建材秒知道
登录
建材号 > 能源科技 > 正文

可再生能源并网系统有哪些

安详的薯片
端庄的大神
2023-02-06 16:07:48

光伏发电有几种

最佳答案
饱满的大雁
体贴的犀牛
2025-09-10 13:22:41

三种

1、独立光伏发电系统:

独立光伏发电系统也叫离网光伏发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。

2、并网光伏发电系统:

并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。

因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。

并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。

3、分布式光伏发电系统:

分布试光伏发电是一种通过光能转化为电能发电方式,这种发电方便以其绿色清洁,使用方便,节能降耗等特点正逐步走进平常人的生活中,也正是因为其优点显著不浪费资源被国家纳入重点扶持行业。

最新回答
痴情的香氛
健壮的可乐
2025-09-10 13:22:41

可再生能源有太阳能、生物能、风能、水能、海洋能、地热能、氢能、核能等。

1、太阳能:直接来自于太阳辐射。主要内是提供热量和电能。

2、生物能:由绿色植物容通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉。通过燃烧和厌氧发酵获得沼气来取得能量。

3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成。主要是通过风力发电机来获得能量。

4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能。主要是通过水力发电机来获得能量。

5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的。潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响。主要是通过潮汐的动能来发电。

6、地热能:来自于地球内部放射性元素的衰变。可以用于地热发电和供暖。

7、氢能:通过燃烧或者是燃料电池来获得能量。

8、核能:通过核能发电站来取得能量。

扩展资料:

可再生能源的特点:

可再生自然资源在现阶段自然界的特定时空条件下,能持续再生更新、繁衍增长,保持或扩大其储量,依靠种源而再生。

一旦种源消失,该资源就不能再生,从而要求科学的合理利用和保护物种种源,才可能再生,才可能“取之不尽,用之不竭”。土壤属可再生资源,是因为土壤肥力可以通过人工措施和自然过程而不断更新。

可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。

大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。

参考资料:百度百科-可再生能源

完美的小懒虫
体贴的棒棒糖
2025-09-10 13:22:41
1、水能。水能是清洁能源,是绿色能源,是指水体的动能、势能和压力能等能量资源。这种可再生能源主要用于水力发电。水力发电将水的势能和动能转换成电能。另外,磨坊也是采用水能的好例子。

2、风能。人类已经使用了风力几百年了。如风车,帆船等。风能是空气流动所产生的动能,是太阳能的一种转化形式。风能利用是综合性的工程技术,通过风力机将风的动能转化成机械能、电能和热能等。

3、太阳能。自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。而在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,可以利用光热转换和光电转换两种方式,如太阳能发电。另外,广义上的太阳能也包括地球上的风能、化学能、水能等。

4、地热能。人类在很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖,以及烘干谷物等。

清秀的冬瓜
唠叨的戒指
2025-09-10 13:22:41
可再生能源是可以重复生产的,而现在我们市场上占大部分的能源是不可再生的矿物能源如石油、天然气、煤、核能等。既然是不可同生的,那就会越用越少,最后用完,除了会价格越来越贵外,能源问题还会引发人类发展中的种种矛盾和冲突,如阻碍经济发展、战争、环境污染等等诸多问题。为了突破这个制约人类生存和发展的问题,许多国家都将开发可再生能源提高到国家的生存和发展战略层面上来,其必要性可想而知。

可再生能源有风能、太阳能、地热能、海潮海浪能、水力发电、动植物油及其产生的沼气、水电解氢、氢燃料电池、超长寿命的固体电池等等很多种类。

可再生能源的特点是可再生,可持续,有些如太阳能、风能、水力、地热能等大部分还是很环保的能源。

它们在生产和生活中的应用和现在我们在使用的电源、燃气、煤、电池的用途一样。

潇洒的水杯
深情的冷风
2025-09-10 13:22:41
我们当前的电力系统电源的主体是同步发电机。同步发电机基于电磁感应原理,以建立稳定电压源的形式,将水力、煤或燃气产生的蒸汽等机械能转化为可靠的电能。不同的发电机之间则通过电功率与功角的比例关系、电功率与机械功率在转子上的平衡作用等基本机制保持同步运行,从而共同构架起人类创造的最大规模动力系统即电力系统的稳定运行。

当电力系统中的负荷突然退出或投入运行时,同步发电机首先会大致按照电气距离的远近将这部分功率瞬时分担起来,从而保证电力系统用功功率实时平衡。其后,由于发电机机械功率和输出电功率的不平衡,其转速就会发生变化,或降低或升高,由于发电机转子的惯性,转速的变化速度被控制在合理的范围内。再后,当转速的变化超过一定阀值,发电机的动力系统就会自动发出增加或减少机械功率的指令,重新将发电机转速拉回到额定值附近,从而保证整个电网的频率在合理的范围内。

与此同时,当电网受到扰动,例如发生短路故障时,同步发电机可以保持内电势幅值基本不变,并瞬时输出无功电流,当短路故障切除后,同步发电机可以根据电网电压的恢复情况瞬时调整其无功输出,自动励磁控制系统也会随后自动发出增励磁或者减励磁指令,将电压控制在合理的范围内。

可以看到,在这样一个系统中,无论是负荷变化还是短路故障,同步发电机通过自身固有特性与调速、励磁控制的结合,将电网的频率、电压控制在合理范围。

在这样的传统电力系统中,负荷大时间尺度上变化可预测,小时间尺度上通过电气参数自动分配到同步发电机组上保证供需平衡,工作点稳定;同时,电源是可计划和可控工作的,当自动平衡后的稳定工作点偏离额定值后,都可以通过调节同步发电机电源的功率、电压输出使得整个电网恢复到额定的稳定工作点。

新能源发电与同步发电机有本质区别

再来看新能源发电。当前技术下的新能源发电主要指风电和光伏,它们与同步发电机有本质区别,可统称为非同步机电源,并网器件由电力电子换流器构成,其特性主要由换流器的控制特性塑造。目前在实际工程中广泛使用的变流器采用跟网型控制策略,即通过锁相环来实现变流器与电网之间的同步,采用矢量电流控制来控制变流器的输出电流,从而控制馈入电网的有功/无功功率,其本质上是受控电流源,主要控制目标是跟踪太阳能与风能当前的最大功率,并最大效率的将太阳能、风能转换为电能馈入电力系统。这种控制策略由于以电流作为控制目标,无法承担按计划、受控提供能量保持供需平衡(频率稳定)和平稳电网电压。

新型电力系统的显著特征是新能源在电源结构中占据主要地位,随着新能源发电装置占比增加到一定程度,例如新能源占比70%,同步机电源占比30%,即使负荷不变化,当新能源部分的波动由于天气影响超过30%时,30%的同步机电源就无法做到受控按需平衡功率,这样一个系统遇到类似扰动将无法正常运行。

除此之外,当前的新能源发电与同步机发电比较,还有以下特征:

首先,新能源的出力主要受天气的影响,和负荷的供电需求无法自动匹配,当新能源发电占比较小时,还可以通过其它同步发电机的调节机制来保证整个大电网的功率平衡,当新能源占比较大时,平衡机制将无法满足,只能采取限制新能源发电的形式来解决。据初步统计,2022年第一季度我国个别省份的新能源消纳率不足,主要是因为这个原因。

其次,新能源基本不具备惯量支撑能力,当新能源的占比增加时将导致整个电网的惯量降低。惯量降低后,同样的功率波动下,频率变化速度变快,调节难度增大;同时相同时间尺度内频率总的变化幅度变大,易发生超出设备允许的频率偏差范围的事件(例如火电同步机组的转子长期允许运行的频率在额定值附近2Hz-3Hz左右),导致电力系统的安全稳定运行风险增大。

再有,新能源并网换流器从发电经济性上考量,设计的过压、过流能力比同步发电机低较多。在电网发生短路故障时,新能源向故障点提供的短路电流水平较低,故障消除后,新能源也无法给电力系统提供足够的动态无功支撑以促进电力系统的功角和电压稳定工作点的恢复。如果上述阶段造成了接入电网的过电压水平较高(如超过1.3倍额定值)或电压较长时间无法恢复,新能源为了保证设备安全还会主动脱网运行,从而进一步恶化电力系统的频率稳定性。

还有,新能源并网换流器的控制速度快,按基本控制原理,控制速度越快,在接入电网较弱的情况下,发生宽频率振荡的风险也越大。2015年7月,新疆哈密地区新能源引发次同步功率振荡,导致天中直流配套火电三台机组轴系扭振保护动作,当时就引发了行业的高度关注,近几年类似宽频带振荡事件频发,如不能妥善解决,将制约新能源的发展与应用。

总结来看,新能源上述特征的存在,既有其自身发展规律的问题,也与新能源比常规同步电源在电力系统的电压、频率调节控制能力相对降低有关。

同样,解决的办法也需从这两个方面入手:其一,升级新能源发电特性,通过保留功率裕度、提升变流器过载能力同时采用新的控制策略等措施,使其具备常规水、火等同步发电机支撑电网的良好特性,可与同步发电机协同工作。这将影响新能源的发电量,经济性降低,短期内难以实现;其二,在新能源附近增加新的设备,具备同步发电机或者类似同步发电机的电压控制和频率调节能力,来保证既能消纳新能源,又能消除新能源对电力系统带来的不利影响,提供系统的稳定性支撑。

构网型储能技术综合解决大规模新能源发展难题

在平抑新能源发电功率波动,降低大电网调峰压力,提升大电网对新能源的接纳水平方面,储能环节是个必选项。各地也不断在尝试新能源场站配置大容量储能系统进行示范应用,电池储能技术得到了迅速发展。各省能源局也纷纷出台相关政策,要求在开发新能源的同时,配套建设10%-20%容量的储能系统。

但是当前配置储能的要求,都是从解决新能源波动的角度提出的。从技术的潜力来看,基于换流器并网的电化学储能的功能远不止如此。通过增加新型的控制策略就可以使储能具备同步发电机或者类似同步发电机的频率调节和电压控制能力,解决以上提出的新能源消纳增长带来的问题,这就是构网型储能技术。为了能够较好的使用新能源,南瑞继保较早时期就组织了团队深入研究如何利用储能系统解决相关问题,率先研制出了大容量构网型储能技术。该技术相较于同容量削峰填谷解决方案,只增加了较少的硬件成本,却可以进一步挖掘发挥储能的潜能,使储能可以对电网电压、频率和惯量进行支撑,从而综合解决大规模新能源发展中面临的难题。

忧郁的黑夜
复杂的朋友
2025-09-10 13:22:41
《可再生能源法》(修正案)第四章推广与应用第十四条规定,电网企业应当与按照可再生能源开发利用规划建设,依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内符合并网技术标准的可再生能源并网发电项目的上网电量。发电企业有义务配合电网企业保障电网安全。

从风电发展来看,相对于行业发展速度,标准是滞后的。新能源法修改后强调的是规划,同时强调了电网公司的义务,也强调了发电企业的义务。其实政策和行业标准都是推动这个行业发展的手段和方式,标准并不是限制行业发展的。比如,风电大规模发展,国内外的各种标准,恰恰是保障这个行业有序稳定发展相适应的政策。目前风电行业出现的问题,是和标准滞后有关联的,包括设备制造业。因此,标准和相应检测手段是支撑这个行业稳定和发展的基础性工作。

我国的光伏并网产业还处于发展的初级阶段,光伏并网标准还不够健全,目前已经颁布的光伏并网标准主要有:GB/Z19964-2005《光伏发电站接入电力系统技术规定》、GB/T20046-2006《光伏(PV)系统电网接口特性》、GB/T19939-2005《光伏系统并网技术要求》、SJ/T11127-1997《光伏(PV)发电系统过电压保护-导则》、Q/GDW617-2011《光伏电站接入电网技术规定》、Q/GDW618-2011《光伏电站接入电网测试规程》等。

目前,正在制定的标准有国标9项、行标18项、企标5项,主要有:GB19964《光伏发电站接入电力系统技术规定》(修订)、光伏发电站无功补偿技术规范(国标)、光伏发电系统接入配电网技术规定(国标)、光伏发电站接入电网检测规程(国标)、光伏发电站并网运行控制规范(国标)、光伏发电站低电压穿越检测技术规程(行标)、光伏发电站逆变器防孤岛效应检测技术规程(行标)、光伏发电站逆变器电能质量检测技术规程(行标)等。

希望能够帮到你!更多的信息可以关注安徽亿森新能源这个公司的网站

冷傲的香水
还单身的微笑
2025-09-10 13:22:41
可再生能源指的是在自然界可以循环再生,取之不尽,用之不竭的能源。比较常见的可再生能源有太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。

不同类型的可再生能源

通过使用以下类型的可再生能源,我们可以帮助减少对化石燃料的依赖。这不仅将有助于保存不可再生资源,还将有助于减少污染。

1.太阳能

当我们想到可再生能源时,太阳能通常是想到的最早的自然能源之一。每天,太阳以太阳辐射的形式散发出大量的能量。最终,其中一些到达了地球,我们可以以各种不同的方式利用它。

尽管太阳能是最受欢迎的可再生能源之一,但目前在全球可再生能源容量中排名第三。根据IRENA的2019年报告,该报告研究了2018年底的可再生能源发电能力。

太阳能光伏

太阳能光伏(PV)是我们可以用来将太阳能转化为电能的技术。在这里,太阳能电池板被放置成吸收来自太阳的能量。然后,他们能够使用太阳能光伏工艺产生电流。

这样的太阳能光伏板可以发电。

我们可以在家庭或工业规模上使用太阳能。屋顶太阳能电池板是世界上许多家庭的常见景象。它们有助于发电,供家庭使用。太阳能农场是工业规模使用太阳能的一个例子。在这里,大量太阳能电池共同工作以产生大量电能。

太阳能热

太阳能热是太阳能使用的另一种类型。在这里,我们可以利用来自太阳的能量来加热流体(例如水)。该技术可以在家用太阳能热水系统中找到。太阳能集热器是可用于此目的的设备。有两种主要类型,称为“平板”和“真空管”收集器。

太阳能热真空管集热器。

太阳能热电厂也存在,可以利用太阳能热发电。通过集中太阳热能来加热特殊的流体。流体的热量然后转移到水中,然后沸腾并产生蒸汽。然后,蒸汽能够为涡轮机提供动力,涡轮机使发电机转动,从而产生电能。

2.风能

风能是另一种流行的可再生能源。几个世纪以来,我们一直以风船和风车的形式利用风。如今,我们主要利用风力在风力涡轮机的帮助下发电。

许多国家使用风力涡轮机来满足其能源需求。根据它们的位置,它们可以是一种非常有效的发电方式。风电场是风力涡轮机的集合,可以在陆地(陆上风电场)和海上(海上风电场)中找到。

风能的总容量在2018年略高于太阳能。风能占可再生能源总发电量的24%,太阳能达到20%。

这样的风力涡轮机可以发电。

3.地热能

地热是另一种可再生能源。我们脚下的地面包含大量热能。地面靠近地面,从太阳吸收热量。在地球深处,岩浆可以帮助加热岩石。我们可以以不同的方式利用这种能量。

家用地热能系统使用地源热泵来帮助加热房屋的水。这可能涉及将几百米的水管放置在离地面几英尺的地方。当水流过管道时,它吸收了地面的热量,并且另一端的热量要比开始时的温度略高。然后可以重复该过程以增强效果。

地热热泵使用类似的管道来加热水。

地热发电厂是工业用途的一个例子。这些装置中的一些可以挖掘到地下深处的过热岩石中。可以将水泵入井中,然后再产生蒸汽,然后将其抽出以驱动涡轮机。这类发电厂仅在岩浆最接近地壳的区域有效,例如火环。由于这一地理限制,地热发电不如太阳能,风能和水力发电受到欢迎。

4.水能

水能包括利用流动的水来发电。数百年来,我们一直以水车的形式使用该技术。如今,我们主要将其用于发电。

水源可能来自不同的地方。一些最常见的水力发电技术类型包括:

水力发电大坝–这些利用水坝围墙捕获大量的水。然后可以通过水坝的结构释放水,在此过程中旋转涡轮机。

潮汐能–利用水下涡轮机来利用潮汐能。随着潮汐的进出,涡轮机旋转,然后借助发电机发电。

波浪动力–比上面的动力少,但具有利用波浪动能的潜力。在这里,大的管状容器被放置在靠近海岸的地方。当它们在波浪中摇摆时,它们能够将波浪能转化为电能。

在考虑可再生能源时,我们经常忽略水力发电。但是,根据IRENA的2019年报告,到2018年底,水能占可再生能源发电能力的50%。这不仅仅是太阳能和风能的总和!

截至2018年底,水力发电容量最高的三个国家是中国,巴西和美国。中国的装机容量为352,261兆瓦,领先于巴西的104,195兆瓦和美国的103,109兆瓦。

这样的水力发电大坝可以产生大量的电力。

5.生物质能

生物质是另一种可再生资源。它使用有机物来满足各种不同的能源需求。有机物可以包括以下任何一种:

木材–就发电而言,主要来自柳树和杨树。其他来源包括木屑,锯末,原木和树皮。

作物-包括小麦,玉米,甘蔗和土豆等淀粉类作物。它还可以包括油菜作物,例如油菜籽,油菜籽,大豆和向日葵。

动物与人类废物–包括肥料,污水,泥浆和动物垫料。

园林垃圾–尚未完全分解的鲜草屑。

就生物能源而言,我们可以以不同的方式利用以上内容。

生物质能

在这里,木材被燃烧以加热水。然后产生蒸汽,该蒸汽可以驱动涡轮以发电。这与使用煤,石油或天然气的传统发电厂的过程类似。

生物燃料

我们可以使用传统的粮食作物来生产生物燃料,例如生物乙醇和生物柴油。然后可以将它们用于兼容的发动机中,以替代汽油和柴油。

沼气

这使用了称为“厌氧消化”的过程,该过程涉及在密闭腔室内加热动物或人类废物。随着加热,它分解得更快并产生甲烷。然后,我们可以捕获它并存储以备后用。它可以在炉子上燃烧以做饭或取暖,有时用于运输。

像这样的厌氧消化池可以产生沼气。

生物能源问题

关于生物质是否可再生存在一些争论。但是,通常认为它是可再生能源。这是因为只要地球上有生命支持,它所使用的有机物就会一直存在。

当然,生物质确实会带来一些环境影响,应予以考虑。尽管农作物在生长过程中会吸收二氧化碳,但燃烧时会释放到大气中。这可能对空气质量和我们的健康有害。

回顾

随着全球能源需求逐年增加,寻找可持续的能源生产方式现在比以往任何时候都更加重要。利用太阳能,风能,地热能,水能和生物质能可以帮助实现这一目标。

可再生能源与不可再生能源相比具有关键优势,因为它们永远不会耗尽。它们通常对环境也更好。您可以在此处更深入地了解可再生能源的优缺点。

瘦瘦的帅哥
高兴的书包
2025-09-10 13:22:41
我国新能源及其发展状况的思考

摘要:20世纪的后工业时代,人类生存和社会发展对能源的依赖越来越大,能源危机也在一定程度上拖慢了经济发展的速度。本文从我国能源发展现状和新能源、可再生能源的开发利用及其特点着眼,分析了太阳能、风能、核能等清洁可再生能源的可利用价值和利用途径,针对我国现阶段的发展状况进行思考,并做出了总结。

关键词:新能源;开发利用;太阳能;风能;核能

1 引言

谈及中国未来的发展,能源问题是无论如何也绕不过的。在很大程度上,可以说能源是中国进一步发展的前提。中国未来能源中可再生能源的比重很可能要比现在高得多,陈旧过时、设计落后的输电网将被淘汰,也就是说,由尖端数控、电子配电和更高负荷输电线路构成的智能输电网所替代。2009年12月,全球瞩目的新一轮联合国气候变化大会在丹麦首都哥本哈根召开,虽然未达成实质性的协议,但是哥本哈根会议有望成为世界全面向低碳时代转型的历史转折点。从大的方向上看,可持续的低碳和绿色经济,也必将是未来世界发展的大势所趋,这将会给新能源、环保等新兴产业带来机遇[1]。

低碳经济的迅速蔓延并非偶然。早在各国意识到传统化石能源不可再生的危机时,低碳经济就已经开始孕育。在席卷全球的金融危机和全球气候变化的巨大压力下,各国政府纷纷推出绿色政策,低碳经济模式得到普遍认可。低碳时代要求高效利用能源、开发清洁能源、追求绿色GDP,核心是能源技术和减排技术创新、产业结构和制度创新以及人类生存发展观念的根本性转变。低碳式发展模式的一个关键环节就是发展绿色新能源,主要包括太阳能、风能、核能以及地热能、氢能等多种能源,它们的特点是污染少,能量可持续或者是能量来源成本较低。本文中着重介绍太阳能、风能以及核能等重要新能源的利用现状和发展前景。

2 新能源的来源和简介

2.1 太阳能

2.1.1 太阳能的定义及发展史

太阳能(Solar Energy),又称太阳辐射能,指的是太阳以电磁辐射形式向宇宙空间发射的能量,也可以描述为太阳内部高温核聚变反应所释放的辐射能,其中约二十亿分之一到达地球大气层,是地球上光和热的源泉。

随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电是一种新兴的可再生能源。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。

2.1.2 太阳能的分类

(1)太阳能光伏

光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

(2)太阳热能

现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

2.1.3 太阳能的开发途径

(1)光热利用

它的基本原来是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等3种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(<200℃)、中温利用(200~800℃)和高温利用(>800℃)。目前低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。

(2)太阳能发电

未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。目前已实用的主要有以下两种:

①光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。

②光—电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。

(3)光化利用

这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。

(4)光生物利用

通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)、油料作物和巨型海藻。

2.1.4 太阳能发电的优点

照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为是理想的能源。

从太阳能获得电力,需通过太阳电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净(无公害);③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥使用者从感情上容易接受;⑦获取能源花费的时间短。不足之处是:①照射的能量分布密度小,即要占用巨大面积;②获得的能源同四季、昼夜及阴晴等气象条件有关。但总的说来,瑕不掩瑜,作为新能源,太阳能具有极大优点,因此受到世界各国的重视。

2.2 风能

2.2.1 风能的定义及发展史

风能是因空气做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。现在人们通常用风车把风的动能转化为旋转的动作去推动发电机,以产生电力。据统计到2008年为止,全球以风力产生的电力约有94.1百万千瓦,供应的电力已超过全球用量的1%。风能虽然还不是大多数国家的主要能源,但在1999年到2005年之间已经成长了四倍以上。

风能量是丰富、近乎无尽、分布广泛、环保无污染。人类利用风能的历史可以追溯到西元前,但数千年来,风能技术发展缓慢,没有引起人们足够的重视。自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原,以及远离电网和近期内电网还难以达到的农村、边疆,风能作为解决生产和生活能源有着重要的意义。即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视。

2.2.2 风能的来源

风是地球上的一种自然现象,它是由太阳辐射热引起的,风能是太阳能的一种转化形式。空气流动所形成的动能即为风能。太阳辐射到地球表面,地球表面各处受热不同,产生温差,从而引起大气的运动形成风。风能就是空气的动能,风能的大小决定于风速和空气的密度。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。

2.2.3 风能的利用和经济性

风能利用形式主要是将大气运动时所具有的动能转化为其他形式的能量。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了中国南北之间的气压梯度,使空气作水平运动。

利用风来产生电力所需的成本已经降低许多,即使不含其他外在的成本,在许多适当地点使用风力发电的成本已低于燃油的内然机发电了。风力发电年增长率在2002年时约25%,现在则是以38%的比例快速成长。2003年美国的风力发电成长就超过了所有发电机的平均成长率。自2004年起,风力发电更成为在所有新式能源中已是最便宜的了,在2005年风力能源的成本已降到1990年代时的五分之一,而且随着大瓦数发电机的使用,下降趋势还会持续。

2.2.4风能的优缺点

(1)优点

风能是一种洁净的能量来源,随着风能设施逐渐进步,大量生产降低成本,在一些地区,风力发电成本低于发电机。风能设施多为不立体化设施,可保护陆地和生态环境。风力发电是可再生能源,很环保。

(2)风力发电在生态上的问题是可能干扰鸟类,目前的解决方案是离岸发电,离岸发电价格较高但效率也高。在一些地区,风力发电存在经济性不足:许多地区的风力存在间歇性。风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。进行风力发电时,风力发电机会发出庞大的噪音,所以需要空旷的地方来兴建。现在的风力发电还未成熟,还有相当大的发展空间。

2.3 核能

2.3.1 核能的定义

核能是通过转化其质量从原子核释放的能量,符合阿尔伯特•爱因斯坦的质能方程E=mc2,其中E=能量,m=质量,c=光速常量。核能的释放主要包括核裂变能、核聚变能、核衰变能三种形式。

2.3.2 核能发电原理

核能发电利用铀燃料进行核分裂连锁反应所产生的热,将热水加热成高温高压,核反应所放出的热量较化石燃料所放出的能量要高很多(相差约百万倍),比较起来所需要的燃料体积比火力电厂少相当多。核能发电所使用的的铀-235纯度只约占3%-4%,其余皆为无法产生核分裂的铀-238。核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。

2.3.3 核能发电的优缺点

(1)优点

核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染,同时也不会产生二氧化碳等温室气体。而且核电的燃料铀燃料到目前为止没有其他的特别用途。燃料费在核能发电的成本中所占比例较低,核能发电的成本比较稳定,不易受到国际经济形势的影响。

(2)缺点

核能发电时仅将1/3的热能转化为电能,其余2/3的余热需藉循环冷却水排出厂外,冷却水的最佳来源就是天然海水,故核电厂多设置于海边(或河边)。因此废水的排出会对海洋环境造成一定的影响。水温因废水会增高2-3℃,如果持续很久会对无脊椎动物及海藻类生物都有不良影响。例如南湾核三厂附近的珊瑚大量白化死亡。而且废料的处理也是一大问题。

3 我国新能源的开发利用现状

3.1 太阳能

3.1.1 太阳能发电的应用

虽然太阳能有多种开发途径,但是目前应用最广泛且最有前景的途径就是太阳能发电。

太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散地进行,所以它适于各家各户分批进行发电,而且要联接到供电网络上,使得各个家庭在电力富裕时可将其卖给电力公司,不足时又可从电力公司买入。实现这一点的技术不难解决,关键在于要有相应的法律保障。现在美国、日本等发达国家都已制定了相应法律,保证进行太阳能发电的家庭利益,鼓励家庭进行太阳能发电。太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%。

3.1.2 太阳能电池的应用

太阳能电池是一个对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。

(1)通信卫星供电

上世纪60年代,科学家们就已经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。

(2)离网发电系统

太阳能发电控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,控制器要控制蓄电池不被过放电,保护蓄电池。蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。

(3)并网发电系统

并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。

3.1.3 我国太阳能开发现状

中国蕴藏着丰富的太阳能资源,太阳能利用前景广阔。目前,我国太阳能产业规模已位居世界第一,是全球太阳能热水器生产量和使用量最大的国家和重要的太阳能光伏电池生产国。我国比较成熟太阳能产品有两项:太阳能光伏发电系统和太阳能热水系统。

《可再生能源法》的颁布和实施,为太阳能利用产业的发展提供了政策保障;京都议定书的签定,环保政策的出台和对国际的承诺,给太阳能利用产业带来机遇;西部大开发,为太阳能利用产业提供巨大的国内市场;原油价格的上涨,中国能源战略的调整,使得政府加大对可再生能源发展的支持力度,所有这些都为中国太阳能利用产业的发展带来极大的机会。

3.2 风能

3.2.1 风能发电的应用

风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选。风能作为一种新兴的环保的可再生能源已越来越受到关注,人类对其的利用技术也日趋成熟。我国风能有相当大的开发和利用空间,在风能充沛的地区广泛建立风力发电站可以大大的缓解我国能源缺乏的问题。

3.2.2 我国的风能利用

我国位于亚洲大陆东部,濒临太平洋,季风强盛,内陆还有许多山系,地形复杂,加之青藏高原耸立我国西部,改变了海陆影响所引起的气压分布和大气环流,增加了我国季风的复杂性。冬季风来自西伯利亚和蒙古等中高纬度的内陆,那里空气十分严寒干燥,冷空气积累到一定程度,在有利高空环流引导下,就会爆发南下,在此频频南下的强冷空气控制和影响下,形成寒冷干燥的西北风侵袭我国北方各省。每年冬季总有多次大幅度降温的强冷空气南下,主要影响我国西北、东北和华北,直到次年春夏之交才消失。夏季风是来自太平洋的东南风、印度洋和南海的西南风,东南季风影响遍及我国东部地区,西南季风则影响西南各省和南部沿海,但风速远不及东南季风大[2]。

青藏高原地势高亢开阔,冬季东南部盛行偏南风,东北部多为东北风,其他地区一般为偏西风,夏季大约以唐古拉山为界,以南盛行东南风,以北为东至东北风。我国幅员辽阔,陆疆总长达2万多公里,还有18000多公里的海岸线,边缘海中有岛屿5000多个,风能资源丰富。我国现有风电场场址的年平均风速均达到6米/秒以上。一般认为,可将风电场风况分为三类:年平均风速6米/秒以上时为较好;7米/秒以上为好;8米/秒以上为很好。

中国风力资源极为丰富,风能发电很可能作为可再生能源的主力军在今后能源产业中起到领军作用。中国气象科学院研究员朱瑞兆提供的数据显示,中国风能资源仅次于美国和俄罗斯,居世界第三[3]。已探明的中国风能理论储量为32.26亿千瓦,可利用开发为2.53亿千瓦。风能如果能够全部利用起来,将满足当前能源需求的近1/4。

3.3 核能

3.3.1 世界核能发电现状

核能发电作为核能应用中发展最快的一支,第一座商业用核电厂1957年在美国宾州开始运转。1986年,前苏联切尔诺贝利核电厂发生重大事故,这一历史上最严重的核能事故,除了导致人员伤亡、土地污染等后果外,某种程度上也直接影响了核工业的前进脚步。核能从世界发展最快的能源沦为发展最慢的能源。当然,当时全球电力过剩、油价低廉、经济不景气等原因也进一步促使核电发展“一蹶不振”,二十多年后的今天,在国际能源危机的背景下,已在适应经济的快速增长和对环保的迫切要求上显示出巨大竞争力的核电,再次被提上议事日程,法国有关专家认为,芬兰建造的第三代核电站和法国兴建的同样的核电站将开启新一轮的核电发展高峰。

全世界核电当前状况有很大的不同。在30个已经具有核发电能力的国家中,核反应堆的发电百分比从法国的78%到中国的仅仅2%。截至2008年3月,全世界总计有439座核反应堆,另有35座正在建造。美国最多,有104座,法国次之,有59座,日本55座,而俄罗斯有31座并另有7座在建造中。核电发展集中在亚洲。正在建造中的35座反应堆中总共有20座在亚洲,而最近并网发电的39座反应堆中的28座也是在亚洲[4]。

3.3.2 核能应用全球升温

有越来越多的人在讨论核能发电,常常涉及诸如全球变暖和气候变化之类的更广泛的问题。是什么推动了对核电期望的上升呢?能源预测一直表明世界对能源的需求有持久的长期增长。同时新的环境限制——像京都议定书的生效等存在着避免温室气体排放的一些实际财政利益。

中国目前面临着能源需求的急剧增长,因此正在十余利用一切可能的能源包括核能来扩大其发电容量。目前中国的核电仅占全国能源总量的2%,但是为了配合国家能源结构调整,中国首先要发展的就是核电。中国核电发展的最新目标是:到2020年前要新建核电站31座,在运行核电装机容量4000万千瓦,在建核电装机容量1800万千瓦[5]。

4 中国新能源发展的战略思考

我国具有丰富的新能源和可再生能源资源:水能可开发资源为3178亿千瓦,目前已开发利用11%;生物质能资源,包括农作物秸秆、薪柴和各种有机废物,利用量约为216亿吨标准煤,占农村生活能源消费的70%,占整个用能的50%;我国太阳能年总辐射量超过60万焦耳/平方厘米,开发利用前景广阔;风能资源总量为16亿千瓦,约10%可供开发利用;地热资源尚待继续勘探,目前已探明的地热储量约为4626亿吨标准煤,现利用的仅约十万分之一;我国海洋能源资源亦十分丰富,其中可开发的潮汐能就有2000万千瓦以上[6]。

我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。我国政府承诺到2020年中国单位GDP二氧化碳排放将比2005年下降40%~45%,到2020年我国非化石能源占一次能源消费的比例达到15%左右[1]。

从第四届新能源国际高峰论坛获悉,2009年中国可再生能源在一次性能源消费结构中所占的比例已从2008年的8.4%提升至9.9%。2009年,国内一次性能源消费结构中,煤炭占68.7%,石油占18%,天然气占3.4%,非化石能源,即可再生能源消费比重上升到9.9%。根据国务院2009年年底提出的目标,到2020年非化石能源占一次能源消费比重达到15%左右。从9.9%至15%,可再生能源需提升的比重虽不算太大,但考虑到未来中国能源需求的巨大增长,上述目标的实现仍面临考验。2009年,我国能源消费总量为30亿吨标准煤。专家预测,到2020年,能源需求总量可能高达45亿吨标准煤,这意味着新能源领域必须加大投入才能确保消费比重稳定提升。根据初步分析判断,要实现可再生能源消费比重达15%的目标,到2020年我国水电装机容量要达到3亿kw以上,核电投运装机容量达到6000万kw至7000万kw,风电、太阳能及其他可再生能源利用量达到1.5亿吨标准煤以上[7]。

因此,中国长远目标应该是以风能、太阳能以及核能为主,适当发展生物质能、垃圾焚烧、沼气、地热等能源,建立多元化的新能源利用体系,合理均衡地发展新能源。

5 总结与讨论

20世纪的后工业化时代,能源和人类生存有着紧密的关系,能源危机拖慢了经济发展的速度。电力、煤炭、石油等不可再生能源频频告急,我国作为能源消耗大国,不得不考虑改变能源结构,走可持续发展道路,保证能源的可持续供给。能源枯竭和环境恶化已成为人类可持续发展的重大威胁,新能源开发迫在眉睫。新能源即将成为人类历史上的“第四次能源革命”,新能源产业将成为战略性新兴产业已经成为全球共识[8]。

欧美日等发达国家以及众多的发展中国家,纷纷投入到新能源领域,以在未来国际竞争中占有一席之地。中国也顺应潮流将新能源发展提上战略日程,但却面临缺乏规划、技术创新不足、应用障碍多、发展不均衡等问题。通过出台战略规划加强引导,通过加大技术创新、完善基础设施、建立补贴机制和能源利益调节等完善提高实用性,通过产业政策和市场培育政策完善产业链条扩展市场容量,通过多元化策略建立合理的新能源体系,是中国在新能源发展方面的必然战略选择。

发展新能源任重而道远。在未来中国,新能源将会,也必须得到大力发展。这样在未来的“低碳经济”时代,中国才有机会掌握应有的话语权,才能在国际竞争中立于不败之地。

参考文献:

[1] 胡兴军,新型能源迎来大发展机遇,新材料产业,2010(4),53~57

[2] 风能:领军新能源,消息,华北电力技术,2010(5),50

[3] 朱瑞兆,风电场风资源卫星遥感地理信息综合评估和选址研究,中国气象科学研究院年报,1997(00),41~50

[4] Alan McDonald,世界核电形势,国际原子能机构通报,2008,49(2),45~48

[5] 2007年中国能源发展报告

[6] 姚岩峰,我国新能源开发利用现状及未来发展趋势研究分析,中国市场,2010(22),16~17

[7] 能源经济资讯,中国可再生能源消费比重达到9.9%,能源技术经济,2010(22),68

[8] 柳士双,中国新能源发展的战略思考,经济与管理,2010,24(6),5~9