不充电的新能源自行车来了,这种自行车是靠什么原理充电的?
咱们目前这款永不充电电动车的发明人叫张红中,是河南人,一直是在北京致力于发电机的深度研究。他发现,车子在行驶的过程中,由于受到地心引力的作用,车子的减震器在行走中上下来回震动产生了大量的能量,他将这个能量成功转换成了电能,并储存在车子上配备的超级电池里面,供车子行驶使用,同时这个产生的电是随着车子的行驶而产生的,而且又是随时充到超级电池里面的。
它由3个震动发电机,1个直驱力距平面电机,电路转换系统与超级电池组成。车架一次冲压成型强度高,直驱平面电机峰值扭距100牛米,最高跟随时速50公里,发电机峰值功率1.5千瓦。超级电池寿命大于10年。
配置Gps定位,蓝牙,usb输出接口,可以给手机,平板,随身音响,照明等电子产品充电,LED转向灯,使用氮气弹簧减振发电系统,前后轮缓冲行程200厘米。
与磁相伴,续航无限,绿色动力牵动你我他。
人类为了追求自身的便利和产业的发展,过度依赖并使用化石燃料,导致能源缺乏。化石燃料的使用污染了地球环境,污染不仅严重危害地球生态环境,甚至对生命体也造成威胁。新能源产业发展对优化能源结构、促进节能减排、培植新的经济增长点对促进经济社会可持续发展具有十分重要的意义。
磁的原理---磁动力自行车的自驱动原理
磁体之间的相互作用是通过磁场发生的,所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用。为了描述磁场的强弱和方向,人们想象在磁场中画出一组有方向的曲线,称之为磁感线。在磁体外部,磁感线是从N极发出,回到S极,小磁针放在磁场中,要受到磁场对它的作用力,N极受到力的方向就是该处磁场的方向.通过磁感线的改变和控制,将磁能量转换成动能,动能转动切割磁力线发电导入驱动电机,持续的供需转换,实现磁动力自发电。磁动力自发电,零成本、零排放、零污染。
磁动力续航新能源,是真正开启和改善环境、改变新能源框架的新时代,节能与环境保护齐美,环保与财富共享。
【太平洋汽车网】新能源汽车启动电流在100多到300安之间,如果发动机的排量较大,则启动电流会相应的增大。功率7kw的电动汽车交流充电桩的电流是32A,功率120kw的电动汽车直流充电桩电流是300A。
一般轿车的启动电流在100多到300安之间,如果发动机的排量较大,则启动电流会相应的增大。
启动电流原理:电动机在通电的瞬间,电动机处于静止的状态时,因转子是静止不动的,这时转子的转速为0,同步的旋转磁场就以最大的切割速度,来切割转子的绕组,使转子绕组感应并达到最高的电动势,在转子绕组中产生很大的电流,这个电流将抵消定子磁场的磁通,定子绕组为了维持与电源电压相适应的原有磁通,会自动地增加电流,因为此时转子的电流很大,电动机的定子电流也会增加得很大,高达额定电流的5~7倍,这就是电动机起动时电流大的缘由。
随着电动机转速的逐步地升高,定子的同步旋转磁场切割转子绕组的速度逐渐地减小,转子绕组巾的感应电势逐步地减小,转子绕组中的电流也逐步地减小,于是转子绕组巾抵消定子磁场磁通维持的电流也在减少。最终电动机达到额定转速时,定子绕组中的电流就的由大变小,最后恢复到电动机的额定电流。
启动电流(CCA)指标是指在一17.8℃和一28.9℃的条件下,可获得的某特定意义下的最小电流。这个指标把蓄电池的启动能力与发动机的排量、压缩比、温度、启动时间、发动机和电器系统的技术状态及启动和点火的最低使用电压这些重要的变量联系起来。
(图/文/摄:太平洋汽车网问答叫兽)
驱动电机电机是新能源车的动力源,根据结构和原理,电机可分为直流驱动、永磁同步、交流感应三种形式,不同形式的电机其特性也不相同。
直流驱动电机,它的定子是永磁体,转子通直流电,通电导体在磁场中会受到安培力,从而使转子转动。这种电机形式的优点是成本较低,以及对电控系统的要求低,而缺点则是个头比较大,功率性能比较弱,一般是低端的纯电代步车会用直流电机。
永磁同步电机,实际上也是直流电机,所以它的工作原理跟直流电机一样,不同的地方在于直流电机通入的是方波电流,而永磁同步电机通入的是正弦波电流。永磁同步电机的优点是功率性能高,有出色的可靠性,而且体积比较小,缺点则是成本相对比较高,对电控系统有一定的要求。
感应电机,原理上相对上两者更加复杂,但可以大致分成三个步骤:首先是电机的三相绕组通入交流电会产生旋转的磁场,接着由闭合线圈组成的转子在旋转磁场中切割磁感线会产生感应电流,最后由于电荷在磁场中运动会产生洛伦兹力,从而使得转子转动。因为定子里的磁场先旋转然后转子才会旋转,所以感应电机又叫做异步电机。
感应电机的优点是制造成本低,而且功率性能也不错,因为它需要用交流电,所以对电控系统的要求很高。
动力电池动力电池是驱动电机的能量来源,目前的动力电池主要是按正负极材料进行区分,有钴酸锂、三元锂、锰酸锂和磷酸铁锂,在新能源车上比较常用的是三元锂和磷酸铁锂电池。
其中磷酸铁锂电池的优点是成本低,稳定性好寿命长,缺点则是能量密度低,冬天掉续航比较严重。而三元锂电池则相反,优点是能量密度低,缺点是稳定性和寿命相对较差。
为什么另外两种材料的电池很少在新能源车上使用呢?钴酸锂电池虽然能量密度大,但是稳定性很差,所以车企不敢贸然使用。而锰酸锂电池因为各方面的表现都很一般,所以车企没有兴趣使用。
电控系统电控系统实际上是一个总称,细分的话可以分成整车控制系统、电机控制系统、电池管理系统。新能源车的一大特点是各种电控系统相互之间都有非常紧密的联系,有些车甚至一套电控系统控制车上所有用电设备,所以将它们统称起来也无妨。
可能一般人会觉得新能源技术的难点是电池,不错,只是做一套出色的电控系统的难度也不低,因为电控系统需要协调车上所有用电设备。
(图/文/摄: 问答叫兽)星瑞 理想ONE Model Y Model X 高合HiPhi X 零跑T03 @2019
三电系统是纯电动车区别于传统燃油车最核心的技术,是作为替代燃油车发动机系统而诞生的动力系统,研发三电系统需要做大量费时费力的基础工作,三电系统即是:电驱、电池、电控系统。
然而,这只是笼统的分类,因为在电驱、电池、电控之下,还存在大量的技术性难关。
三电系统之电池
一般而言,我们将高压电池(区别于车上的低压电池)称为动力电池,和传统燃油车的油箱作用类似,作为新能源汽车的能量来源,动力电池系统通常由电芯、电池组、电池管理系统、冷却系统、高低压线束、保护外壳和其他结构件构成。
而电芯组里面最重要的材料,就是电芯里面的正极材料,它决定着电池的动力性能、续航里程、成本以及安全性能。
目前新能源电池中的能量来源里面,主要有镍氢电池、锂离子蓄电池和铅酸电池三种。
而从新能源车电动车的动力电池发展史来看,早期动力电池使用的是铅酸电池,到日系混动的镍氢电池,再到现在主流的锂电池,也不过二十多年的时间。
铅酸电池适用于早期电动车型,优点是便宜且可靠,但能量密度低,而镍氢电池的优点是安全和可靠,但同样有能量密度低的问题,主要应用于混动车型,现在,铅酸电池和镍氢电池已经面临全面的淘汰。
锂离子电池的优点是容量密度大,相对地,成本也更高,目前主流的电动汽车使用的都是这类电池。
根据电动机按转子的结构不同,可分为笼型感应电动机,你在用的就是这一种(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。鼠笼就是一个闭合的线圈。
(1)当三相异步电机接入三相交流电源(各相差120度电角度)时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场,该磁场以同步转速沿定子和转子内圆空间作顺时针方向旋转。
(2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体(转子绕组是闭合通路)产生感应电动势并产生感应电流(感应电动势的方向用右手定则判定)。
(3)根据电磁力定律,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。载流的转子导体在定子产生的磁场磁场中受到电磁力作用(力的方向用左手定则判定),电磁力对电机转子轴形成电磁转矩,驱动电机转子沿着旋转磁场方向旋转,当电动机轴上带机械负载时,便向外输出机械能。由于没有短路环部分的磁通比有短路环部分的磁通领先,电机转动方向与旋转磁场方向相同。
如果我的回答对你有帮助请帮我采纳!
与此同时,在国家政策大力支持、制造技术逐渐成熟、居民购买力不断提高等利好因素的共同作用下,我国新能源车保有量也大幅提升,成为全球最大的新能源车市场。
新能源 汽车 区别于传统车最核心的技术是“三电”系统,主要是指电机、电池、电控。
和燃油发动机的 汽车 相比,纯电动 汽车 使用电动机代替了燃油车的柴油/汽油发动机;以电池组代替了燃油,为电动机提供动力;其中还有一个最主要的部件就是电控系统,电控系统由电池管理系统和控制系统构成,管理电池组和控制电池的能量输出以及调节电动机的转速等,是连接新能源电池和电机的重要中间载体。
电池:制约新能源 汽车 发展的关键因素
电池技术是新能源 汽车 的核心技术,是制约新能源 汽车 发展的关键因素。
新能源 汽车 电池主要分类: 从全球新能源 汽车 的发展来看,新能源 汽车 动力来源主要有蓄电池、燃料电池以及超级电容器三类。
其中超级电容器由于储电容量低的缺陷,无法持续供电,大多以辅助动力源的形式出现。
蓄电池
蓄电池是纯电动 汽车 驱动系统的唯一动力源,主要有锂离子电池、镍镉电池和镍氢电池等。其中锂离子电池以其独特的物理和电化学性能,目前正处于高速发展阶段。
燃料电池
燃料电池是一种电化学装置,将燃料具有的化学能直接变为电能,类似于一个“发电厂"。
燃料电池为一次电池,能量转化效率高、使用寿命较长、能连续大功率供电,但使用成本高。
由于其续航能力与燃油 汽车 相当,新能源 汽车 电池技术的开发中具有较强竞争力。
天眼查APP专业版数据显示,目前我国有超过20万家经营范围含“新能源 汽车 、电动 汽车 、插电式混合动力 汽车 、燃料电池 汽车 ”,且状态为在业、存续、迁入、迁出的新能源 汽车 相关企业。
其中88%的相关企业为有限责任公司,近3成的相关企业注册资本在1000万以上。
从行业分布上看,53%的新能源 汽车 相关企业分布在批发和零售业,另有15%的相关企业分布在科学研究和技术服务业,10%分布在租赁和商务服务业。
从地域分布上看,广东省的新能源 汽车 相关企业数量最多,超过2.5万家。其次为山东省和江苏省,两省分别有超过1.9万家和1.8万家相关企业。
此外,河南省、湖南省以及浙江省的现有新能源 汽车 相关企业也均超过1万家。
新能源 汽车 电池发展情况:
由于各种动力电池自身的性能、涉及的材料以及开发成本等差异,形成了不同的使用前景。
在上述主要的新能源 汽车 电池类别中,目前技术最成熟的是镍氢电池,但商业化最成功的是锂离子电池,并已经成为新能源 汽车 电池主流,燃料电池目前为各大车企研发目标。
当前,锂离子电池已经成为所有新能源 汽车 电池中增长速度最快的一类。从2012 年至今,锂离子电池行业一直呈现快速增长趋势,并将加快取代传统电池。
随着科学技术的进步, 汽车 产业将不断升级,锂离子电池将保持持续增长速度,并且成本将会呈下降态势。
纯电力驱动 汽车 已经成为新能源 汽车 发展的重要趋势,大众集团计划 2025 年前提供超过 30 款电动 汽车 。
近几年来,随着新能源 汽车 电池相关基础技术的成熟化,不断突破技术难点,燃料电池技术也取得了重大进展。
电机: 汽车 核心驱动部件
新能源 汽车 电机主要是由定子、转子和机械结构三大部分组成。定子和转子是其中的核心,主要原理是转子绕组通过切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而使电动机旋转。
目前,应用于新能源 汽车 的驱动电机主要包括直流电机、交流电机和开关磁阻电机三类,其中在目前乘用车、商用车领域应用较为广泛的电机包括直流(无刷)电机、交流感应(异步)电机、永磁同步电机、开关磁阻电机等。
其他特殊类型的驱动电机包括轮毂/轮边电机、混合励磁电机、多相电机、双机械端口能量变换器( Dmp-EVT),目前市场化应用较少,是否能够大规模推广需要更长时间的车型验证。
1)交流异步电机,也称为感应电机(Induction Motor),在定子绕组中输入三相交流电,定子绕组中的励磁电流在定子铁芯中产生旋转磁场, 此时转子绕组中有感应电流通过并推动转子作旋转运动。
当转子带有机械负载时,转子电流增加,由于电磁感应作用,定子绕组中的励磁电流也增加。
交流异步电机控制器采用脉宽调制( PWM) 方式实现高压直流到三相交流的电源变换,采用变频器实现电机调速,采用矢量控制或直接转矩控制实现转矩控制的快速响应,满足负载变化特性的要求。
交流异步电机的优点在于结构简单,定子转子无直接接触,运行可靠性强,转速高,维护成本低。
不足之处在于能耗高,转子发热快,高速工况下需要额外冷却系统;功率因数低,需要大容量的变频器,造价较高,调速性较差。
目前,交流异步电机主要用于空间要求较低、且速度性能要求不高的电动客车、物流车、商用车等车型中。
2)永磁电机(Permanent Magnetic Motor) 包括永磁同步电机(正弦波)和永磁无刷直流电机(方波)两大类,其转子均由永磁材料制成, 定子采用三相绕组,输入调制方波产生旋转磁场带动永磁转子转动。
永磁同步电机的优点在于其较大的转矩和驱动效率,具有高功率密度和宽调速范围,且没有励磁损耗和散热问题,电机结构简单,体积比同功率的异步电机小 15%以上;其缺点在于高速运行时控制复杂,永磁体退磁问题目前难以解决, 电机造价较高。
目前,永磁同步电机主要应用于体积小,且速度、操控性能要求较高的电动乘用车领域,部分中小型客车亦开始尝试使用永磁电机作为驱动源。永磁无刷直流电机则一般在小功率电动 汽车 、低速电动车领域应用较为广泛。
3)开关磁阻电机(Switched Reluctance Motor)的定子和转子铁芯均由硅钢片叠压而成,利用冲片上的齿槽构成双凸极结构, 定子产生扭曲磁场,利用“磁阻最小原理”驱动转子运动。
开关磁阻电机结构和控制简单、出力大,可靠性高,成本低,起动制动性能好,运行效率高,但电机噪声高,但转矩脉动严重,非线性严重,在电动 汽车 驱动中有利有弊,目前电动 汽车 应用较少。
4)直流电机(DC Motor)通过在定子主磁极上绕制励磁线圈并通以直流电以产生磁场,转子电枢绕组也通以直流电,通电绕组置于磁场中输出电磁转矩拖动负载运行。
直流电机控制器一般采用晶闸管脉宽调制方式( PWM),控制性能好,调速平滑度高,控制简单,技术成熟,且成本较低。
直流电机的缺点是需要独立的电刷和换向器,导致速度提升受限;电刷易损耗,维护成本较高。
直流电机多用于早期的电动 汽车 驱动系统,目前新研制的车型已经基本不再采用。
纯电池的大脑:电控系统介绍
电控系统是纯电动 汽车 的大脑,其由各个子系统构成,每一个子系统一般由传感器,信号处理电路,电控单元,控制策略,执行机构,自诊断电路和指示灯组成。
纯电动 汽车 的电控系统主要包括整车控制系统,电机控制系统和电池管理系统,各技术分支的功能不是简单的叠加,而是综合各个分支功能来控制 汽车 。电子控制技术是纯电动 汽车 发展的核心技术。
电控系统的主要功能包括:
1)接收来自驾驶员的操作命令,并向各个控制部件发送控制指令,使 汽车 按照驾驶员的预期行驶。
2)电控系统对关键信息的模拟量状态通过传感器进行采集并输入到相关控制部件的信号通道。
3)接收到的各个部件的信息发送到电池管理系统,提供各个部件当前能量的信息状态。
4)对系统故障可判断和存储,实时检测系统信息,记录电动 汽车 运行过程中出现的故障。
5)对 汽车 具有保护功能,在突发或者紧急情况下可自动复位电动机。
在 汽车 电控系统中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。
BMS 提供电池出现的问题及状况,MCU 提供电池电能的利用与收回信息,VCU 主要是整理合并以上收到的信息,针对电池充放电的电压、电流、功率等指数进行分析处置后,及时鉴别电池的安全逻辑,并将形成的相关指令传送至电池管理系统中,通过该系统来执行相关的充放电行为。
整车控制系统(VCU )
VCU 是实现整车控制决策的核心电子控制单元,一般仅新能源 汽车 配备、传统燃油车无需该装置。
VCU 通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由 VCU 判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU 具有整车系统故障诊断保护与存储功能。
电机控制器(MCU)
电机控制器(MCU)通过接收 VCU 的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。
实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。
车用 MCU 在 汽车 中的应用呈现出多样性,从简单的车灯控制到复杂的发动机控制、 汽车 远程通信实现,高、中、低端 MCU 在 汽车 中都可以发挥作用。
不同 汽车 电子系统对 MCU 的要求是不同的,也就决定了车用 MCU 的多样性。
电池管理系统(BMS)
电池管理系统(BMS)作为保护动力锂离子电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
电动 汽车 动力电池是由几千个小电芯组成的,电池包的组成主要包括电芯、模块、电气系统、热管理系统、箱体和 BMS。
电池管理系统(Battery Management System,缩写 BMS)是对电池进行管理的系统,主要负责监测和管理整个电池组的政策工作:
主要功能包括估测电流的电荷状态、检测电池的使用状态、管控电池的循环寿命、在充电过程中对电池进行热管理、启停锂电池冷却系统,同时也管理单体电池间的均衡,防止单体电池过充过放产生的危险。
注:本文内容主要摘自天风证券,中外行业研究整理推送
目前纯电动车在用的电机常见的有两种类型,分别是永磁同步电机以及交流异步电机(也称为感应电机),前者在目前纯电动乘用车上的使用率高达了90%,后者仅占很小部分。
这里不想去讲太多两种电机的结构不同和工作原理,简单来说,永磁同步电机体积相比感应电机要更小,重量也更轻,同时功率密度以及效率较高,更加有利于实现较高的续航里程。这也是为什么目前大部分纯电动车都选择永磁同步电机的原因。
不过永磁同步电机的不足是成本相对感应电机要高一些,同时在高温大幅度变化的环境下可能引发退磁,而且高位振动复杂情况下的可靠性也相对较差。
感应电机的优势是结构简单,可靠性更高并且成本也更低。相比永磁同步电机,它具有更好的高速性能,能实现更快的百公里加速。但相对的,它需要更高效和复杂的冷却系统,并且体积也更大、效率偏低。对于目前追求高续航的纯电动车来说,它明显不如永磁同步电机。
两种类型的电机为什么永磁同步电机更受欢迎?目前的纯电动车追求低能耗、高续航,永磁同步电机更符合这种需求。尽管感应电机拥有更好的加速性能,但电机能瞬间释放最大扭矩的物理特性让就算是永磁同步电机也能够满足大部分电动车的加速性能需求,相比之下感应电机在普通的电动车上面有优势并不明显。
另一方面,永磁同步电机不像感应电机那样需要系列复杂和高效的冷却系统,相对来说也更加有利于整车的设计制造。目前市面上热门的包括比亚迪系列电动车、吉利系列电动车、广汽新能源、荣威、北汽新能源等系列品牌的热门电动车搭载的都是永磁同步电机,
当然了,感应电机也并非没有人使用,像此前的特斯拉Model S/X就使用了感应电机,电机功率大、能实现更快的百公里加速。例如特斯拉Model S高性能版最快能实现2.7秒的百公里加速,如果用永磁同步电机实现起来相对就比较困难了。
不过永磁同步电机和感应电机并不是完全对立的两种类型,它们也是可以共存的,借助两者的不同特性实现优势互补是越来越多车型都选择的一种新技术路线。比如特斯拉 Model 3、蔚来 ES6、等车型,就同时在一辆车型上使用了永磁同步电机和感应电机。
特斯拉 Model 3四驱版采用的是前感应后永磁、蔚来 ES6则相反采用的是前永磁后感应的组合,两者共同搭配可以同时兼顾续航和性能。比如蔚来 ES6并不是全时四驱,在日常驾驶中大部分是以前驱的形式去工作,这个时候前电机永磁电机就能发挥它长续航的特性。在需要大动力需求的时候,感应电机同时发挥作用,提供更高的性能需求。
在电动车领域,电机所扮演的角色远没有燃油车上的发动机那么重,虽然发挥的作用同样重要,但电机技术已经足够成熟。目前新能源车常用的两种电机各自的特性以及适合的车型定位都非常明确,各品牌车型在选用的时候也没有太多可以纠结的地方,根据不同的车型定位选择适合的电机类型就行,这也是目前电机的话题、用户关注度没那么高的原因。
本文作者精彩文章回顾
新能源发电就是利用现有的技术,通过上述的新型能源,实现发电的过程。
新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、风能、地热能、波浪能、洋流能和潮汐能等。
此外,还有氢能等;而已经广泛利用的煤炭、石油、天然气、水能、核裂变能等能源,称为常规能源。
能源按其来源可以分为下面四类:
第一类是来自太阳能。除了直接的太阳辐射能之外,煤、石油、天然气等石化燃料以及生物质能、水能、风能、海洋能等资源都是间接来自太阳能。
第二类是以热能形式储藏于地球内部的地热能,如地下热水、地下蒸汽、干热岩体等。
第三类是地球上的铀、钍等核裂变能源和氘、氚、锂等核聚变能源。
第四类是月球、太阳等星体对地球的引力,而以月球引力为主所产生的能量,如潮汐能。