃料需要用100个火车皮来运送;而一座发电能力与此相当的核电站,一天只需要消耗1千克铀,而1千克铀的体积大约只有3个火柴盒摞起来那么大。
3.核资源储量丰富,可以说取之不尽、用之不竭。尽管现已探明的陆地上的铀资源很有限,但海水中的铀资源极为丰富,每1000吨海水中大约含铀3克,世界各大洋中铀的总含量可达40多亿吨。不过,从海水中提取铀在技术上还有一些难题需要进一步研究解决。
4.核电成本低,一般比火力发电低20%~50%。
目前世界各国的核电站大多数采用“热中子反应堆”(简称“热堆”)。在这种反应堆中有用的核燃料是铀235,而铀235只占天然铀总量的0.7%,其余都是核废料铀238。为使目前的核废料变成发电的有用之物,必须加紧发展“快中子反应堆”(简称“快堆”)技术。
其实核电是一种安全、经济、清洁的能源。从经济上说,核电站的一次性投资确实要比火电站大一些。以我国秦山核电站为例,每千瓦单位造价大约需要4000元,而火电站一般在1900元左右。然而,衡量电站的经济性,不仅要看最初的基建投资,还要计算电站运行以后消耗的燃料、设备折旧、维护管理等费用。以装机容量吉(109)瓦的火电站与核电站作对比,仅每年耗费的燃料一项,火电站需要300万~350万吨原煤,而核电仅需30吨核燃料。请想一想,300万吨煤需要多少列火车、多少艘轮船来运输,又需要多大一个燃料堆放场地!国际上对核电的成本与煤电成本作过比较,在法国,煤电成本是核电成本的1.75倍,德国为1.64倍,意大利为1.57倍,日本为1.51倍,韩国达到1.7倍。美国早在1962年就使核电成本低于煤电成本。这是核电在一些国家得到较快发展的原因之一。
一些读者也许还在为核电站排放的废气、废物、废水而担心。有位专家这样说,核电站的运行,既不释放火电站所必然产生的氧化氮、二氧化硫,也不产生二氧化碳。这些排放物正是造成酸雨、黑雨及温室效应的主要因素。因此说,核电是比较清洁的能源。研究、设计者考虑了核电站的三废处理问题。从核电站卸出的核燃料,即燃烧过的乏燃料,在密封条件下作专门处理。废水、废气同样经过安全处理。至于核电站对周围环境的辐射问题,有这样一些数据可以说明:人们在核电站周围住上一年,所受到的辐射量,还不到一次X光透视的几十到几百分之一。以核电站最多的美国为例,它的核电站使每个美国人增加的辐照量,比自然界原本存在的放射性照射量的0.1%还小。这大概可以说明核电的“清洁”了吧。知识点
核辐射及其危害
核辐射,又称放射性,是原子核从一种结构或一种能量状态转变为另一种结构或另一种能量状态过程中所释放出来的微观粒子流。核辐射分为天然辐射和人工辐射。天然辐射存在于所有的物质之中,这是亿万年来存在的客观事实,是正常现象。人工辐射源包括放射性诊断和放射性治疗辐射源,如X光,核磁共振等、放射性药物、放射性废物、核武器爆炸的落下灰尘以及核反应堆和加速器产生的照射等。
人们在长期的实践和应用中发现,少量的辐射照射不会危及人类的健康,过量的放射性射线照射对人体会产生伤害,使人致病、致死。辐射的剂量越大,危害越大。