建材秒知道
登录
建材号 > 能源科技 > 正文

怎样提高化石燃料的燃烧效率

高贵的白昼
清爽的萝莉
2023-02-06 00:20:37

怎样提高化石燃料的燃烧效率

最佳答案
悦耳的墨镜
飘逸的芒果
2026-01-15 20:40:09

化石燃料的高效利用

基于热力学第二定律的煳分析不断深化了人们对能量和能量转换过程的认识.能量梯级利用理论的不断发展,对促进化石燃料高效利用起到了重要作用.

2.1 化石燃料的能量直接释放

燃烧是化石燃料释放其蕴含能量的基本方式.燃气轮机就是利用了燃烧过程和膨胀过程将化石燃烧转化为电能.人们发现单机热效率提高的幅度不会很大,原因膨胀透平排气带走的能量占很大比例.通过把燃气轮机与其他用能系统联系起来,综合考虑整个系统的能流安排,合理利用燃气轮机的余能,可以提高总的能源利用水平.按照能量品位的高低进行利用,总的安排好功、热(冷)与工质内能等各种能量之间的配合关系与转换利用;在系统的高度上,总体综合利用好各级能源,可以取得更有利的总效果阴.

吴仲华提出了能源利用必须“分配得当、各得其所、温度对口、梯级利用”,才能达到最有效的目的.温度对口、梯级利用的热力系统的典型例子有联合循环、热电联产、分布式能源等.

(1)联合循环.联合循环能明显提高系统的热效率,例如天然气基联合循环,可以使得发电热效率达到50%以上.联合循环可以分成燃气轮机一蒸汽轮机联合循环、注蒸汽燃气轮机循环、卡林纳循环和三重郎肯循环等.

(2)热电联产.热电联产是热机输出机械功或电能的同时,还生产工艺用热或生活用热,又称为热电并供或者功热并供.冷热电联产可以大幅度提高化石燃料的能量利用效率.热电联产取代小锅炉运行以后,节煤30%以上.热电比高的企业的综合热效率达60%以上.

(3)分布式能源.分布式能源也称分散式能源,它通过分稀在用户端的小型、微型智能化能源梯级利用系统,以及与之配合的各种可再生能源,就近满足用户对电力、热力、制冷、生活热水、除湿等多方面的需求.分布式能源的原则是综合利用、梯级利用,不是以发电为主要目的,而是根据用户的需求综合而定的.分布式能源实现了对资源的深度综合利用,将生产输送环节的损耗降至最低,从而达到高效利用燃料的目的.

以上的化石燃料的能量转化与利用,主要集中在热力循环对燃烧热的高效利用上,尽量对燃烧后的热量“吃干榨尽”.但化石燃料直接燃烧过程是其能量转化过程中煳损失最大的部分.

2.2化石燃料的能量“转化”释放与热量利用

近些年来,随着对能量品位(或能量品质)认识的加深,人们相继突破传统热转换的认识,探索利用化学转化实现化石燃料的高效利用方式.一个典型的新方式是化学回热燃气透平循环,简称化学回热循环.该循环关注通过清洁合成燃料代替传统的化石燃料.另~个是化学循环(Chemical looping)燃烧.它把传统的燃烧方式分解成两个过程:金属氧化物被化石燃料还原单元和金属被空气氧化单元.

化学回热循环作为一种新颖有前途的天然气发电系统,具有低排放、高效率和余热回收装置相对简单等优点,因而成为动力循环研究的热点之一.以下简要介绍化学回热循环的研究进展.Olmsted等人首先提出利用化学反应回收透平排气的废热来提高燃气轮机的效率.化学回热循环的特点在于系统回收透平高温排气的余热,用于甲烷、甲醇或二甲醚等燃料进行转化反应,将其转化为H2和CO的中间燃料.转化后的气体在燃烧室中燃烧,产生的高温气体进入透平膨胀作功.

在化学回热反应循环中,提高反应中燃料的转化率是提高系统能量利用效率的关键因素之一.为了提高燃料的转化率,一方面,曹文和郑丹星以及王志方指出提高原料中C02的含量,并可以降低甲烷C02转化和氢气逆变换反应的温度;另一方面人们对较低温度下能发生转化的燃料如甲醇、二甲醚等进行了研究.洪慧和金红光等人提出了中低温余热与甲醇化学问冷相结合热力循环,探讨中低温余热与清洁合成燃料间接燃烧相结合的能量释放新思路.苟晨华和蔡睿贤等人提出了一种甲醇燃料燃气轮机循环,以甲醇分解反应吸收压气机出口空气的低温热,使其转化为高品位化学能;同时得到预冷的空气参与回热,以提高透平排气余热回收效果.

这些新颖的化学回热循环关注化石燃料化学能与统内透平排气废热,促进了化石燃料的能量充分利用,但无法解决资源有限的问题.

最新回答
机智的冷风
简单的小天鹅
2026-01-15 20:40:09

优点:自然界中存在,用较小的代价就能得到。

缺点:在自然界中存量有限,早晚要开采用尽。 化石燃料是人类文明进程中的重要一环,是承上启下的一个重要阶段。没有化石燃料的开采寿命问题,就不会出现新能源的开发应用。而新能源则标志着人类进入到一个新的文明进程。由工业文明、信息文明、进步到生态文明。

拓展资料:

1、可再生能源成本趋势

在2016年投产的电厂中,全球生物质能的发电成本加权平均值是 0.066 美元/千瓦时(度),水电 0.048 美元/千瓦时,陆上风电 0.07 美元/千瓦时,地热 0.064 美元/千瓦时,太阳能光伏 0.11 美元/千瓦时,海上风电 0.152 美元/千瓦时和 CSP 0.27美元/千瓦时(图1)。全球的可再生能源电力技术除了 CSP 和海上风电以外,现均达到化石燃料的价格范围(从 0.045 美元/千瓦时,至 0.14 美元/千瓦时)。

2016-2017年不同地区、可再生能源技术平准化度电成本

近几十年来,光伏发电和陆上风电的发电成本大幅下降。光伏组件的学习率为18%至22%, 而价格自2010年以来已经下降了80%左右。由于安装成本的降低(自2009年以来,风电机组价格平均下降了38%)和由性能改善带来的产量提高使得陆上风电成本学习率达到了15%。

尽管最近投产的离岸风电和 CSP 项目仍相对昂贵,但2016年和2017年是这些技术的分水岭。两种技术仍然处于开发利用的初期阶段,发电量分别为13吉瓦 (gigawatts) 和5吉瓦。在2016年和2017年,丹麦、德国、荷兰和英国的海上风力发电的招标项目将发电协议签订到 2022 年左右。发电价格可预计下降到 0.06 美元/千瓦时至 0.10 美元/千瓦时。这个价格在欧洲新一代的发电方式中具有很强的竞争力。类似地,澳大利亚和迪拜的 CSP 招标达到了大约为0.07 美元/千瓦时的价格。这一价格将使CSP成为具备竞争力的可调度的可再生能源发电技术,目前,CSP累计装机容量不足光伏发电的2%。

虽然太阳能发电和风电在商业上已经成熟,但它们的发电成本仍有很大下降潜力。到 2025 年,光伏发电的全球加权平均成本可能下降59%,CSP 下降43%。陆上和海上风电的成本分别下降 26% 和 35%。

舒心的衬衫
慈祥的楼房
2026-01-15 20:40:09
物价上涨、能源紧缺,这颗星球上的人们生产生活基本上离不开煤炭、天然气和石油。煤炭主供中国、印度等发展中国家冶炼厂和发电站的热能和电能。天然气用来发电和家庭烹饪,说到新能源和可再生能源,主供美国和西欧。而石油,作为一种重要能源,世界任何国家几乎都离不开它,例如日常塑料塑胶用品的生产、汽油和柴油车的燃料、发电站的燃料、衣服生产等等。我们总是想当然的以为,我们的生活绿色健康又足够可持续发展。实际上我们错了。我们自以为是,又骄傲放纵,这次的能源危机、粮食危机,是自新冠肆虐全球以来,对人类再一次的警醒。如果全世界没有了石油,我们该如何生存?如果所有的燃煤发电厂都没有了电煤,绝大部分人的生活将陷入黑暗。尽管我们有自以为充足的太阳能、风能、核能、潮汐能、水能以及地热能,但是现实是,这些可持续的能源并不能解决主要的能源矛盾,即对石油等化石能源的高需求和能源革命的势在必行。要转向绿色低碳发展,就必须增加可持续能源在一次能源中的占比。比如说大力发展风能和太阳能。但是我们在这个发展过程中太过于急功近利,没有意识到实际需求和实际供给之间的矛盾。我们既要大力发展可持续再生能源,也要尽早摆脱石油和煤炭的束缚。

难过的板栗
高挑的世界
2026-01-15 20:40:09
化石能源就是由动植物尸体经过复杂的地质过程形成的能源物质。例如煤炭、石油、天然气等。应为这些能源物质的本质是动植物化石,所以称为化石能源。生物质能是生物体内含有的能量,是由植物通过光合作用从太阳能中吸收,再通过食物链传递的。所以说化石能源来自上千万年前的太阳能和生物质能。大量使用化石能源会使大量能量从物质能转化为热能,导致全球气候变暖。二氧化碳的释放影响更大。

喜悦的飞机
多情的毛豆
2026-01-15 20:40:09
可再生能源

可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。

风能。风能是指风所负载的能量,风能的大小决定于风速和空气的密度。我国北方地区和东南沿海地区一些岛屿,风能资源丰富。据国家气象部门有关资料显示,我国陆地可开发利用的风能资源为2.53亿千瓦,主要分布在东南沿海及岛屿、新疆、甘肃、内蒙古和东北地区。此外,我国海上风能资源也很丰富,初步估计是陆地风能资源的3倍左右,可开发利用的资源总量为7.5亿千瓦。

太阳能。太阳能是指太阳所负载的能量,它的计量一般以阳光照射到地面的辐射总量,包括太阳的直接辐射和天空散射辐射的总和。太阳能的利用方式主要有:光伏(太阳能电池)发电系统,将太阳能直接转换为电能;太阳能聚热系统,利用太阳的热能产生电能;被动式太阳房;太阳能热水系统;太阳能取暖和制冷。

小水电。水的流动可产生能量,通过捕获水流动的能量发电,称为水电。小水电在我国是指总装机容量小于或等于5万千瓦的水电站。

生物质能。生物质能包括自然界可用作能源用途的各种植物、人畜排泄物以及城乡有机废物转化成的能源,如薪柴、沼气、生物柴油、燃料乙醇、林业加工废弃物、农作物秸秆、城市有机垃圾、工农业有机废水和其他野生植物等。

地热能。地热能是贮存在地下岩石和流体中的热能,它可以用来发电,也可以为建筑物供热和制冷。根据测算,全球潜在地热资源总量相当于每年493亿吨标准煤。

海洋能。海洋能是潮汐能、波浪能、温差能、盐差能和海流能的统称,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、海流等形式存在于海洋之中。例如,潮汐的形式源于月亮和太阳对地球的吸引力,涨潮和落潮之间所负载的能量称之为潮汐能;潮汐和风又形成了海洋波浪,从而产生波浪能;太阳照射在海洋的表面,使海洋的上部和底部形成温差,从而形成温差能。所有这些形式的海洋能都可以用来发电。

从地球蕴藏的能源数量来看,自然界存在有无限的能源资源。仅就太阳能而言,太阳每秒钟通过电磁波传至地球的能量达到相当于500多吨煤燃烧放出的热量。这相当于一年中仅太阳能就有130万亿吨煤的热量,大约为全世界目前一年耗能的一万多倍。不过,由于人类开发与利用地球能源尚受到社会生产力,科学技术、地理原因及世界经济、政治等多方面因素的影响与制约。包括太阳能、风能、水能在内的巨大数量的能源,可以利用的仅占微乎其微的比例,因而,继续发展的潜力巨大。人类能源消费的剧增、化石燃料的匮乏至枯竭以及生态环境的日趋恶化,逼使人们不得不思考人类社会的能源问题。国民经济的可持续发展,依仗能源的可持续供给,这就必须研究开发新能源和可再生能源。

太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时(3.78× 1024J),相当于1.3×106亿吨标准煤。按目前太阳的质量消耗速率计,可维持6×1010年。所以可以说它是“取之不尽,用之不竭”的能源。但如何合理利用太阳能,降低开发和转化的成本,是新能源开发中面临的重要问题。

风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、制冷和致热等。风力发电是主要的开发利用方式。中国的风能总储量估计为1.6×109千瓦,列世界第三位,有广阔的开发前景。风能是一种自然能源,由于风的方向及大小都变幻不定,因此其经济性和实用性由风车的安装地点、方向、风速等多种因素综合决定。

对于核电站,人们有许多误解,其实核能发电是一种清洁、高效的能源获取方式。对于核裂变,核燃料是铀、钚等元素,核聚变的燃料则是氘、氚等物质。有些物质,例如钍,本身并非核燃料,但经过核反应可以转化为核燃料。我们把核燃料和可以转化为核燃料的物质总称为核资源。

近年来,许多发展中国家虽然都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,尤其是近年来,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。2005年,根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。

氢是一种二次能源,一种理想的新的含能体能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质加工后方能得到氢气。最丰富的含氢物质是水,其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。

地热是指来自地下的热能资源。我们生活的地球是一个巨大的地热库,仅地下10千米厚的一层,储热量就达1.05×1026焦耳,相当于9.95×1015 标准煤所释放的热量。地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。

海洋能通常指蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能等。海洋能蕴藏丰富,分布广,清洁无污染,但能量密度低,地域性强,因而开发困难并有一定的局限。开发利用的方式主要是发电,其中潮汐发电和小型波浪发电技术已经实用化。波浪能发电利用的是海面波浪上下运动的动能。1910年,法国的普莱西克发明了利用海水波浪的垂直运动压缩空气,推动风力发动机组发电的装置,把1千瓦的电力送到岸上,开创了人类把海洋能转变为电能的先河。目前已开发出60-450千瓦的多种类型波浪发动装置。

此外,还有生物质能,是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。

能源是现代社会赖以生存和发展的基础,清洁燃料的供给能力密切关系着国民经济的可持续性发展,是国家战略安全保障的基础之一。中国是能源消耗大国, 2000年一次能源消费量为7.5亿吨油当量,仅次于美国成为世界第二人能源消费国,到本世纪中叶中国全面达到小康水平时,一次能源的消费量将达到30多亿吨油当量。然而目前中国人均一次能源的消费量不到美国的1/18,仅为世界平均水平的1/3。与世界一次能源构成不同的是中国以煤为主,煤占一次能源的比例为63.6%,由于煤的高效、洁净利用难度大,使用过程中已对人类的生存环境带来严重的污染。另一方面中国人均能源资源严重不足,人均石油储量不到世界平均水平的1/10,人均煤炭储量仅为世界平均值的1/2。预计到2010年,中国石油供需缺口1亿吨,天然气缺口400亿立方米。因此,开发洁净可再生能源已成为紧迫的课题。

纯情的胡萝卜
淡定的小笼包
2026-01-15 20:40:09
当化石燃料危机以及由此带来的环境危机越来越成为关系国计民生和人类未来的重要问题的时候,一个全新的“氢能经济”的蓝图正在逐步形成。

氢能是一种完全清洁的新能源和可再生能源。它是利用化石燃料、核能和可再生能源等来生产氢气,氢气可直接用作燃料,也可通过燃料电池通过电化学反应直接转换成电能,用于发电及交通运输等,还可用作各种能源的中间载体。氢作为燃料用于交通运输、热能和动力生产中时,具有高效率、高效益的特点,而且氢反应的产物是水和热,是真正意义上的清洁能源和可持续能源,这对能源可持续性利用、环境保护、降低空气污染与大气温室效应方面将产生革命性的影响。氢可作为一种储备的能源,如果利用丰富的过剩电能实现电解水制氢,可以建独立的氢供应站,不必区域联网。因此,氢与可再生一次能源相结合可以满足未来能源的所有需求。目前,以美国为

代表的世界各国正以前所未有的速度和力度加强对氢能和燃料

(a) 不可持续能源系统(b)可持续能源系统

图1 可持续和不可持续能源系统示意图

电池的研发,积极建构一个“氢能经济”的未来。需要指出的是,氢能不是“一次能源”。目前,氢的制备技术一般分两种:一种是以煤炭、石油、天然气等碳氢化合物为原料,采用蒸汽重整法制备。这种方式有利于解决现有城市环境污染问题,将污染源集中处理,但这种方式不能实现未来能源的可持续发展。另一种则是利用太阳能、水能等可再生能源,从水、生物质来大量制备。这种制备技术才能从真正意义上实现能源的可持续发展。

腼腆的诺言
魔幻的画笔
2026-01-15 20:40:09
目前新能源还不能完全代替煤炭。但新能源的应用是一个发展方向。

现代可再生能源技术发展极为迅速,将于2011年后不久超过天然气,成为仅次于煤炭的第二大电力燃料。可再生能源的成本随着技术的成熟应用而降低,假设化石燃料的价格上涨以及有力的政策支持为可再生能源行业提供了一个机会,使其摆脱依赖于补贴的局面,并推动新兴技术进入主流。在本期预测中,风能、太阳能、地热能、潮汐和海浪能等非水电可再生能源(生物质能除外)的增长速度为7.2%,超过任何其它能源的全球年均增长速度。电力行业对可再生能源的利用占大部分的增长。非水电可再生能源在总发电量所占比例从2006年的1%增长到2030年的4%。尽管水电产量增加,但其电力的份额下降两个百分点至14%。

部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%,在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%,详见前瞻《中国新能源行业发展前景与投资战略规划分析报告 》。

可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等。据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。

中国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。在国家的大力扶持下,中国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这热能种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。

2008年,为加快我国风电装备制造业技术进步,促进风电产业发展,中央财政安排专项资金支持风力发电设备产业化。2009年,“太阳能屋顶计划”实施,中央财政安排专门资金对光电建筑应用示范工程予以补助,弥补光电应用的初始投入。同年,《金太阳示范工程财政补助资金管理暂行办法》印发,该工程综合采取财政补助、科技支持和市场拉动方式,加快国内光伏发电的产业化和规模化发展,以促进光伏发电技术进步。

在税收方面,2008年9月,财政部、国家税务总局出台《关于执行资源综合利用企业所得税优惠目录有关问题的通知》,指出企业自2008年1月1日起以《资源综合利用企业所得税优惠目录》中所列资源为主要原材料,生产《目录》内符合国家或行业相关标准的产品取得的收入,在计算应纳税所得额时,减按90%计入当年收入总额。同年12月,《关于资源综合利用及其他产品增值税政策的通知》出台,规定对利用风力生产的电力实现的增值税实行即征即退50%的政策。对销售自产的综合利用生物柴油,实行增值税先征后退政策。

参考链接:

新能源(能源资源学术语)_百度百科

欣慰的钥匙
缓慢的电脑
2026-01-15 20:40:09

化石燃料是指煤炭、石油、天然气等这些埋藏在地下和海洋下的不能再生的燃料资源。化石燃料中按埋藏的能量的数量的顺序分有煤炭类、石油、油页岩、天然气、油砂以及海下的可燃冰等。

具体种类如下:

煤炭

煤炭是埋藏在地下的植物受地下和地热的作用,经过几千万年乃至几亿年的炭化过程,释放出水份、二氧化碳、甲烷等气体后,含氧量减少而形成的。煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,含碳量非常丰富。由于地质条件和进化程度不同,含碳量不同,从而发热量也就不同。按发热量大小顺序分为无烟煤、半无烟煤、烟煤和褐煤等。煤炭在地球上分布较为广泛,不集中某一产地。

石油

石油是水中堆积的微生物残骸,在高压的作用下形成的碳氢化合物。石油经过精制后可得到汽油、煤油、柴油和重油。石油在地球上分布不均,中东占54%,北美占12%,南美占9%,几乎占了可确认埋藏量的3/4。

石油是一种全球使用量最高的化石燃料,耗尽的时间较其他的较慢。可广泛使用的可再生能源例如肥料发电、能量高的核能发电和科学不断的进步都可减少对化石燃料的依赖。此外,石油使用量高也因为它是石化产品的原材料, 用途广泛。

在供给和需求概念原则的建议下,当化石燃料的供应下降,价格就会上升。因此当化石燃料价格高的时候,能源选择性会更多,原先普遍被认为不符合经济效益的可再生能源会成为较符合经济效益而开发的能源之一。现时,虽然人工汽油和其他的可再生能源的所需要成本及加工技术较普通的石油生产为高及复杂,但在将来的经济效益较普通的石油生产为高。

油页岩

油页岩是水藻炭化后形成的,含灰分过多,多半不能自烯。油砂是含重质油4~20%的砂子。油页岩和油砂在美洲大陆偏多。

天然气

天然气直接采掘于地下,含甲烷为主。在摄氏零下162度被冷却,液化后,作为液化天然气 用大型专用海轮或油罐输送。天然气的分布也非常偏于中东,美洲和欧洲大陆。

可燃冰

可燃冰是发现的储存在深海低的一种以甲烷的固体形式存在的可燃物。