集中在依靠传统的生物质资源作为能源发展中国家的农村地区,主要是远低于发达国家人均1.83 吨油当量
1引言生物质发电以秸秆(包括棉花、小麦、玉米等秸秆)以及农林废弃物(如树皮)为原料,通过直燃发电的技术产生绿色电力,除了可以增加清洁能源比重、改善环境,还可以增加农民收入、缩小城乡差距,意义重大。我国利用农林废弃物规模化发电尚处于起步阶段,生物质发电技术不成熟、项目造价高,总投资大,运行成本高,尽管国家给予了电价优惠政策,但盈利水平还是不如常规火电。究其原因,一是单位造价高,二是燃料成本高,三是生物质发电企业实际税率太高。《可再生能源法》规定农林废弃物生物质发电应享受财政税收等优惠政策,但相关政策和措施尚未出台。在国外,以高效直燃发电为代表的生物质发电技术已经比较成熟,丹麦率先研发的农林生物质高效直燃发电技术被联合国列为重点推广项目。农林生物质发电产业主要集中在发达国家,印度、巴西和东南亚等发展中国家也积极研发或者引进技术建设相关发电项目。在国土面积只有我国山东省面积1/4强的丹麦,已建立了15家大型生物质直燃发电厂,年消耗农林废弃物约150万吨,提供丹麦全国5%的电力供应。国外鼓励生物质发电产业发展的政策主要体现在价格激励、财政补贴、减免税费等方面,力度非常大。2生物质燃料发电2.1生物质燃料生物质能源是以农林等有机废弃物及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。能源问题是2l世纪人类面临的严峻挑战之一。能源问题成为世界各国共同面临的难题,石化能源不仅不可再生,储量有限,且燃烧后释放出大量的二氧化碳、氮、硫的氧化物及其他一些有害气体。严重污染了环境,导致温室效应、全球气候变暖、生物物种多样性降低、荒漠化等诸多生态问题。在2010~2020年,全球的能源使用模式可能快速转变,再生能源定会取代石化燃料。生物质燃料包括植物材料和动物废料等有机物质在内的燃料,是人类使用的最古老燃料的新名称。生物质燃料多为茎状农作物经过加工产生的块装环保新能源,其直径一般为6~8毫米,长度为其直径的4~5倍,破碎率小于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%,硫含量和氯含量均小于0.07%,氮含量小于0.5%。按照生物质的特点及转化方式可分为固体、液体、气体3种生物质燃料。我国生物质能源的利用包括畜禽粪便发展沼气、农作物秸秆生产燃气、粮食作物转化能源作物以及油料作物转化为生物质柴油这四大类。不同的燃料产生不同的热值。2.2生物质燃料发电概念生物质燃料发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,一般分为直接燃烧发电技术和气化发电技术。包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。生物质能直接燃烧发电是以农作物秸秆和林木废弃物为原料,进行简单加工,然后输送到生物质发电锅炉,经过充分燃烧后产生蒸汽推动汽轮发电机发电的高新技术。燃烧后产生的灰粉有加工成钾肥返田,该过程将农业生产原本的开环产业链子转变为可循环的闭环产业链,是完全的变废为宝的生态经济。生物质气化发电技术又称生物质发电系统,利用气化炉把生物质转化为可燃气体,经过除尘、除焦等净化工序后,再通过内燃机或燃气轮机进行的发电。过程包括三方面:生物质气化;气体净化;燃气发电。既可以解决可再生能源的有效利用,又可以解决各种有机废弃物的环境污染。正是基于以上原因,生物质气化发电技术得到了越来越多的研究和应用,并日趋完善。2.3生物质燃料发电的意义缓解能源短缺的危机;增加我国清洁能源比重;改善环境;扩大乡镇产业规模,增加农民收入,缩小城乡差距。秸秆发电的主要燃料,来源于小麦秸秆、玉米秸秆、稻草稻壳、棉花秸秆、林业间伐及加工剩余物等农林废弃物。秸秆发电变农民在田间无序焚烧,为集中燃烧并发电、造肥,节省了大量煤炭资源,并增加农民收入。中国国家电网公司旗下的国能生物发电有限公司,引进丹麦先进的生物质直燃发电技术,于2006年12月1日建成投产了中国第一个生物质直燃发电项目——国能单县1×25MW生物质发电工程,实现了中国大容量生物质直燃发电零的突破。该电厂2007年全年稳定运行8200多个小时,发电2.2亿千瓦时,消耗农林剩余物20多万吨,为农民增加收入5000万元以上。农民生活用能,秸秆燃烧效率仅约为15%,而直燃发电锅炉可将热效率提高到90%以上。秸秆作为一种可再生能源,在生长和燃烧中不增加大气中二氧化碳量,不但可以替代部分化石燃料,而且还能减少温室气体排放量。据测算,中国可开发的生物质能资源总量近期约为5亿吨标准煤,远期可达10亿吨标准煤。即使按5亿吨标准煤计算,生物质发电可满足中国能源消费量的20%以上的电力,年可减少排放二氧化碳近3.5亿吨,二氧化硫、氮氧化物、烟尘减排量近2500万吨。除此之外,秸秆燃烧产生的灰分还可作为优质钾还田使用,一台2.5万千瓦生物质发电机组年生产达8000吨左右灰分。2.4物质燃料发电技术的应用生物质能发电技术主要包括:直接燃烧发电技术、热化学转换发电技术、生物化学转换发电技术等3种途径。(1)直接燃烧发电技术。是指生物质原料送入适合的锅炉内燃烧,生产蒸汽,产生的蒸汽膨胀做功,从而带动发电机发电。生物质的直接燃烧在今后相当长的时间内将是我国生物质能利用的主要方式。当前改造热效率仅为10%左右的传统烧柴灶,推广效率可达20%~30%的节柴灶,其技术简单、易于推广,是效益明显的节能措施。(2)热化学转换发电技术。生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术,由燃料的热能转换为电能的方式。(3)生物化学转换发电技术。指汽轮机和往复式发动机以生物化学转换燃料作为主要的燃料来源,以发动机的动力驱动发电机发电的过程。生物质的生物化学转换包括有生物质-沼气转换和生物质-乙醇转换等。沼气转化是有机物质在厌氧环境中,通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体即沼气,乙醇转换是利用糖质、淀粉和纤维素等原料经发酵制成乙醇。沼气发电是指汽轮机和往复式发动机以沼气作为主要的燃料来源,以发动机的动力驱动发电机发电的过程。2.5燃料发电成本分析2.5.1生物质燃料价格上涨的原因现在机耕,秸秆粉碎、劳务费、柴油价格等都很高。2007年小麦留在30cm左右。省时省力,每小时能割3.3~4.0km留在15cm以下,每小时只能割2.0km左右,还额外增加成本15~30元。将秸秆收割收集每亩成本约50~80元。加上运输等费用,成本将急剧增加。2008年的油价比2007年更高,秸杆价格必然上涨。今后柴油价格是否还会再升,是决定秸秆价格主要因素之一。2.5.2设备运行某电厂原有4台发电机组已拆去较老的2台,其厂房用为生物质燃料储存厂房,其余2台15MW机组保留。其中一台锅炉投资4560万元更换成SF一75/3.82一T型链条炉排蒸汽锅炉。参数为:锅炉最大出力75t/h;主蒸汽温度450℃;主蒸汽压力3.82MPa。上料系统在原输煤系统适当改造而成,由于秸秆燃料是按一定规格的散料收购。与燃煤大体相当,所以输送系统不需作大的改动,改造时间短。运行中只在下料斗处有专人监管。当发生堵塞时及时清理。目前,掺泥沙尚未有采用清理防止措施。在收购时把好关。投运来的运行效果较好,多种秸杆混烧不仅没有结焦而成为有效充足的燃料供给的一种手段,可因地制宜参考这种方式。2.5.3运行经济分析由于收购燃料价格上涨到310元/t,运行成本约为0.586元/(kW˙h),上网电价为0.635元/(kW˙h)(含0.25元/(kW˙h)的补贴)时,尚盈余0.049元/(kW˙h),约满负荷运行5500h计算可赢利404.25万元,考虑每年还本付息473.2万元,还本付息后要亏损68.95万元,约每年运行小时数达到6500h才基本持平。从以上估算看,政府出台的政策也要随着市场变化适当调整,否则这些绿色能源很难维持下去,投资者也会很快退出生物质发电这个市场。2.5.4环境效益生物质能是一种可再生、CO零排放、SO2、NO、含尘质量分数极低的清洁能源,是化石能源很好的替代燃料。欧洲国家对生物质电厂赋予的职责是消耗秸秆维护大气环境,对于生物质发电给予较大的补贴,不考虑电厂的连续运行时间和盈利问题。目前,出台的相关政策支持度已很大。但随着市场变化其支持力度还应相应跟上,使这一新兴产业更好地发展。2.6生物质燃料发电现状及前景2.6.1我国农林固体生物质燃料特性作为能源的农林固体生物质,与化石燃料能源有很大的区别。农林固体生物质将具有可再生性,只要人类行为得当,这种能源就不会枯竭,可以周而复始的产生;生物质能的利用不会导致大气圈内主要温室气体二氧化碳的净增加积累,从而减缓地球的温室效应;农林固体剩余物的分布密度低,品种多样,依照区域、气候、地形、土壤、地形的不同而差别巨大,为原料的收集、运输、加工和规模化利用带来困难。生物质燃料的特点:(1)挥发份含量高,一般超过65%;(2)固定碳含量低,一般不超过20%;(3)低位发热量约比煤小40%;(4)含灰量显著低于煤,一般不超过l0%;(5)含硫量几乎比煤低一个数量级;(6)灰熔点比煤低200~300℃。2.6.2现状及发展我国的生物质热解气化及热利用技术近年来也有长足的发展。目前全国已建成农村气化站200多个,谷壳气化发电设备100多台(套)。由中科院广州能源研究所研发的“4MW生物质气化联介循环发电系统”以谷壳、木屑、稻草等多种生物质废弃物为原料,发电效率可达20%~28%,能满足农村处理农业废弃物的需要。中国生物质燃料发电已具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西2省(区)共有小型发电机组300余台,总装机容量800MW,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂在河北石家庄晋州市和山东菏泽市单县建设。国家高科技发展计划(“863”计划)已建设4MW规模生物质(秸秆)气化发电的示范工程,系统发电效率可达到30%左右。世界生物质发电起源于20世纪70年代,当时,世界性的石油危机爆发后,丹麦开始积极开发清洁的可再生能源,大力推行秸秆等生物质发电。自1990年以来,生物质发电在欧美许多国家开始大发展。中国是一个农业大国,生物质资源十分丰富,各种农作物每年产生秸秆6亿多吨,其中可以作为能源使用的约4亿吨,全国林木总生物量约190亿吨,可获得量为9亿吨,可作为能源利用的总量约为3亿吨。如加以有效利用,开发潜力将十分巨大。最近几年来,国家电网公司、五大发电集团等大型国有、民营以及外资企业纷纷投资参与中国生物质发电产业的建设运营。截至2007年底,国家和各省发改委已核准项目87个,总装机规模220万千瓦。全国已建成投产的生物质直燃发电项目超过15个,在建项目30多个。可以看出,中国生物质发电产业的发展正在渐入佳境。3结语21世纪是生物的世纪,是科学技术飞速发展的新世纪,可持续发展是当前经济发展的趋势所在,面对化石能源的枯竭和环境的污染,生物能源的开发和利用为经济的可持续发展带来曙光。生物能源作为可再生、污染小的能源,具有无可比拟的优势,必将为21世纪的经济发展和环境保护注入强大的推动力。国外生物质能源在燃料生产与发电方面的应用起步较早,主要利用农作物、农林废弃物及加工厂废弃物来进行燃料生产与发电;我国生物质能源起步相对较晚。存在局限性。面临能源短缺问题。全世界都在谋求以循环经济、生态经济为指导,坚持可持续发展战略,从保护人类自然资源、生态环境出发,充分有效地利用可再生的、巨大的生物质能源。而能源开发的一个很有潜力的方向便是充分利用生物质能源。这是解决全世界面临的能源短缺问题的有效途径。河北浩瀚农牧机械制造有限公司发布,有意者请咨询官网
1.发展可再生能源可以保证能源安全。发展可再生能源可降低对化石能源的依赖,保障国家社会与经济安全随着我国工业化进程的不断深入,能源需求不断增加,常规能源资源严重不足。在未来较长时间内,我国都将面临着严重的能源安全问题。在这种形势下,大力开发和利用可再生能源,可以减少对石化能源的依赖,而且将在保障我国能源安全方面发挥十分重要的作用。
2.发展可再生能源可以保护环境。伴随着经济的快速发展和能源需求量的持续增长,化石燃料燃烧所产生的温室气体排放给环境造成了越来越沉重的压力。发展可再生能源可以消减“二氧化碳”的排放,缓解环境污染问题。煤炭是我国最主要的能源,以煤炭为主的能源消费结构和单一的能源消费模式带来了严重的环境污染。
3.发展可再生能源可以增长经济。发展可再生能源可以开拓新的经济增长领域,促进经济转型。加快发展可再生能源可以成为我国新的经济增长点,可以有效推动装备制造业等相关产业的发展,是调整产业结构,促进经济发展方式转变的有效途径。
4.发展可再生能源可以促进发展。发展可再生能源可以促进农村经济发展,增加农民收入。因地制宜地开发风能、太阳能、生物质能以及水能等可再生能源,可逐步实现农村用能的优质化和清洁化。
根据国家能源局局长章建华30日在国新办发布会上表示,我国可再生能源开发利用规模稳居世界第一,为能源绿色低碳转型提供强大支撑。
截至到2020年底,在我国,可再生能源发电装机总规模达增长14.6个百分点。而针对于可再生能源的利用水平,也持续的上升,占全社会用电量的比重达到29.5%,较2012年增长9.5个百分点,可再生能源的前景,可谓是一片光明。
可再生能源技术日益完善。利用可再生能源是未来发展的必然趋势,也是可持续发展的有效途径,在可探测的到的能力范围内,地球上的中石油,天然气,煤炭等能源,存储量是固定的,而且这些化石能源的使用,也会使全球温室气体的增加,导致气候变暖冰川融化。
海平面上升等自然灾害的发生,而可再生能源有风能,太阳能,潮汐能,电能等依靠大自然能力而创造的能源,这些新能源遍布世界各地,比如利用风力发电,风力发电的优势在于清洁,无污染。
最早利用风力的国家是丹麦,在1890年,而真正兴起,是世界各国对能源需要量剧增,不少国家也逐渐的注意到风力发电这种大自然神奇的力量,后来因为石油危机,环境恶化等情况的发生,世界各地环保呼声日益高涨。
在科技高速发展的强有力推动下,风力发电技术更是迅猛发展,到如今发展成就,令人瞩目。
现代可再生能源技术发展极为迅速,将于2011年后不久超过天然气,成为仅次于煤炭的第二大电力燃料。可再生能源的成本随着技术的成熟应用而降低,假设化石燃料的价格上涨以及有力的政策支持为可再生能源行业提供了一个机会,使其摆脱依赖于补贴的局面,并推动新兴技术进入主流。在本期预测中,风能、太阳能、地热能、潮汐和海浪能等非水电可再生能源(生物质能除外)的增长速度为7.2%,超过任何其它能源的全球年均增长速度。电力行业对可再生能源的利用占大部分的增长。非水电可再生能源在总发电量所占比例从2006年的1%增长到2030年的4%。尽管水电产量增加,但其电力的份额下降两个百分点至14%。
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%,在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%,详见前瞻《中国新能源行业发展前景与投资战略规划分析报告 》。
可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等。据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
中国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。在国家的大力扶持下,中国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这热能种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
2008年,为加快我国风电装备制造业技术进步,促进风电产业发展,中央财政安排专项资金支持风力发电设备产业化。2009年,“太阳能屋顶计划”实施,中央财政安排专门资金对光电建筑应用示范工程予以补助,弥补光电应用的初始投入。同年,《金太阳示范工程财政补助资金管理暂行办法》印发,该工程综合采取财政补助、科技支持和市场拉动方式,加快国内光伏发电的产业化和规模化发展,以促进光伏发电技术进步。
在税收方面,2008年9月,财政部、国家税务总局出台《关于执行资源综合利用企业所得税优惠目录有关问题的通知》,指出企业自2008年1月1日起以《资源综合利用企业所得税优惠目录》中所列资源为主要原材料,生产《目录》内符合国家或行业相关标准的产品取得的收入,在计算应纳税所得额时,减按90%计入当年收入总额。同年12月,《关于资源综合利用及其他产品增值税政策的通知》出台,规定对利用风力生产的电力实现的增值税实行即征即退50%的政策。对销售自产的综合利用生物柴油,实行增值税先征后退政策。
参考链接:
新能源(能源资源学术语)_百度百科
「新能源」或「新及可再生能源」(New and renewable energy) 指传统化石燃料﹝石油、煤、天然气﹞及核能以外的能源资源或能源载体,包括可再生及不可再生的类型,如太阳能、风能、地热能、海洋能、生物能、小水电、氢能、天然气水合物等。 「新能源」这名词亦可包括各种新的能源技术,例如燃料电池技术等。?﹝燃料电池利用氢气及氧气的化学作用产生电力,过程不牵涉燃烧或机械动作。﹞ 可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。 大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。随着能源危机的出现,人们开始发现可再生能源的重要性。 传统化石燃料除了有耗尽的问题外,在使用中会排放大量温室气体(例如二氧化碳),使到地球暖化情况加剧。 在中国香港,如能源消耗量继续以目前的趋势增加,2010年的二氧化碳排放量预期会比2000年的水平增加39%。有效使用再生能源将有助减少本港对化石燃料的依赖,同时亦可减低使用化石燃料时所产生的温室气体。 请到机电工程署网站阅览「齐来认识可再生能源」小册子,它详细阐释何谓可再生能源和使用可再生能源的好处。
参考: Consolidation from various web sites
根据联合国环境规划署(UNEP)的定义,「再生能源」(Renewable energy)系指理论上能取之不尽的天然资源,过程中不会产生污染物,例如太阳能、风能、地热能、水力能、潮汐能、生质能等,都是转化自然界的能量成为能源,并在短时间内(几年之内,相对于亿年以上才能形成的石化燃料)就可以再生。 但哪些能源可归类于「再生能源」,目前仍有争议。例如有研究者指出,大型水力发电厂对河川生态造成破坏,因此仅将小型水力发电列入再生能源。而生质能乃是回收各类废弃物(包括农业、工业、都市废弃物)转化制成燃料,但在利用这类燃料时,仍因其复杂而不易控制的化学成份,难以避免污染产生,因此有研究者质疑将此列于再生能源之中是否适当。而近来颇受重视的燃料电池,由于做为燃料之氢气或甲醇目前仍需倚赖石化工业来生产,因此未被列入再生能源之中。 百科教室 即使在定义上尚未获得共识,但为了降低对石化燃料的倚赖程度,同时兼顾温室气体减量与资源永续利用等目标,提高再生能源的供应量与使用量已成为全球趋势。 目前台湾之再生能源,局限于小规模与家庭用能源。1998年5月之全国能源会议中曾建议,我国之再生能源推广量应于2020年时达到全国能源总供应量之3%(不含大于20 MW之大型水力设施)。若不考虑水力,目前全世界再生能源约占总能源供应量之5.5%,占总发电量约2%;而此一比例在台湾更低,分别为1.1%与0.6%,距离前述3%之目标仍有相当大的差距。 推动再生能源,不能只依赖技术上的进步。相较于传统石化燃料,大多数再生能源均无商业竞争力,必须透过减税或设备补助等方式予以奖励;也可以透过设立基金的方式,扶植相关产业与扩大市场规模。
参考: e-info/column/eccpda/2004/ec04031601
电力是我们日常生活中不可或缺的部分。然而, 地球的化石资源始终有限,因此我们不时会听到有人谈到可再生能源。 可再生能源其实是自然产生、循环不息的能源,除了直接或间接来自太阳,亦可由地底深处的热能产生。此外,由水力、地热、风力、太阳能和潮汐、波浪和海洋等产生的能源,也属于可再生能源。 地球上有多少种类的可再生能源? 水力:透过水力发电厂,我们可以将水由高点往下流的动力转化成为电力。 地热能:来自地壳内的热能,通常会以热水或蒸气等形式出现,除了可直接为地区供暖及为农业提供所需的热能外,也可转化为电力。 风力:运用风的动能来推动风力涡轮机的机件,从而产生电力,或直接利用风力推动机械操作。 太阳能:吸收太阳辐射能,以制造热能, 或透过太阳能发电厂或光伏电板来产生电力。 潮汐/波浪/海洋能源:利用潮汐涨退、波浪起伏或海流所产生的动能来产生电力。 我们为甚么需要可再生能源? 可再生能源是重要的能源,具备多项优点,例如: 环保效益:利用可再生能源科技不但可减低污染,亦可减轻影响全球气候的温室效应。可再生能源科技能产生热力和电力,但对全球气候的影响却是很低至中等。除了生物质能在燃烧时会产生轻微污染外,其他可再生能源对本地或地区的空气质素几乎说得上是全无影响。 保存资源:藏于地底的化石燃料是电力工业现时采用的主要燃料,供应有限。因此,使用可再生能源可以帮助减少化石燃料的消耗,延长其作为人类能源资源的时间。 为地方经济创造就业:可再生能源科技可为安装、运作、服务及市场推广等行业创造本地就业机会。假如能开发成功的用途,更能在国际市场创造商机。 如欲了解更多中电在提倡可再生能源方面的项目及活动,请浏览中电的社会及环境网页。
参考: wedside
新能源完全替代传统化石能源不会,除非氢能利用-人工制备化石燃料(比如甲烷等)等技术(在这里要不定义为可再生燃料)彻底成熟,相比于传统化石能源有了明显的优势。这主要是因为要完全取代旧能源,不仅仅是发电环节的问题,还要把所有用能终端的用能全部用电以及可再生燃料来做代替(说白了,还有好多终端,比如交通运输等,得烧油气)。 而其实不管是做到100%发电由新能源提供,还是终端用能全部来自可再生燃料这两个目标都不容易,个人谨慎猜测认为后面这个还要难一些. 但是个人认为可再生能源占比高到超过传统能源,还是有可能的,但是有一个前提:就是这主要取决于各种能源技术的发展速度,如果技术都如现在一样,电池用用就没电,光伏风电老得弃,氢燃料电解储存转一圈回来效率20%多,那估计让可再生能源占比很高也够呛。本文先不讨论体制与既有利益集团影响,只谈技术先。总体来说他们的阻碍作用可能会大于促进作用。
近日,国家能源局在国新办发布会,会上表示我国可再生能源开发利用规模稳居世界第一,可再生能源发电量达到2.2万亿千瓦时,较2012年增长14.6个百分点。据了解,可再生能源具体包括太阳能、风能、水能等。
由于世界人口在不断增多,像石油、煤这些不可再生能源终有一日会枯竭,不可再生资源不仅资源量有限,对大气的污染也不容忽视,现如今已经造成了全球能源紧张和环境恶化。要寻求可持续性发展不能只看眼下,更要着眼未来。随着环境问题和能源危机问题的日益突出,发展可再生新能源刻不容缓。近日,国家能源局在国新办发布会上表示我国可再生能源开发利用规模稳居世界第一,这和我国对可再生能源开发的重视分不开。
可再生能源指的是来自大自然的能源,例如太阳能、风力、潮汐能、地热能等,是取之不尽,用之不竭的能源,并且对环境无害或危害极小,同时资源分布广泛,适宜就地开发利用。一、太阳能。太阳辐射能的光热、光电和光化学可直接转换为能源。 二、地热能。地热能独立于太阳能,指来自地球内部的热能资源。三、水能。指的是运用水的势能和动能转换成机械能或电能。四、风能。风力能转化为机械能、电能、热能等各种形式的能量。五、生物质能。植物通过光合作用将太阳能转化为化学能贮存在生物质内部。六、潮汐能。海水在潮涨和潮落时形成的水能。
能源是我们现代社会赖以生存和发展的基础,能源的供给能力影响着国民经济的可持续性发展,也是国家战略安全保障的基础之一。因此,开发和利用好可再生能源已成为紧迫的课题。
可再生能源的优点
可再生能源的优点,大家都知道所谓可再生能源就是指可以二次利用的能源中国新能源产业规模上升到新的台阶中国新能源产业结构也不断优化升级。接下来我给大家分享可再生能源的优点。
可再生能源的优点11、开发利用可再生能源是落实科学发展观、建设资源节约型社 会、实现可持续发展的基本要求。充足、安全、清洁的能源供应是经 济发展和社会进步的基本方向。
2、开发利用可再生能源是保护环境、应对气候变化的重要措施。 目前,我国环境污染问题突出,生态系统脆弱,大量开采和使用化石 能源对环境影响很大,特别是我国能源消费结构中煤炭比例偏高,氧化碳排放增长较快,对气候变化影响较大。可再生能源清洁环保, 开发利用过程不增加温室气体排放。
3、开发利用可再生能源是建设****新农村的重要措施。农村是目前我国经济和社会发展*薄弱的地区,能源基础设施落后,全国还有约 1150 万人没有电力供应,许多农村生活能源仍主要依靠秸秆、薪柴等生物质低效直接燃烧的传统利用方式提供。
4、开发利用可再生能源是**新的经济增长领域、促进经济转 型、扩大就业的重要选择。可再生能源资源分布广泛,各地区都具有 一定的可再生能源开发利用条件。可再生能源的开发利用主要是利用 当地自然资源和人力资源,对促进地区经济发展具有重要意义。
可再生能源的优点21、可再生能源的.资源量大于常规能源, 常规能源一般指化石能源煤炭、石油、 天然气等)其储量是有限的。可再生能源 如太阳能,它的资源对有限的人类发展阶 段可以说是无限的,地球上一年中接收到 的太阳能高达8*10↑18kWh,可见其量的 巨大。风能、生物质能、海洋能等其他可 再生能源都是太阳能的副产物,所以说“ 万物生长靠太阳”是非常好的比如。
2、清洁,非常低的污染,不能说无污染 的原因在于,大规模利用可再生能源以后 ,对环境的影响有些还未表现出来,如盐 城地区,大规模风电场的出现,对于候鸟 就可能产生影响。但是,总的来说目前没 有发现明显的污染加大的现实。
3、可循环使用,这是确定的,这是由于 可再生能源本身的定义所确定的
4、目前的开发成本仍然较高,这主要是 因为,可再生能源的能量密度大多数比较 低,例如,太阳能每平方米的理论功率只 有1kW左右,生物质能的单位重量的发热 量只有煤的一半不到秸秆的发热值约为 3000大卡/公斤)等,对于低的能量密度 ,要形成规模化效应,只有规模化应用, 即遍地开花的应用才能达到。由于可再生 能源的能量密度低,它们的开发成本低
可再生能源的优点3可再生资源的优点
一、太阳能优点:
1、普遍:到处都有,可直接开发和利用,且无须开采和运输;
2、无害:开发利用太阳能不会污染环境,它是最清洁能源之一;
3、巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤;
4、长久:太阳的能量是用之不竭的。
二、风能优点:
风能为洁净的能量来源。风力发电机风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已低于发电机。风能设施多为不立体化设施,可保护陆地和生态。风力发电是可再生能源,很环保。
三、生物质能优点:
1、提供低硫燃料;
2、提供连接能源;
3、讲有机物转化成燃料可减少环境公害;
4、与其他非传统性能源相比较,技术上的难题较少。
美国近年不断扩大再生能源布局,并已取得成效。根据美国能源情报局(EIA)数据,4月水电、太阳能和风能发电量接近6,850亿度电,已超越燃煤发电的6,000亿度电,绿色能源成为仅次天然气的第二大电力来源,若转换成用电来源比率,太阳能、风能与水力等绿色能源发电占比达23%,燃煤电力为20%。
虽然4月适逢部分燃煤发电厂的春季检修,发电量是多年来的最低点,未来随着这些电厂回归,燃煤发电厂又会夺回亚军宝座。
不这与此同时,也是美国有史以来再生能源发电量最高点,近年来节能减碳已成世界趋势,绿色能源成本更是大幅下降,美国太阳能、风能的设备量正日渐增长,2018年再生能源发电创 历史 新高,达到7,420亿度电,占全美发电量17.6%,与2008年的3,820亿度电相比,接近倍数增长。
截至2019年4月底,美国已装设18座、容量共1,545 MW风力电厂和102座、总容量为1,473 MW太阳能电厂,再加上4座新设水力发电厂,再生能源装设比率已达21.56%。
相较之下,燃煤发电的比例已降至21.55%,根据EIA 1月公布的报告,美国已在过去10年中关闭约一半煤矿场。先前研调公司Rhodium Group也指出,在2010-2017年间,关闭的燃煤发电厂比剩下的还要多,更预计2030年前美国超过71GW(最坏情况是124GW)燃煤发电场会关门大吉。
美国加州与纽约也相继宣布朝全面再生能源供电迈进,据2018年8月底加州议会投票通过的新法案,加州得在2045年脱离燃煤与天然气发电;纽约则是在2019年2月时公布绿色新政,直言在2040年达100%绿色能源电力。
国际能源局(IEA)在2018年11月时表示,再生能源成本下滑与政策推动,未来电力结构将会略为所改变,之后再生能源将是各国首选技术,煤炭使用量将在2040年从如今的40%降到25%,风力发电与其他再生能源便会填补这电力空缺,将增长到40%以上。