新能源车的动能回收为什么效率并不高?
虽然新能源汽车有了新词,但是动能回收功能从 理念 到实体其实并不那么“新”。电气化铁路早就实现了所谓的反馈制动。当列车减速时,一部分动能会转化为电能,然后回馈给电网,供同一线路的其他列车使用,从而达到节能的目的。
在汽车领域,即使在EV还未普及的早年,也有很多类似 宝马 高效动力高效动力方案的解决方案。比如在上一代E92 M3 上,实现了一般只有松开油门踏板时发电机才工作的逻辑(现在这个功能几乎已经扩展到所有产品)。一方面最大化了动力输出,另一方面尽可能降低了油耗。虽然回收的能量由于结构原因无法用于驱动车辆,只能由车载电器消耗,但也是常规动力汽车框架下的 理想 模式。
进入新能源时代以来,由于电力储备可以直接用于驱动车辆,再加上电动机/发电机和电池组功率的增加,动能回收功能走得更远,其强度增加到在实际驾驶中很容易被驾驶员感知,甚至成为 大众 眼中新能源汽车区别于常规动力汽车的独特功能。
但问题来了——既然这些EV/HEV从结构上具有回收和充分利用车辆剩余动能的优势,为什么从目前市面上的产品来看,再生制动(动能回收)的能量回收效率普遍这么低?而我总结了一下,主要原因大概是以下几个方面:
动能≠总能耗
在没有阻力的完美环境中,一个力将一个物体从静止加速到一定速度,然后这个物体所驱动的能量等于这个力所做的功。然而,我们生活的现实世界并不“完美”。就拿汽车来说,行驶中会有风阻和滚动阻力,车辆本身的机械部分也会有各种损耗。甚至化学能(燃料/电池)转化为机械能的过程本身也存在效率问题。
综上所述,车辆本身消耗的能量只有一部分(往往只是很小一部分)最终会演变成车身带来的动能。因此,即使从这个角度来看,试图大幅延长带能量回收功能的EV续航里程也基本不可能。
在回收过程中有能量损失。
刚才提到能量转换在现实中存在效率问题。具体来说,电动机/发电机的能量转换效率(动能/电能)和电池的充放电效率(电能/化学能)都不能达到100%。此外,在类似EV/HEV的变频条件下,复杂的能量管理系统是必要的。如果综合效率加起来能达到50%以上,估计也挺好的。
需要注意的是,这里50%的例子已经是指剩余动能的50%,而且必须是在所有动能都被回收的前提下(减速只来自动能回收功能,机械制动系统不起作用)。在实践中,这是不可能的,具体原因将在下一章中提及。
电池组的充电功率有限。
电能产生后,必须立即被消耗或储存在电池等介质中,而显然当我们谈论“动能回收”时,只能选择后者。面对刹车这种短时间内需要较大能量转换(大功率)的情况,目前技术水平下电池充电功率有限的事实基本上注定了它是木桶中的短板。
因此,为了安全起见,一旦制动力要求(制动踏板踏力)超过电池功率上限,多余的制动力只能由机械制动部分承担,所以部分(很多情况下是大部分)动能只能像通常的常规动力车型一样,通过摩擦生热转化为无用的热能,然后耗散到环境中。
复杂的工作条件使得能量难以充分利用。
就像刚才说的,机械制动的介入往往只有在制动力要求超过系统的功率极限时。但这是否意味着只要我尽力预测驾驶,让每一脚刹车都在力所能及的范围内,恢复率就能大大提高?
先不说在现实交通环境下能否达到这样的理想驾驶,因为制动是一个涉及变速的工况。在整个过程中,随着车速的降低,电动机/发电机的速度也降低,换句话说,它的功率也会降低。所以很容易推导出,一旦车速下降到发电机输出低于电池充电功率上限的时刻,那么整个系统的功率就会随着车速的进一步下降而下降,直到车辆停止/发电机功率为零。
这意味着,无论你控制多大的制动力,只要你打算把车停下来,机械制动部分就不得不介入到一定速度以下的区间,动能永远得不到充分利用。
摘要
如上所述,就目前而言,效率有限的动能回收功能还远不能给电动车的续航带来显著的增长。充其量是一个辅助功能,抵消空这样的耗电大户对续航的影响。但这是否意味着这个功能应该被忽略?
其实纯EV测量动能回收的实际作用是有限的。我们可以看到一些混合动力汽车。可以说,各种混合动力汽车的油耗比纯燃油动力汽车低得多,很大一部分功劳来自于动能回收,这也是混合动力汽车“越堵越省”特点的主要原因。
毫无疑问,这个功能是有价值的,但问题只是如何通过技术升级来提高效率。
@2019
新能源车有能源回收,但是很多小伙伴不知道能源回收是什么意思。通俗地说,能量回收就是新能源汽车的“发动机制动”,可以帮助车辆在滑行或制动时减速。什么?你连发动机刹车是什么意思都不知道吗?那么,简单介绍一下能量回收的原理。能量回收装置实际上是一台电动机,初中高中时我们学到所有马达的原理,电痉挛导体在磁场中受到安培力,马达的外固定,生孩子是磁场线圈组成的转子闭上眼睛电痉挛后发生了安培力,转子是旋转了。
反之,当闭合的线圈转子在外力作用下旋转时,定子产生的磁感测线被切断,转子线圈内部产生电流,这一现象被法拉第发现,并命名为电磁感应定律。另外ロータ回转,使得内部线圈电流发生,纸箱的法则(清除)拒绝在反作用,ロータ按照矩量根据旋转被抑制,该矩量与车轮的转矩量相反,使车辆减速。
怎么样,唤醒你沉睡的记忆了吗?如果知道了能量回收的原理,我想一定是能量回收的水平越大越好。毕竟这样虽然节能,但是能量回收太高会影响车的舒适性。那种感觉就像你在奔跑,就像你跳舞的衣服被什么东西卡住了,被强行卡住了,脑子里的脑浆、眼球、心脏都在外面飘荡,非常难受。
特别是以前习惯开汽油车的车主,可以从低到高适应一个强度一个强度,不要马上调高。否则,很容易误认为刹车的力量会引起事故。根据汽车行业相关技术的不断完善,纯电动汽车的设计也越来越科学,汽油车还是新能源汽车制造和后期的研究方向,也让车跑得更快,使汽车更节省资源的行为。对于目前的中国汽车市场来说,电动车型和油电混动车型将成为众多消费者的购车标准,新能源车型也将成为未来国新排放标准的一大基础指标。
【太平洋汽车网】新能源汽车能量回收功能是一套精准、智能的操作系统,在合适的状态下各个部件互相配合,用合适的能量回收方案就能发挥出它的最佳效率,尤其是制动能量回收要整合电机、电池等关键要素才能实现最高效率。
新能源汽车能量回收功能怎么使用才能达到最佳状态?
新能源汽车产销量节节攀升,越来越被消费者认可,而新能源汽车能量回收也越来越被社会重视。相信很多人对这些都不清楚,知道的并不多,新能源汽车能量回收功能怎么使用才能达到最佳状态?
回收机制一般将新能源汽车能量回收机制分为液压储能、启停系统、飞轮储能和制动能量回收4种。制动能量回收是最常见的,它主要是回收车辆在制动或惯性中释放出的多余能量并通过发电机将其转化为电能,再转存至蓄电池中用于汽车的动力行驶。
回收利用电动汽车制动能量回收是提高能源利用效率的关键,只要汽车有电机和电池,就可以实现制动能量回收。制动能量回收技术涉及整车电控、动力电池、驱动电机等多个零部件,是需要协调控制的系统技术。
整车能耗指标等调控策略不同,制动量也不一样。当然,最佳回收能量状态是它同时对再生制动力和机械制动力进行精准把控的结果,能够实现智能化的控制。当车辆制动强度没有路面附着系数大时,车辆又不抱死下状态下应尽可能利用前轮制动力;当附着系数很大时,再生制动力达到最大值,此时只能用再生制动力制动。
(图/文/摄:太平洋汽车网问答叫兽)