建材秒知道
登录
建材号 > 能源科技 > 正文

有机半导体光催化剂,更有效地利用太阳能制造氢气

大方的飞机
追寻的招牌
2023-02-03 00:41:04

有机半导体光催化剂,更有效地利用太阳能制造氢气

最佳答案
听话的店员
魔幻的草丛
2026-01-14 02:55:34

显著增强氢气产生的有机半导体光催化剂可开发更有效的能量存储技术。

化石燃料的燃烧正在导致危险的气候变化,从而推动了对更清洁可再生能源的寻找。迄今为止,太阳能是最丰富的可再生能源,但要释放其潜力,需要一种方法来存储它以备后用。

储存太阳能的标准方法是使用析氢光催化剂(hydrogen evolution photocatalysts,HEP)将能量储存在分子氢的化学键中。当前,大多数HEP由单组分无机半导体制成。这些只能吸收紫外线波长的光,这限制了它们产生氢的能力。

由KAUST太阳能中心的伊恩·麦卡洛克(Iain McCulloch)领导的团队与来自美国和英国的研究人员合作,现已开发出由两种不同的半导体材料制成的HEP。他们将这些材料掺入有机纳米粒子中,可以对其进行调整以吸收更多的可见光谱。

该研究的第一作者扬·科斯科(Jan Kosco)说:“传统上,无机半导体已用于光催化领域。但是,这些材料主要吸收紫外光,其可利用的太阳光不到太阳光谱的百分之五。因此,它们的效率受到限制。”

该团队首先使用了一种称为微乳液(miniemulsion)的方法,其中有机半导体的溶液借助稳定的表面活性剂在水中乳化。接下来,他们加热乳液以驱除溶剂,剩下表面活性剂稳定的有机半导体纳米颗粒。

通过改变表面活性剂,它们能够控制纳米颗粒的结构,将它们从核-壳结构转变为混合的供体/受体结构。共混结构使它们能够在供体聚合物和非富勒烯受体之间引入异质结。

科斯科解释说:“两种结构以相同的速率吸收光,但是在核-壳结构中,只有光生空穴到达表面;然而,在混合结构中,空穴和电子都到达纳米粒子的表面,从而增强氢气的产生。

HEP表现出的氢释放速率比单组分无机HEP所能达到的氢释放速率高一个数量级。 这为下一代储能技术奠定了基础。

麦卡洛克说:“我们目前正在研究由半导体的不同混合物形成的纳米粒子的性能,以更好地了解其结构-活性关系。我们正在寻求为其他光催化反应设计纳米粒子光催化剂,例如生成氧气或二氧化碳还原。”

最新回答
唠叨的小蜜蜂
舒服的保温杯
2026-01-14 02:55:34

半导体是电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。

半导体室温时电阻率约在10-5~107欧·米之间,温度升高时电阻率指数则减小。

半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

半导体分为本征半导体和杂质半导体。杂质半导体就是我们制作晶体管用的。阁下学将要学电子的吧,。

超级的狗
从容的小笼包
2026-01-14 02:55:34
LED产业

据统计,2016年仅LED光电产业产值就达5260多亿元人民币,较2015年增长22.8%。中国大陆LED产业的从业人员已达数十万人。包括原材料、外延、芯片、封装、应用和配套、设备仪器仪表等环节,已形成较为完善的产业链。大陆目前已经成为全球LED元件产业发展最迅速的地区,特别是家用照明的中功率LED发展迅猛。随着LED元件在照明应用逐步提高,自主掌握的LED元件的供应链也大幅度提高,大陆已经从传统照明成功转型至LED照明灯具制造,具有了全球竞争能力。

2016年LED通用照明仍然是应用市场的第一驱动力,通用照明市场产值达2040亿元,占整体应用市场的比重由2015年的45%,提升到2016的47.6%。LED显示应用由于小间距LED显示技术的快速崛起,规模约548亿元,占整体应用市场12.8%。汽车照明方面,随着奔驰、宝马等高端车型前大灯越来越多的采用LED灯具,2016年LED汽车照明高速增长,同比增长33.8%,占整体应用市场1.4%。

与此同时,我国LED的核心技术也在不断取得突破。随着我国LED产业的发展,特别是近年来我国技术创新的强力推动,我国LED产业关键技术与国际水平差距进一步缩小,已经成为全球LED最大的生产、出口和应用大国。

光伏产业

中国大陆已经连续多年成为全球太阳能电池生产第一大国,光伏产业开始走上了自主研发新技术的道路,并且颇有成效。高效多晶硅电池平均转换效率、单晶硅电池平均转换效率以及汉能薄膜发电技术均已达到国际领先水平。经德国弗劳恩霍夫太阳能系统研究院认证,我国其铜铟镓硒组件最高转化率达到21%砷化镓组件获得美国国家可再生能源实验室认证,最高转化率达到30.8%,皆创世界最高纪录。骨干企业多晶硅生产综合成本已降至9万元/吨,行业平均综合电耗已降至100KWh/kg,硅烷法流化床法等产业化进程加快单晶及多晶电池技术持续改进,产业化效率分别达到19.5%和18.3%,钝化发射极背面接触(PERC)、异质结(HIT)、背电极、高倍聚光等技术路线加快发展光伏组件封装及抗光致衰减技术不断改进,领先企业组件生产成本降至2.8元/瓦,光伏发电系统投资成本降至8元/瓦以下,度电成本降至0.6~0.9元/千瓦时。

截至2016年底,光伏制造业总产值超过3360亿元,光伏发电装机容量突破34GW。多晶硅产量约为19.4万吨,占全球总产量的33%2015年,硅片产量约为68亿片,电池片产量约为28GW,占全球总产量的60%,保持了全球太阳能电池生产第一大国的地位。光伏发电作为使用区域限制少、设备相对简单易安装的发电方式,近年来在我国得到了快速发展。根据国家能源局的统计数据,截至2015年,我国光伏总装机量达到了43.18GW,新增装机容量15.18GW,成为全球光伏发电装机容量最大的国家。在我国当前光伏装机总量中,光伏电站装机37.12GW,分布式电站装机6.06GW,年发电392亿千瓦时,占全国发电量的0.7%。

为了改善光伏产品严重依赖出口市场的情况,政府制定了系列政策,加大扶持力度,大力推动内需市场建设,国内光伏装机仍有望表现强劲。随着我国西北部地区地面电站的逐渐饱和,以及光伏平价上网的条件达成,未来国内分布式光伏将迎来发展高潮阶段,配合储能技术的成熟,东部及南部地区将兴起建分布式电站的热潮。

随着传统能源成本不断提高,光伏产业链各个环节的技术不断进步、成本持续下降,太阳能光伏将在2030年成为主流能源之一。相信在倡导节能减排、低碳经济的大背景下,大陆太阳能光伏产业一定会迎来更绚丽的明天。

基础光电

大陆的激光、红外、纳米技术也获得了重大发展,取得了许多具有国际先进水平的科研成果。中国是制造业大国,特别是大机器制造、汽车、半导体和电子设备产业的发展将为激光产业提供极大的市场潜力。

从光电行业内部的发展来看,之前相对独立发展的各个技术方向,有逐步融合的趋势,如:红外夜视与光学监控镜头结合,在民用的安防、检测等方面已经在大规模使用液晶面板及LED器件的制作过程中,激光加工设备占据越来越重要的位置显示不再是液晶一家独大、LED显示、激光显示、光学全息三维显示等技术正在向一个方向融合半导体照明也不再单指LED照明,未来将会有半导体激光照明光学传感、光学成像、光电检测几乎贯穿了光电行业所有研发和制造过程。这些发展趋势使得光电行业更像是一个整体,相互间的跨界融合碰撞出更多的火花,推动了技术的进步,也产生了更有创意和实用性的光电产品。

害怕的山水
清脆的红牛
2026-01-14 02:55:34

中国已成为有机硅材料的最大消费国。由于纺织,电子、电器产品的大量出口和国内建筑、纺织、汽车、日化等行业对有机硅材料的旺盛需求,推动和促进了我国有机硅材料的发展。2010我国硅氧烷消费量达到55.5万吨,占全球总量的36%,成为全球有机硅的最大消费国;中国以加工制造业为主的产业格局,造成了中国有机硅消费结构与全球其它国家和地区有很大差别,其它国家和地区硅橡胶和硅油占比平均,中国则以硅橡胶为主。

“十二五”期间,我国有机硅消费年均增长率预计将保持在18%左右,2015年硅氧烷消费量预计达到约130万吨,折合有机硅单体约260万吨。2010年,中国有机硅(折硅氧烷)产量约41万吨;消费量55.5万吨。有机硅一方面在传统应用领域继续保持稳步增长,另一方面在新能源、节能环保、医疗卫生及高端制造等方面不断开发出新的用途,特别是在太阳能电池、LED、个人护理用品、轨道交通以及替代石油基产品方面,其应用得到快速发展。由于具有广阔的市场空间,有机硅被列入了新材料“十二五”规划。20多个有机硅产品列入了新材料“十二五”规划的产品目录。

有机硅“十二五”规划将严格准入门槛,控制产能增长,2015年产能达到300万吨,满足国内需求外略有出口。规划提出,到2015年形成3-5家具有国际竞争力的有机硅单体骨干企业。规划显示,硅烷偶联剂要建成2-3个规模超过3万吨/年、采用绿色环保技术生产的企业,2015年总产量达到40万吨,品种数量超过100个。

生物活性有机硅的植物提纯目前为止只有法国等发达国家掌握。有机硅对生物体的重要作用使得有机硅产品拥有巨大的应用前景。在未来几年内,利用植物活性提取的有机硅产品必将在医药,美容,保健等领域爆发式拓展。

有机硅产品在各行各业中的消费比列,取决于当时的产业结构。以日本为例,1988年的分配为:电子电器约占25%-30%,建筑占15%-20%,汽车占10%-15%,食品医疗占10%,办公机械占10%,其余(包括纤维、纸张、塑料、涂料等)占15%-30%。可见,电子电器、建筑及汽车是该国有机硅市场的三大支柱。近几年来的市场发展趋势,电子电气的发展速度仍居首位,有机硅材料的可靠性与耐久性,使其在建筑及汽车行业中的应用得以继续增长;由于硅氧烷的生理惰性及对人体的安全、可靠性得到进一步确认,因而有机硅在医疗及化妆品中的应用数量急剧增长。 2011年,我国工业硅产量为136万吨,同比增长15.2%,行业实现产品销售收入,392.01亿元,同比增长46.43%,自2008年以来年均增速全部超过20%,实现利润总额33.52亿元,同比增长77.05%。2012年1-6月,我国有机硅行业企业数为305家,较上年同期增长19.61%从业人员6.53万人,较上年同期增长19.03%。

从经营规模来看,2012年上半年,行业资产规模为324.45亿元,同比增长34.42%,实现销售收入283.95亿元,同比增长56.98%,实现工业总产值288.97亿元。从经营效益来看,2012年上半年,有机硅行业实现产品销售利润28.62亿元,同比增长27.20%,实现利润总额15.44亿元,较上年同期下降1.87%。总体来看,2012年上半年我国有机硅行业整体经营情况较好,资产和产销规模均实现较快增长。

从有机硅的消费量来看,数据显示,2011年我国工业硅国内消费量共计61万吨,同比增长27.1%,其中有机硅消费量占32.79%,较上年下降了3.67个百分点,铝合金铸件消费量也有所下降,而多晶硅消费金属硅的量则大幅提高了近10个百分点。

从进出口来看,海关统计数据显示,2011年我国工业硅出口量为54.1万吨,同比下降5.8%。其中对日出口16.1万吨,同比下降4.7%对韩出口9.6万吨,同比增加24.6%对欧出口9.8万吨,同比下滑14.1%,实现进出口总额10.75亿美元,其中进口额7.79亿美元,出口额2.95亿美元,实现贸易逆差4.84亿美元,贸易缺口同比有所缩小2012年1-5月,国内工业硅累计出口量为18.74万吨,其中出口量最多的是日本,为6.15万吨,占出口总量的32.8%其次是韩国,出口量占比为14.7%出口居前十的国家额出口总量占到全部出口的76%。近几年以及今后相当长的时间内,有机硅最强劲的需求来自亚洲,需求量的增长中心将是中国及太平洋地区,年均增长率有望达到10%-15%,而随着我国电子电气、建筑、机械、冶金、汽车、化工、纺织、医疗等行业的发展,我国有机硅的消费量仍将以大于20%的增速增长并成为全球增长最快的市场。 现状

中国有机硅工业经过20年尤其是“十五”期间的自主开发建设,取得了令人瞩目的成就。无论是甲基氯硅烷单体的生产规模,还是有机硅产品的应用技术,都有长足的进步。

近些年来,中国的有机硅市场是全球增长最快的市场,有机硅市场的发展速度高于GDP增速,增幅超过25%。国内的有机硅单体规模发展迅速,1999年新兴材料投入运行的装置仅为2万吨/年,2007年下半年投产的单体装置已达到了10万吨/年。到2008年,中国已形成蓝星星火、新安集团、吉化集团、梅兰集团、江苏镇江宏达5家有机硅单体生产企业,年产能达40万吨。中国在建的有机硅产能约有35万吨,拟建的有80-100万吨。中国有机硅深加工及其应用,正在形成一批以高温胶、液体硅橡胶、纺织助剂、硅烷偶联剂等有特色的企业和产业群,活跃在国内外市场。但另一方面,近些年国内有机硅缺口仍然很大,2007年全年进口依赖率在50%左右。

前景

预计到2010年国内有机硅企业的产能将达120万吨/年,加上道康宁和瓦克合资企业在江苏张家港建设的40万吨/年装置,总产能将达到160万吨/年。但未来3-5年中国有机硅消费仍将保持25%左右的增长,2010年之前国内有机硅单体的自给率仍将保持在较低的水平。到2009年后,中国有机硅行业将进入产能释放的集中期。预计2009年中国新增有机硅单体约为20万吨左右。但国内单体总需求量为96万吨左右,对外依存度仍然高达50%以上。

闪闪的黑夜
敏感的小甜瓜
2026-01-14 02:55:34
人类生存和发展的三要素

物质、能量与信息。

因此,能源的发展史直接影响人类的发展史。

我们人类生存与发展中最具有决定性意义的要素是三个:¾¾ 物质、能量和信息。

组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。

一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。

能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极大地促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子内部的能量。

未来对能源的要求

有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。

未来对能源的需求 未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。

而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。

除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。

u 能源的定义与源头

究竟什么是“能源”呢?《科学技术百科全书》是这样说的:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”。可见,能源是呈多种形式的、可以相互转换的能量的源泉。简而言之,能源是自然界中能为人类提供能量的物质资源。

能源的源头

来自地球以外天体的能源(如太阳能)、地球本身蕴藏的能源(如地热、核能)、地球与其它天体相互作用产生的能源(如潮汐)。

而能源是产生能量的源头。

人们通常按形态与应用方式对能源进行分类。一般分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中,前三类统称化石燃料或化石能源。已被人类认识的这些能源,在一定条件下可以转换为人们所需的各种形式的能量。比如薪柴和煤炭,加热到一定温度,能和氧气化合并放出大量热能,可以直接用来取暖,也可用来产生蒸汽推动汽轮机,再带动发电机,使热能变成机械能,再变成电能。把电送到工厂、机关和住户,又可以转换成机械能、光能或热能。

在我们生活的地球上,能源形形色色。总起来说有三个初始来源。

太阳能

地球

来自地球外部天体的能源(主要是太阳能)人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。

地球本身蕴藏的能量 通常指与地球内部的热能有关的能源和与原子核反应有关的能源。

与地球内部的热能有关的能源,我们称之为地热能。温泉和火山爆发喷出的岩浆就是地热的表现。地球可分为地壳、地幔和地核三层,它是一个大热库。地壳就是地球表面的一层,一般厚度为几公里至70公里不等。地壳下面是地幔,它大部分是熔融状的岩浆,厚度为2900公里。火山爆发一般是这部分岩浆喷出。地球内部为地核,地核中心温度为2000度。可见,地球上的地热资源贮量也很大。

与原子核反应有关的能源正是本书要介绍的核能。原子核的结构发生变化时能释放出大量的能量,称为原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的核裂变能资源,以及海洋中贮藏的氘、氚、锂等发生聚变反应时的核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是发电。此外,还可以用作其它类型的动力源、热源等。

来自星球引力的能量指由于地球与月球、太阳等天体相互作用的形成的能源。地球、月亮、太阳之间有规律的运动,造成相对位置周期性的变化,它们之间的引力随之变化使海水涨落而形成潮汐能。与上述二类能源相比,潮汐能的数量很小。全世界的潮汐能折合成煤约为每年30亿吨,而实际可用的只是浅海区那一部分,每年约可折合为6000 万吨煤。

u 能源结构与储量

地球上有哪些能量资源可供我们使用?它们还能维持多久?我们该怎么办?

能源的种类

一次能源:煤炭、石油、核能等自然界天然能量资源;

二次能源:汽油、电力、蒸汽等人工制造的能量资源,

一次能源和二次能源能源按其生成方式,分为天然能源(一次能源)和人工能源(二次能源)两大类。天然能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源,如煤炭、石油、天然气、核燃料、风能、水能、太阳能、地热能、海洋能、潮汐能等;人工能源则是指由一次能源直接或间接转换成其他种类和形式的能量资源,如煤气、汽油、煤油、柴油、电力、蒸汽、热水、氢气、激光等。

常规能源和新能源其中,已被人类广泛利用并在人类生活和生产中起过重要作用的能源,称为常规能源,通常是指煤炭、石油、天然气、水能等四种。而新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

煤的时代

能源结构的变迁历史上,伴随着新的化石资源的发现和大规模开采与应用,世界的能源消费结构经历了数次变革。18世纪的以煤炭替代柴薪,到19世纪中叶煤炭已经逐渐占主导地位。20世纪20年代,随着石油资源的发现与石油工业的发展,世界能源结构发生了第二次转变,即从煤炭转向石油与天然气,到20世纪60年代,石油与天然气已逐渐称为主导能源,动摇了煤炭的主宰地位。但是,20世纪70年代以来两次石油危机的爆发,开始动摇了石油在能源中的支配地位。以此同时,大部分化学能源的储量日益减少,并伴随着许多环境污染问题。

而人类对能源的需求却在与日俱增。例如主要能源形式 地球能源的储量估计

煤炭:~200年

石油、天然气:~50年

核能:无穷多

之一的电力消耗逐年增加。根据统计,人口若每30年增加一倍,电力的需求量每八年就要增加一倍。

于是,20世纪末,能源结构开始经历第三次转变,即从以石油为中心的能源系统开始向以煤、核能和其它再生能源等多元化的能源结构转变。特别是随着时间的推移,核能的比例将不断增长,并将逐步替代石油和天然气而成为主要的大规模能源之一。

化学能的储存量煤炭、石油、天然气还有多少年可以让人类开采利用?据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。必须指出的是,煤炭、石油等直接燃烧用来生产电能与热能实在太可惜了,且不说可能带来的环境污染,它们还是很好的化工原料呢!

水能及新能源的潜力那么水能呢?我们知道,水力是可以长期开发利用的。但是,在那些大面积缺水、水力资源不丰富的国家和地区怎么办?再说,水能还有个季节性的问题。这些都使水能无法成为世界能源结构中唯一的主力军。新能源中,太阳能虽然用之不竭,但代价太高,并且就目前的技术发展情况来看,在一代人的时间里不可能迅速发展和广泛使用。其它新能源也是如此。其它一些能源与水能相似,它们的规模受到环境、季节、地理位置等条件的限制,如风能、潮汐能、地热能等等。

易裂变核素

易发生裂变的原子只有铀-235(U235)、钚-239(Pu239)、铀-233(U233)三种。而天然存在的易裂变元素只有铀-235,钚-239可由铀-238生成,铀-233可由钍-232(Th232)生成。

易聚变核反应

氘(D2)-氚(D3)反应。氘和氚都是氢原子的同位素。氘天然存在,而氚极少,必须由人工生成(如由锂制造)。

核能--无穷的能源 核能分为裂变能和聚变能两种。目前人类能正在用于和平利用的只有裂变能。可控聚变能利用技术正在攻克。

天然铀的成份

天然铀中占99.3%为难裂变的铀-238,仅有0.714%为易裂变的铀-235。铀-238可通过吸收一个中子变成易裂变的钚-239。

作为发展核裂变能的主要原料之一的铀,世界上已探明的铀储量约490万吨,钍储量约275万吨。如果利用得好,可用2400~2800年。

聚变反应主要来源于氘-氚的核反应,氘来可大量自海水,氚可来自锂。因此聚变燃料主要是氘和锂,海水中氘的含量为0.03克/升,据估计地球上的海水量约为138亿亿米3,所以世界上氘的储量约40亿万吨;地球上的锂储量虽比氘少得多,也有2000多亿吨,用它来制造氚,足够满足人类对聚变能的需求。这些聚变燃料所释放的能量比全世界现有能源总量放出的能量大千万倍。按目前世界能源消费的水平,地球上可供原子核聚变的氘和氚,能供人类使用上千亿年。如果人类实现了氘-氚的可控核聚变,核燃料就可谓“取之不尽,用之不竭了”,人类就将从根本上解决能源问题,这正是当前核科学家们孜孜以求的所以。聚变能源不仅丰富,而且安全、清洁。聚变产生的放射性比裂变小的多。

专家们预测,核能在未来将成为人类取之不尽的持久能源。

1.2 变脏的地球与干净的核电

本节要点:回答的问题以下问题:现有的能源还能维持多久?能源利用可以不污染环境吗?核能真是可持续能源吗?

u 能源的可持续发展

必须寻找一些既能保证有长期足够的供应量又不会造成环境污染的能源。

而目前人类面临的问题正是:能源资源枯竭;环境污染严重。

能源利用与环境的可持续发展

能源危机

目前世界上常规能源的储量有的只能维持半个世纪(如石油),最多的也能维持一、二百年(如煤)人类生存的需求。

今天,几乎所有的工业化国家都面临着两个关系到可持续发展的紧密相连的挑战:保证令人满意的长期能源供应和减少人类活动带给环境的影响。能源利用与环境的可持续发展已成为关系到人类未来生存与文明延续的一个重要问题。

能源供应危机今天的世界人口已经突破60亿,比上个世纪末期增加了2倍多,而能源消费据统计却增加了16倍多。无论多少人谈论“节约”和“利用太阳能”或“打更多的油井或气井”或者“发现更多更大的煤田”,能源的供应却始终跟不上人类对能源的需求。当前世界能源消费以化石资源为主,其中中国等少数国家是以煤炭为主,其它国家大部分则是以石油与天然气为主。按目前的消耗量,专家预测石油、天然气最多只能维持不到半个世纪,煤炭也只能维持一二百年。所以不管是哪一种常规能源结构,人类面临的能源危机都日趋严重。

浓烟滚滚的火电厂

能源对环境的污染 另一方面,特别是利用化石能源的过程也直接影响地球的环境,使大气和水资源遭受严重污染。大气中主要的五种污染物是:氮氧化物(如NO与NO2)、二氧化硫(SO2)、各种悬浮颗粒物、一氧化碳(CO) 大气污染的主要源头

目前世界上最严重的大气污染来自化石能源燃烧造成的大气中二氧化碳量的增加。带来的主要后果是:酸雨、温室效应和臭氧层破坏。

和碳氢化合物(如CH4、C2H6、C2H4等)。其来源主要有三个方面:① 煤、石油等化石燃料的燃烧;② 汽车排放的废气;③ 工业生产(如各种化工厂、炼焦厂等)产生的废气。而其中燃烧化石燃料的火力发电厂是最大的固定污染源。

1. 多元化

世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛的利用。可持续发展、环境保护、能源供应成本和可供应能源的结构变化决定了全球能源多样化发展的格局。天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势。未来,在发展常规能源的同时,新能源和可再生能源将受到重视。在欧盟2010年可再生能源发展规划中,风电要达到4000万千瓦,水电要达到1.05亿千瓦。2003年初英国政府公布的《能源白皮书》确定了新能源战略,到2010年,英国的可再生能源发电量占英国发电总量的比例要从目前的 3%提高到10%,到2020年达到20%。

2. 清洁化

随着世界能源新技术的进步及环保标准的日益严格,未来世界能源将进一步向清洁化的方向发展,不仅能源的生产过程要实现清洁化,而且能源工业要不断生产出更多、更好的清洁能源,清洁能源在能源总消费中的比例也将逐步增大。在世界消费能源结构中,煤炭所占的比例将由目前的26.47%下降到2025年的21.72%,而天然气将由目前的23.94%上升到2025年的28.40%,石油的比例将维持在37.60%~37.90%的水平。同时,过去被认为是“脏”能源的煤炭和传统能源薪柴、秸杆、粪便的利用将向清洁化方面发展,洁净煤技术(如煤液化技术、煤气化技术、煤脱硫脱尘技术)、沼气技术、生物柴油技术等等将取得突破并得到广泛应用。一些国家,如法国、奥地利、比利时、荷兰等国家已经关闭其国内的所有煤矿而发展核电,它们认为核电就是高效、清洁的能源,能够解决温室气体的排放问题。

3. 高效化

世界能源加工和消费的效率差别较大,能源利用效率提高的潜力巨大。随着世界能源新技术的进步,未来世界能源利用效率将日趋提高,能源强度将逐步降低。例如,以1997年美元不变价计,1990年世界的能源强度为0.3541吨油当量/千美元,2001年已降低到0.3121吨油当量/千美元,预计 2010年为0.2759吨油当量/千美元,2025年为0.2375吨油当量/千美元。

但是,世界各地区能源强度差异较大,例如,2001年世界发达国家的能源强度仅为0.2109吨油当量/千美元,2001~2025年发展中国家的能源强度预计是发达国家的2.3~3.2倍,可见世界的节能潜力巨大。

4. 全球化

由于世界能源资源分布及需求分布的不均衡性,世界各个国家和地区已经越来越难以依靠本国的资源来满足其国内的需求,越来越需要依靠世界其他国家或地区的资源供应,世界贸易量将越来越大,贸易额呈逐渐增加的趋势。以石油贸易为例,世界石油贸易量由1985年的12.2亿吨增加到2000年的21.2 亿吨和2002年的21.8亿吨,年均增长率约为3.46%,超过同期世界石油消费1.82%的年均增长率。在可预见的未来,世界石油净进口量将逐渐增加,年均增长率达到2.96%。预计2010年将达到2930万桶/日,2020年将达到4080万桶/日,2025年达到4850万桶/。世界能源供应与消费的全球化进程将加快,世界主要能源生产国和能源消费国将积极加入到能源供需市场的全球化进程中。

5. 市场化

由于市场化是实现国际能源资源优化配置和利用的最佳手段,故随着世界经济的发展,特别是世界各国市场化改革进程的加快,世界能源利用的市场化程度越来越高,世界各国政府直接干涉能源利用的行为将越来越少,而政府为能源市场服务的作用则相应增大,特别是在完善各国、各地区的能源法律法规并提供良好的能源市场环境方面,政府将更好地发挥作用。当前,俄罗斯、哈萨克斯坦、利比亚等能源资源丰富的国家,正在不断完善其国家能源投资政策和行政管理措施,这些国家能源生产的市场化程度和规范化程度将得到提高,有利于境外投资者进行投资。

三、启示与建议

1. 依靠科技进步和政策引导,提高能源效率,走高效、清洁化的能源利用道路

中国有自己的国情,中国能源资源储量结构的特点及中国经济结构的特色,决定在可预见的未来,我国以煤炭为主的能源结构将不大可能改变,我国能源消费结构与世界能源消费结构的差异将继续存在,这就要求中国的能源政策,包括在能源基础设施建设、能源勘探生产、能源利用、环境污染控制和利用海外能源等方面的政策应有别于其他国家。鉴于我国人口多、能源资源特别是优质能源资源有限,以及正处于工业化进程中等情况,应特别注意依靠科技进步和政策引导,提高能源效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展。

2. 积极借鉴国际先进经验,建立和完善我国能源安全体系

为保障能源安全,我国一方面应借鉴国际先进经验,完善能源法律法规,建立能源市场信息统计体系,建立我国能源安全的预警机制、能源储备机制和能源危机应急机制,积极倡导能源供应在来源、品种、贸易、运输等方式的多元化,提高市场化程度;另一方面应加强与主要能源生产国和消费国的对话,扩大能源供应网络,实现能源生产、运输、采购、贸易及利用的全球化.

小巧的大雁
会撒娇的背包
2026-01-14 02:55:34
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。

据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。

联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电(Small-hydro)、太阳能(Solar)、风能(Wind)、现代生物质能(Modern biomass)、地热能(Geothermal)、海洋能(Ocean)(潮汐能);传统生物质能(Traditional biomass)。

一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。

新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等。

太阳能

太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式

广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。

利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。

太阳能可分为3种:

1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。

核能

核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:

A.核裂变能

所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

B.核聚变能

由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

C.核衰变

核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用

核能的利用存在的主要问题:

(1)资源利用率低

(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决

(3)反应堆的安全问题尚需不断监控及改进

(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

(5)核电建设投资费用仍然比常规能源发电高,投资风险较大

海洋能

海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。

潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。

风能

风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。

1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。

生物质能

生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。

生物质能利用现状

2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。

中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。

地热能

地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。

氢能

在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。