建材秒知道
登录
建材号 > 能源科技 > 正文

绿氢合成氨什么意思

过时的八宝粥
勤恳的柜子
2023-02-07 02:52:48

绿氢合成氨什么意思

最佳答案
自信的小蜜蜂
纯情的书本
2025-08-29 07:48:52

绿氢合成氨指可再生能源电解水制绿氢,根据查询相关资料显示,绿氢和氮气催化合成氨是最先实现绿氨工业化生产的技术路线。可再生能源制绿氢合成氨及其应用对于全球实现碳中和至关重要,绿氨合成将会成为绿氢的重要应用之一。

最新回答
冷艳的画笔
微笑的高跟鞋
2025-08-29 07:48:52

对。

绿氨的生产具有较低的碳排放,是绿氢的重要来源,因为生产可以只依赖水、空气以及电力,这意味着理论上也存在和氢气同样清洁的制备方式,所以是对的。

绿氢,特指的是使用可再生能源(例如太阳能、风能、核能等)制取的氢气,它可以做到全生产周期无碳排,对温室气体的减排具有非常重要的意义。

可靠的悟空
激情的钢笔
2025-08-29 07:48:52

氢能是一种清洁能源,可以应用到能源、交通、建筑、工业等多个领域,按照氢的制取工艺的不同,主要是生产来源和生产过程中的碳排放不同,人们将氢能分别称为灰氢、蓝氢和绿氢。

灰氢和蓝氢都是利用天然气作为原料,生产过程相同,都会产生二氧化碳,只是当二氧化碳直接排放时,这个过程生产的氢气就称作灰氢,如果对产生的二氧化碳进行回收,那么生产出来的氢气就称作蓝氢。

绿氢就是通过可再生能源电力来电解水的方式,只产生氢气和氧气,没有二氧化碳排放,所以称作绿氢。

目前的制氢过程几乎都是天然气生产的灰氢,绿氢的占比还不高,所以,尽管氢是清洁能源,但由于生产过程有很高的碳排放,所以并不是碳中和背景下得很好的替代能源,应该说,绿氢才是未来所需的真正意义上的清洁能源。

电解水制氢气是通过电能给水提供能量,破坏水分子的氢氧键来制取氢气,制取效率一般在 75%-85%,每立方米氢气电耗为 4-5 kWh,电费占整个水电解制氢生产费用的80%左右,成本高导致电解水制氢的竞争力不高,因此水电解制氢成本的关键在于耗能问题。

如果一项新技术,比如通过电解氨水来制取绿氢,所需电力仅为电解水方法的三分之一,那就意味着降低了能耗,也就降低了成本,提高了绿氢的竞争力,可以扩大其应用范围。

最后,还要说一下氢能的运输,由于氢的储能密度很低,所以,如果以氢的形式运输能源就会比运输化石燃料还要贵,所以目前储运难也是制约氢能发展的瓶颈之一。

氨比氢更容易液化,在同等条件、标准大气压下,液氨在-33℃就能够实现液化运输,但如果直接运输液氢温度则需要降至-253℃左右。所以,氨可以作为氢的运输载体,解决储运难题。

冷艳的嚓茶
激动的冷风
2025-08-29 07:48:52
工业制法

工业上氨是以哈伯法通过N2和H2在高温高压和催化剂存在下直接化合而制成:

工业上制氨气

高温高压

N2+3H2==高温高压催化剂===2NH3(可逆反应)

催化剂

△rHθ =-92.4kJ/mol

工业制备流程

20世纪初,工业上开发了氰化法和合成氨法生产氨,前者因能耗远大于后者而被淘汰.世界上的氨绝大部分是在高压、高温和催化剂存在下由氮气和氢气合成制得.氮气主要来源于空气;氢气主要来源于含氢和一氧化碳的合成气(纯氢也来源于水的电解).由氮气和氢气组成的混合气即为合成氨原料气.从燃料化工来的原料气含有硫化合物和碳的氧化物,它们对于合成氨的催化剂是有毒物质,在氨合成前要经过净化处理.

1、哈伯法制氨:

高温高压

N2(g)+3H2(g)========2NH3(g)(可逆反应) △rHθ=-92.4kJ/mol

催化剂

2、天然气制氨:天然气先经脱硫,然后通过二次转化(见合成气),再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气(见合成氨原料气),经压缩机压缩而进入氨合成回路,制得产品氨.以石脑油为原料的合成氨生产流程与此流程相似.

3、重质油制氨:重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸汽转化法简单,但需要有空气分离装置.空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氨还用作脱除一氧化碳、甲烷及氩的洗涤剂.

4、煤(焦炭)制氨:焦炭是早期合成氨生产的原料,现除中国、联邦德国外,其他国家已很少采用.煤直接气化(见煤气化)有常压固定床间歇气化、加压氧-蒸汽连续气化等多种方法.例如早期的哈伯-博施法合成氨流程(见图),以空气和蒸汽为气化剂,在常压、高温下与焦炭作用,制得含(CO+H2)/N2摩尔比为3.3.2的煤气,称为半水煤气.半水煤气经洗涤除尘后,去气柜,经过一氧化碳变换,并压缩到一定压力后,用加压水洗涤除去二氧化碳,再进一步用压缩机压缩后用铜氨液进行洗涤,以除去少量一氧化碳、二氧化碳,然后送去合成.如用水将氨吸收,所得产品为氨水.商品氨水浓度为15%~30%(质量).如用冷凝法分离氨,所得产品为液氨,含氮82.3%.氨水和液氨均可直接用作肥料.

实验制备

实验室,氨常用铵盐与碱作用或利用氮化物易水解的特性制备:

2NH4Cl(固态) + Ca(OH)2(固态)===2NH3↑+ CaCl2 + 2H2O

Li3N + 3H2O === 3LiOH + NH3↑

实验室快速制得氨气的方法

用浓氨水加固体NaOH(或加热浓氨水

注意点:

(1)不能用NH4NO3跟Ca(OH)2反应制氨气

硝酸铵受撞击、加热易爆炸,且产物与温度有关,可能产生NH3.N2.N2O、NO

(2)不能用NH4Cl加热分解制氨气

NH4Cl加热分解生成HCl气体和NH3气体,但冷却后可以自由结合重新生成NH4Cl,故无法进行分离收集,所以即使分解可产生氨气,也不可以用NH4Cl加热分解制取氨气.

(3)实验室制NH3不能用NaOH、KOH代替Ca(OH)2

因为NaOH、KOH是强碱,具有吸湿性(潮解)易结块,不易与铵盐混合充分接触反应.又KOH、NaOH具有强腐蚀性在加热情况下,对玻璃仪器有腐蚀作用,所以不用NaOH、KOH代替Ca(OH)2制NH3.

(4)用试管收集氨气要堵棉花

因为NH3分子微粒直径小,易与空气发生对流,堵棉花目的是防止NH3与空气对流,确保收集纯净.

(5)干燥氨气 干燥氨气应采用碱石灰(氢氧化钙(Ca(OH)2),大约75%),水(H₂O,大约20%),氢氧化钠(NaOH,大约3%),和氢氧化钾(KOH,大约1%)的混合物).不能用浓硫酸,因为浓H2SO4(酸性)与NH3反应生成(NH4)2SO4 ; 不能用氯化钙,NH3与CaCl2反应能生成CaCl2·8NH3(八氨合氯化钙)

CaCl2+8NH3==CaCl2·8NH3

类似的还有乙醇,也不能用氯化钙.

忧伤的蓝天
紧张的哈密瓜,数据线
2025-08-29 07:48:52
很久很久以前,人类就开始仰望星空。 科技 的发展,让人类冲出了生存的蓝色星球,开始 探索 广袤的宇宙。为了在宇宙里走得更远,火箭的燃料自然很重要。

美国一家初创公司—— Green Hydrogen International(GHI),不久前公布了一个 60GW 的可再生氢气项目,这个项目位于得克萨斯州,将由风能和太阳能供电,采用盐穴进行储存。

得克萨斯州南部 Duval 的这个「氢城」,会是全球最大的绿氢生产和储存中心,建成后每年将生产超过 250 万吨绿氢(通过光伏发电、风电以及太阳能等可再生能源制得的氢气),约等于如今全球灰氢(是通过化石燃料燃烧产生的氢气)产量的 3.5%。

项目以 Duval 中彼德拉斯平塔斯盐丘的储氢设施为中心,通过管道将绿氢输送到 Corpus Christi 和 Brownsville,在那里将其转化为绿氨、可持续航空燃料和其他产品,或通过管道直接输送到全州的氢能发电厂和其他用户。

在 Green Hydrogen International 公司公布的项目计划里,绿氢的其中一项用途是可持续火箭燃料,该公司正在考虑在 Brownsville 将氢气与二氧化碳结合起来,为德克萨斯州南部的发射作业制造一种绿色甲烷火箭燃料。

Brownsville ,正是 SpaceX South Texas 发射场的所在地,2018 年,SpaceX 宣布这个发射场将专门用于 SpaceX 的 Starship 运载火箭。

SpaceX 目前正在开发一种新型火箭发动机—— SpaceX Raptor,用于开发中的 SpaceX Starship,Raptor(猛禽)发动机将使用低温液态甲烷和液态氧作为燃料,而不是该公司迄今为止使用的基于煤油的燃料。

在成立 SpaceX 时,马斯克就表示过自己的宇宙 探索 目的地——火星。要想完成火星 探索 ,怎么去和怎么回都是需要解决的问题。

冲出地球后抵达火星,发动机要产生足够的比冲,比冲的上限由燃料决定。 探索 后从火星返回地球,出发时就带上返程的燃料,增加了火箭的负荷,明显不太现实。因此需要在宇宙中补充燃料,让火箭能够返回地球。

目前来说,较为理想的火箭燃料应该是液氢和液氧,但液氢的制备和储存难度较高。而甲烷的冰点(约 -182 )与液氧的沸点(-183 )相当,相比于与液氧和煤油,液氢和液氧之间的温度差,对燃料储箱的要求较低,也能减轻结构重量。

另外,甲烷液氧发动机的比冲,介于液体氢氧发动机和液氧煤油发动机之间,能冲向火星。更重要的是,火星的环境中有二氧化碳和冰,可以制成甲烷和氧气,也就意味着,使用 SpaceX Raptor 的火箭,可以在火星上补充燃料。

可再生能源毫无疑问是未来的发展方向,Green Hydrogen International 利用可再生能源得到的氢气,又有多样的用途。有了 GHI 的氢气提供助力,希望 SpaceX 的火箭在火星着陆的那一天能快一些。

活泼的鞋垫
野性的往事
2025-08-29 07:48:52
“百年老店”、多元化电子电气产品制造商日本东芝集团(Toshiba)正在全力布局有“未来能源”之称的氢能,并将大规模可再生能源制取“绿氢”视为低碳能源时代的完美解决方案。

近日在上海举行的第三届中国国际进口博览会期间,东芝多位高管对澎湃新闻表示,除了已提出“氢能源 社会 ”愿景的日本本土之外,东芝非常看好氢能在中国的发展前景。

放眼全球,日本是近年来最热衷于发展氢能的国家之一。日本“氢能基本战略”提出,到2030年要确立国内可再生能源制氢技术,构建国际氢能供应链,长期目标是利用碳捕获(CCS)技术实现平价化石燃料的脱碳制氢和可再生能源制氢。对于能源自给率低的日本而言,用零碳排的可再生能源来制取清洁高效、较易储运的氢能,无疑是“后福岛时代”得以兼顾能源安全和碳中和目标的理想选择。

日本能源转型历程

“东芝早在50年前就已经开始做氢能方面的技术研发,进行相关技术储备。我们在40年前推向市场的产品,已经有氢能利用的影子。”负责氢能业务的东芝(中国)有限公司营业总监张童对澎湃新闻表示,早年东芝的制氢路线是烃类醇类重整制氢。但在零碳理念下,该公司内部近十年间全面提升氢能体系,东芝燃料电池体系全部是纯氢燃料电池。

据介绍,东芝的纯氢能燃料电池系统H2Rex已累计在日本国内交付100台以上。这种100kW的模块化单元可根据需求灵活组合,启动时间不到5分钟,高效将管道或气罐中的氢气转化为电能和热能。

东芝的纯氢能燃料电池系统H2Rex累计在日本交付100台以上

典型场景如东芝的新氢能综合应用中心,利用太阳能电解水制备氢气,并直接将其应用在东芝的日本府中工厂的燃料电池物流叉车上。这样,不但燃料电池物流叉车在运转时不排放二氧化碳,而且,因为使用了通过可再生能源制取的氢气作为燃料,从制氢到氢利用的全程实现了零碳排。

当突发灾难时,这套小型分布式能源亦可大显身手,作为一条生命线为300名受灾群众提供一周的电力和热水供应。

纯氢固然样样好,但目前在全球范围内仍受居高不下的成本所困。据澎湃新闻了解,上述在日本落地的东芝纯氢燃料电池系统均为有日本政府政策支持的项目。

张童表示,全球可再生能源快速发展,但风电、光伏始终存在间歇性问题。尤其在中国,风电、光伏装机的迅猛增长对电网调峰要求巨大,弃风、弃电的问题屡见不鲜。若将这部分电力转换成氢能储存起来,在需要时再调取,就是一个最理想的结合。“可再生能源与电解质制氢技术结合起来,制出来的氢完全是绿色的。”

他认为,在该领域,东芝的所长是对电力系统、电子设备、控制系统的深入了解和对氢的长期技术积累,目前正在与多家上游制氢企业探讨合作。在氢能起步阶段,东芝呼吁政府对全行业予以政策支持,鼓励更多企业参与氢能产业链的完善,并尽早明确氢使用的法律法规。在这些前提下,氢能成本才能随着规模化效应快速下降。

氢能成本的下降有赖于一个足够大且高速成长的下游市场。东芝正在推动纯氢能燃料电池系统H2Rex尽早应用于中国市场,使其成本上尽早符合中国市场潜在的需求,并联合中国合作伙伴一起开拓市场。

实际上,东芝对于“终极能源解决方案”的认识,在日本福岛核事故之后出现了彻底的转变。东芝曾是全球核能领域的重要参与者,旗下拥有 历史 战绩辉煌的美国西屋电气公司。但由于2011年福岛核事故后全球核电建设放缓、建造成本陡增、西屋电气申请破产保护等原因,东芝最终选择剥离核电资产。

今年10月,日本首相菅义伟在临时国会上发表施政演说时宣布,日本将争取在2050年实现温室气体净零排放。这标志着作为全球第三大经济体和第五大碳排放国的日本在气候议题上的立场发生巨大转变。目前,日本的温室气体排放中有至少80%来自能源领域。

“二氧化碳零排放并不是最近才有的呼声,很早以前大家就在进行与此相关的探讨。”东芝中国总代表宫崎洋一对澎湃新闻说道,福岛核事故改变了全球的碳减排思路。2011年之前,日本、欧洲都将低碳发电目标寄希望于核能,但福岛事故后由于安全标准升级、核能发电成本陡增,欧洲主要国家纷纷选择弃核。

宫崎洋一称,除了重点业务氢能之外,目前东芝还有其他颇具竞争力的能源业务和碳捕捉技术,可以根据不同地区的特征进行灵活组合。具体而言,在水电领域,东芝的实际供货数量和技术实力处于全球第一梯队,已经向44个国家及地区累计供货2300多台水轮机和1800多台发电机;光伏领域,东芝的工业用光伏发电系统在日本有2700处应用,住宅用光伏发电系统在日本为10万户以上客户使用;地热领域,东芝已向全球提供累计达3.7GW的地热发电设备,以设备容量计处于全球第一。

福岛氢能研究基地(FH2R)

在日本国立的新能源产业技术综合开发机构(NEDO)牵头下,东芝与另外两家日本企业合作的福岛氢能研究基地(FH2R)已于今年2月底建成。

FH2R系统概览

该项目建有全球最大的利用可再生能源的10MW级制氢装置,正在验证清洁低成本的制氢技术。这里产生的氢气不仅用来平衡电力系统,还为固定的氢燃料电池系统、移动的氢燃料车等提供动力。

校对:刘威

传统的向日葵
斯文的月饼
2025-08-29 07:48:52
摘要:位于西澳大利亚的亚洲可再生能源中心计划装机容量为26GW,上周获得了联邦政府的支持。工程预计将于2026年开工。

上周晚些时候,拟议中的26GW-亚洲可再生能源中心(AREH),从联邦政府那里获得了“主要项目地位”,该项目将使澳大利亚成为全球主要的氢等绿色能源生产国和出口国。

耗资500亿澳元(合356亿美元)的AREH项目,将利用西澳大利亚东部皮尔巴拉地区世界一流的风能和太阳能资源,将高达23GW的产能用于生产绿色氢和绿色氨。它还将为西澳大利亚皮尔巴拉(Pilbara)地区的当地用户提供高达3GW的能源生产,如采矿和矿产加工企业。

“主要项目地位”标志着该项目对澳大利亚的战略意义。在这种情况下,AREH与政府的技术投资路线图相吻合,该路线图强调氢是优先发展的技术。在10年的建设过程中,该项目还将提供2万多个直接和间接工作岗位,2027年开始运营后,还将提供数千个永久性工作岗位。

该项目的主要发展伙伴联盟结合了香港绿色氢气开发商洲际能源公司、CWP可再生能源公司、涡轮机供应商维斯塔斯公司和路径投资公司的专业知识。

CWP可再生能源公司创始人兼主管Alex Hewitt说:“我们很高兴能得到州政府和联邦政府的信任和支持,我们的宏伟愿景是利用澳大利亚的许多自然优势,在澳大利亚建立一个新的绿色氢工业部门。”

AREH公司将利用其可再生能源发电的电解槽从海水中制造氢——全产可产生高达100 TWh的电力——用于大规模生产绿色氢产品,以供应国内和出口市场。