低纳煤的要求
低钠煤的要求是煤灰中氧化钠小于或者等于1‰。低钠煤就是煤炭中钠含量很低的煤的意思,低钠镁通过熔融形成的多气泡渣样和疏松灰样,易于消除高钠酶渣瓣上渣样,矿物组成包含腊肠石和氯化钠等含钠矿物,低钠镁包含多莫来石晶体,因为任何矿物都不是单一由某种物质组成的,他们都是多种物质的混合物酶,也是一样,酶中也包含了很多其他矿物质,这里的低钠就是指酶中含金属钠很低,这对于有些对没有某些特殊要求的是一个参考的依据。
嗯,楼上两位为了迎合答案才说氧化钠本来就是灰的吧?
任何一个化学老师都会说氧化钠是白的。但是注意那是比较大块的氧化钠,比较大一块或者排列整齐的一层是白色(就像金属钠表面的一层),如果很小的颗粒可能就是灰的。这就好比一整块铁是银白色,铁屑是黑色,跟光的折射有关,是个视觉现象。
煤灰是各种矿物质组成的混合物,没有一个固定的熔点,只有一个融化的范围,煤灰熔融性又称灰熔点。
应用原理:
煤的灰熔点又叫煤灰熔融性,是在规定条件下得到的随加热温度而变的煤灰(试样)变形、软化和流动特征物理状态,是动力用煤和气化用煤的一个重要的质量指标,可以反映煤中矿物质在锅炉中的动态,根据它可以预计锅炉中的结渣和沾污作用。灰熔点与热量没有任何关系,它的高低与煤灰中钙、镁、铁的含量高低有关,根据锅炉的设计,有的根据灰熔点越高了越好,有的根据灰熔点越低了越好。
影响因素:
灰熔点与原料中灰分组成有关,灰分中三氧化二铝、二氧化硅含量高,灰熔点高;三氧化二铁、氧化钙和氧化镁含量越高,灰熔点越低。原料灰熔点,是影响气化操作的主要因素。灰熔点低的原料,气化温度不能维持太高,否则,由于灰渣的熔融、结块,各处阻力不一,影响气流均匀分布,碳层易结疤发亮,而且由于熔融结块,还减少气化剂接触面积,不利于气化,因此,灰熔点低的原料煤,适用在较低温度下操作。
①成分因素:灰分中各种不同成分的物质含量及比例变化时,灰的熔点就不同,如灰中含二氧化硅和氧化铝越多,灰的熔点就越高。
②介质因素:与周边介质性质改变有关,如当灰份与一氧化碳、氢等还原性气体相遇时,其熔点会降低。
③浓度因素:当煤中含灰量不同时,熔点也会发生变化一般灰越多越低,这是由于各物质之间有助熔作用。燃烧多灰的煤,因为灰中各成份在加热过程中相互接触频繁,则产生化合、分解、助熔等作用的机会就增多,所以分浓度也是影响灰熔点的因素。
燃煤锅炉的结焦原因及预防
锅炉结焦是燃煤锅炉运行中比较普遍的问题,结焦是煤粉炉中熔融的渣粒粘结在受热面上的一种现象。一般情况下,炉膛火焰的温度很高,在此温度下,燃料燃烧后的灰多呈熔化或软化状态。随着烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起被冷却。如果液态的渣粒在接近水冷壁或炉墙前,已经因为温度降低而凝固,当附在受热面管壁上时,将形成一层疏松的灰层,运行中通过吹灰很容易除掉。若渣粒是以液态或半液态粘附到受热面管壁或炉墙上,将形成一层致密的灰渣层,称为结焦。
受热面结焦后,结焦层热阻很大,受热面传热能力下降,炉内吸热减少,导致烟温升高,锅炉排烟损失增大。与此同时,会引起汽温偏高,运行中为保持额定参数,不得不增加减温水量,甚至被迫降低出力。炉膛出口温度升高引起炉膛出口结焦后,增加了烟气阻力,也会造成锅炉运行经济性降低。水冷壁结焦后,传热能力下降,结焦和不结焦部分受热不均匀,可能引起水冷壁爆管事故。炉内结焦后,炉膛出口烟温上升引起过热汽温升高,而过热器、再热器结焦会加大热偏差,导致高温过热器、高温再热器超温爆破。当锅炉结焦严重,大焦突然落下时,还有可能造成灭火,甚至砸坏水冷壁管子,造成恶性事故。
1 锅炉结焦原因
从根本上看,燃煤电厂炉内结焦问题既是一个复杂的物理化学过程,也是一个炉内含灰气流的流动和传热传质过程。根据有关文献资料对电厂结焦锅炉进行分析调查,影响燃煤锅炉结焦因素主要有4个:煤质特性,锅炉设计特性参数(qv,qf,qr),炉内燃烧的空气动力场特性及锅炉的运行管理。锅炉发生结焦多是各种因素复合作用的结果,以煤质特性影响最大,锅炉特性参数次之,然后是空气动力场特性,运行管理方面的原因也不可忽视。
1.1 煤质特性
在影响结焦的因素中,煤质特性是主要的。近几年来,由于燃料供应紧张,往往煤质很难满足锅炉设计煤种的要求。煤在燃烧时,其灰分熔融特性用变形温度t1、软化温度t2和熔化温度t3来表示,软化温度t2的高低是判断煤灰是否容易结焦的主要指标。灰的成分不同,其熔点也不同。当煤中的硫化铁、氧化亚铁、氧化钾和氧化钠含量大时,灰熔点低,就容易结焦当煤中的氧化硅、氧化铝含量大时,灰熔点就高,就不容易结焦。煤的灰熔点一般在1250~1500℃,而有些煤的灰熔点则低于1100℃,锅炉燃用这种煤就非常容易结焦。
另外,同一种灰分,其周围介质性质改变时,熔点也要发生变化。如灰分与一氧化碳、氢气等还原性气体相遇时,其熔点会降低,这是因为还原性气体在高温下能将灰分中的高熔点氧化铁还原成熔点低的氧化亚铁。所以,在还原性介质中测得的灰熔点要比在氧化性介质中测得的灰熔点低。
1.2 锅炉设计特性参数的影响煤粉锅炉炉膛是锅炉最主要的组成部分之一,除了与燃烧器一起形成良好的燃烧条件以利于燃料着火外,主要是保证燃料的燃尽和将燃料产生的烟气冷却至必要的程度。炉膛结构设计特性对结焦影响很大,炉膛容积热负荷qv、炉膛截面热负荷qf是根据设计煤种和额定参数设计的。qv过大表示炉膛容积过小,炉膛水冷壁面积设计过小,炉膛内火焰温度高,容易造成结焦相反,如果qv过小,则表示炉膛容积过大,炉内水冷壁布置增加,炉膛内火焰温度偏低,容易灭火。炉膛截面热负荷qf决定炉膛截面尺寸,qf越小,表示释放同样热量时,炉膛截面愈大,炉膛截面周界长度也大,燃烧区域每米炉膛高度沿横截面周界所具有的辐射受热面越多,传热能力越强,就越不容易结焦。qf选取比qv更为重要,因为这一数值的大小决定了炉膛形状,直接影响空气动力场,它的选取与燃料种类、灰渣特性、排渣方式、燃烧方式有关。
随着锅炉容量的增大,燃烧器采用多层布置,燃烧器区域壁面热负荷qr表示炉内燃烧区域温度水平与换热强度,是设计大型锅炉时作为qv和qf的一种补充指标,qr越大说明炉膛燃烧区域受热面温度水平高,容易引起受热面结焦,为了防止qr过高,可将上下排燃烧器距离拉大,降低qr,对燃用有严重结焦倾向的煤有利。qv、qf、qr是衡量锅炉炉膛燃烧的重要参数,也是判断锅炉是否容易结焦、燃烧是否稳定的重要依据。
1.3 空气动力场特性影响炉内空气动力工况不良而造成的燃烧切圆过大或燃烧中心偏离,也会造成高温烟气流冲刷水冷壁面,使熔渣在接触壁面前无法凝固而结焦。
1.3.1 炉内实际切圆切向燃烧在炉内形成强烈旋转上升的气流,气流最大切向速度的连线构成炉内实际切圆,炉膛中心是速度很低的微风区,这就是切向燃烧锅炉炉膛内空气动力场的特点。实际切圆是切向燃烧的一个重要参数,对炉膛结焦、稳燃以及炉膛出口的烟速、烟温偏差都有重要的影响,实际切圆偏大则容易引起结焦,实际切圆偏小则影响燃烧稳定性。因此,保证适中的实际切圆直径非常重要,影响实际切圆直径的主要参数有安装切圆直径、燃烧器高宽比、燃烧器的间隙率、一、二次风动量比、燃烧器喷口总面积与炉膛截面积比及燃烧器摆角等。
1.3.2 一次风射流刚性
刚性是抗偏转能力的衡量标准,与喷口的结构及射流的动量有关,细长型喷口射流刚性比短粗型要强,当一次风射流动量增大时,气流抗偏转能力变强。
1.3.3 射流两侧补气条件差异射流两侧补气条件主要由炉膛截面长宽比、假想切圆直径、燃烧器组高宽比确定。对炉膛截面长宽比大的炉膛,燃烧器轴线与两侧墙面的夹角差增大,当假想切圆直径增大时,也导致同样的结果,燃烧器轴线与两侧墙面的夹角不等,造成射流两侧补气条件差别大,引起作用在射流两边的压差,使气流容易贴边而结焦。
1.3.4 燃烧器组高宽比及燃烧器喷口间隙燃烧器组高宽比及燃烧器喷口间隙也影响射流两侧补气条件。燃烧器组高宽比越大时,燃烧器组中间部分从上下两侧获取补气的条件越差,炉内旋转强度增加,一次风贴墙严重引起结焦。
1.3.5 一、二次风动量比一次风速主要根据煤粉着火以及输送的需要和火焰传播速度选取,二次风主要是根据风粉气流扩散混合燃烧和焦碳燃尽的需要选取。一次风射流偏转的主要原因是上游邻角横扫过来的惯性力,该惯性力是由上游一、二、三次风混合后形成的综合动量。一、二次风动量比越大,则一次风射流偏转程度越大,炉内实际切圆越大,越容易引起结焦。
1.4 运行管理方面的原因
炉内过量空气系数、四角风粉的均匀性、炉内温度水平、煤粉细度、一次风速、锅炉是否超负荷运行等都会影响结焦。另外,是否及时吹灰对炉内结焦也有影响。
2 预防措施
2.1 合适的炉膛热负荷
由于实际燃用煤与设计煤种不同,会造成qv、
qf过高而产生结焦,可通过改造燃烧器或卫燃带来降低燃烧器区域的热负荷,使炉膛内温度场分布合理,避免发生结焦。
2.2 合理的煤粉细度
根据实际煤种情况,通过对煤粉分离器及制粉系统的调整,保证合适的煤粉细度,当燃煤的挥发分有所变化时,可通过改变一次风率作为防止结焦和稳燃的辅助手段。在实践中,煤粉细度的选择,应兼顾稳燃、炉膛及炉膛出口受热面是否结焦、机械未完全燃烧损失、制粉电耗等因素综合考虑。
2.3 吹灰
加强吹灰器的管理,保证吹灰器的投入率,尤其要确保屏式过热器、高温过热器部位吹灰器的正常工作,应定时吹灰,防止受热面积灰影响传热,使烟气温度过高引起结焦。
2.4 混合煤掺烧
混合掺烧不同的煤种,特别是混烧结焦性强和结焦性差的煤种,是预防结焦、提高锅炉热效率的好方法但结焦性强的煤种要避免和高灰分煤种混烧,这样会加剧锅炉的结焦。
2.5 改善炉内空气动力工况
通过严格的空气动力场试验,缩小假想切圆的直径,并且把单切圆扰动改为双切圆扰动。由原来的一、二次风混合燃烧扰动的一个假想切圆,改造成由一次风粉扰动和二次风扰动形成的2个假想切圆,二次风切圆在外,防止了煤粉气流的贴壁、飞边现象,从而有效地避免了水冷壁结焦。要堵塞漏
风,漏风破坏了正常的炉内空气动力工况,影响火焰充满程度与搅拌混合情况,并改变了火焰中心位置,降低炉温,使燃料着火推迟,火焰中心上移,促使受热面结焦。
炉膛热负荷、炉膛内燃烧工况、氧量在运行中可以监测到,若发现异常,应及时调整,有结焦应及时清除,这是防止结焦的有效手段。
2、煤灰是各种矿物质组成的混合物,没有一个固定的熔点,只有一个融化的范围,所以有灰熔点。
3、灰熔点的影响因素:成分因素:灰分中各种不同成分的物质含量及比例变化时,灰的熔点就不同,如灰中含二氧化硅和氧化铝越多,灰的熔点就越高。介质因素:与周边介质性质改变有关,如当灰份与一氧化碳、氢等还原性气体相遇时,其熔点会降低。浓度因素:当煤中含灰量不同时,熔点也会发生变化一般灰越多越低,这是由于各物质之间有助熔作用。燃烧多灰的煤,因为灰中各成份在加热过程中相互接触频繁,则产生化合、分解、助熔等作用的机会就增多,所以分浓度也是影响灰熔点的因素。
煤炭燃烧会生成二氧化碳可能会生成一氧化碳
其中产生的二氧化碳会与氢氧化钠反应生成碳酸钠
二氧化碳和一氧化碳都不会和硫酸铜反应
但煤炭燃烧产生的二氧化碳、一氧化碳是无色无味气体
产生的烟是固体小颗粒,主要是炭黑和二氧化硅等杂质
不会与氢氧化钠和硫酸铜反应
煤炭燃烧既是化学变化也是物理变化。因为产生了新的物质,同时煤炭的状态发生了改变。煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。
化学变化和物理变化
1、联系:化学变化里一定包含物理变化,物理变化里一定没有化学变化。
2、区别
(1)两者本质的区别在于有无新物质的生成。
(2)物理变化只是在形态、性质等改变,而化学变化则有新的物质生成。
物理变化例子:水蒸发和凝固、糖块融化、二氧化碳凝华为干冰、闻到酒香、湿衣服变干。
化学变化的例子:氢氧化钠变质、植物光合作用、盐酸除锈、碱式碳酸铜受热分解、铁在潮湿空气中生锈、蜡烛燃烧。
,还有一些其他的成分,氢氧化钠、氧化钠、醇钠、饱和脂肪酸钠,以及固态烃类物质因为要经常取出做实验,金属钠表面肯定要和空气接触的,空气中的CO2、H2O,还有煤油也不一定不纯,里面固态烃类物质也可能和钠反应,时间久了,就出现这种黄色的物质。但这些成分至今还未验证出来。