某个新科技研发机构研制了一款利用太阳电池工作的汽车:(1)大阳能属于______(选填“可”或“不可”)
(1)大阳能属于可以从自然界直接获取的可再生能源;
(2)车上太阳能电池面板接收的辐射功率P辐射=1000W/m2×8m2=8000W;
做功W=UIt=120V×10A×10×60s=7.2×105J;这台太阳能汽车的功率P=UI=120V×10A=1200W;
这台太阳能汽车的效率是η=
P |
P辐射 |
1200W |
8000W |
故答案为:(1)可;(2)8000;7.2×105;15%.
太阳能的安装受限。
通过对山西太原、大同、运城三地部分太阳能经销商的调查,大家普遍反映近年来,城市新盖楼房高层多,真空管太阳能的安装受限。这也意味着,阳台壁挂太阳能和平板太阳能将迎来其繁荣期,但由于价格偏高和消费者认识不足,需要企业大力开发平板和阳台壁挂太阳能市场。而且实际效果其实并不好。
太阳能solarenergy,是一种可再生能源。是指太阳的热辐射能参见热能传播的三种方式:辐射,主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。
我国清洁能源(新能源)的发展现状
(一)太阳能
我国地大物博,拥有丰富的太阳能资源,当前我国太阳能产业规模位居全球首位。
截至2021年9月底,光伏发电累计装机2.78亿千瓦。2021年1-9月,全国光伏新增装机2556万千瓦,其中,集中式光伏电站915万千瓦、分布式光伏电站1641万千瓦。从新增装机布局看,装机占比较高的区域为华北、华东和华中地区,分别占全国新增装机的44%、19%和17%。
(二)风能
我国风能资源非常丰富,资源总量在33.26亿千瓦左右。其中,大概有31.33%的风能资源可以被利用,很大一部分是海洋中的风能资源,大概在75%左右;其余部分风能资源在陆地上,占据了可用资源的25%。
据国家能源局消息,截至2021年11月中旬,我国风电并网装机容量达到30015万千瓦,突破3亿千瓦大关,较2016年底实现翻番,是2020年底欧盟风电总装机的1.4倍、是美国的2.6倍,已连续12年稳居全球第一。
(三)生物质能
我国的生物能源储存量特别丰厚,主要是田间的秸秆以及薪炭林等可以大量利用的生物能,这种能源分布范围广、可利用率高,并且生物能在基础设施的建设可以很容易形成。在实际的生物能利用过程中,前期的准备建设工作比较简单,生物能在我国具有很大的开发潜力。
2021年1-9月,生物质发电新增装机554.7万千瓦,累计装机达3536.1万千瓦,生物质发电量1206亿千瓦时。累计装机排名前五位的省份是山东、广东、浙江、江苏和安徽,年发电量排名前六位的省份是广东、山东、浙江、江苏、安徽和河南。
(四)核能
核能利用的主要方式是核裂变和核聚变。我国对核电研究及利用起步较晚,在20世纪80年代建立第一座核电站。中国核能行业协会2021年11月14日发布的蓝皮书显示,截至2020年12月底,我国在建核电机组17台,在建机组装机容量连续多年保持全球第一。
2020年,国内核电主设备交付31台套,实现了批量化成套交付,涵盖反应堆压力容器、蒸汽发生器、堆内构件等各类产品,我国已全面掌握先进核电装备制造核心技术。
(五)海洋能
海洋能指依附在海水中的可再生能源。海洋通过各种物理过程储存和散发能量,这一部分能量通过潮汐、波浪和盐度梯度等形式存在于海洋之中。
我国海洋能开发具有较长的历史,在解放初期便兴建了潮汐电站。伴随多年的不断实践,海洋发电技术实现新的突破,针对小型潮汐发电站技术趋于成熟化及规范化,同时具备中型潮汐发电站技术要求。
(六)地热能
我国已经明确将地热能作为可再生能源发电、供暖的重要方式。2021年9月,国家能源局等八部门印发的《关于促进地热能开发利用的若干意见》指出,到2025年,全国地热能供暖(制冷)面积比2020年增加50%,在资源条件好的地区建设一批地热能发电示范项目,全国地热能发电装机容量比2020年翻一番;到2035年,地热能供暖(制冷)面积及地热能发电装机容量力争比2025年翻一番。
根据国家地热能中心公布的数据,截至2020年底,我国地热能供暖(制冷)面积累计达到13.9亿平方米。其中,水热型地热能供暖5.8亿平方米,浅层地热能供暖(制冷)8.1亿平方米,每年可替代标煤4100万吨,减排二氧化碳1.08亿吨。
结 语
根据上述情况可知,我国的新能源发展依托国家政策支持,前景极为光明。为了落实碳达峰、碳中和目标,我国将构建以新能源为主体的新型电力系统。这就要求全社会同心协力,提高新能源企业的核心竞争力,大力发展新能源产业,助力双碳目标的实现。
太阳能转化科学与技术
太阳能转化
科学与技,
内容简介
目录
大阳能是储量#大的清洁可再生能源,也是地球上其他可再生能源如风能、水能和生物质能等
能源形式的根本来源,发展太阳能利用相关的科学与技术是人类当前和末来的重要努力方向之一。《太阳能转化科学与技术》简述太阳能
利用的科学原理与技术,重点介绍太阳能科学
转化利用的多种途径和技术,以及相关科学基础知识、研究方法和前沿进展。《太阳能转化
科学与技术》共分6章,内容涵盖光科学及太阳能、自然光合过程中的光生物转化、人工光合成过程中的光催化和光电催化化学转化、光伏
发电过程中的光电转化以及光热过程中的光热
化学转化等。
在银河系以外,现在观察到类似银河系的天体系统约有10亿个,我们把它们称为河外星系。银河系和河外星系共同组成总星系。总星系是目前人们所能观察到的宇宙部分。
为了便于认识星空,人们把宇宙假想为一个半径无限大的球体,称为天球。
为了便于认识恒星,人们把天球分成若干区域,这些区域称为星座。如北斗七星就是大熊座的主要部分。按国际上规定,全球分为88个星座。每个恒星都归属一定的星座,如北极星就是小熊座中的一颗恒星。
所以说太阳系和星座完全是两个不同的概念,不能混为一谈。
补充:
12星座与 88星座的由来
88星座:古代为了要方便在航海时辨别方位与观测天象,於是将散布在天上的星星运用想像力把它们连结起来,有一半是在古时候就已命名了,其命名的方式有依照古文明的神话与形状的附会(包含了美索不达米亚、巴比伦、埃及、希腊的神话与史诗)。另一半(大部是在南半球的夜空中)是近代才命名,经常用航海的仪器来命名。在古代因地域的不同,所以"连连看"的方式也就不一样!而现在世界已统一星座图为将天空划分八十八区域八十八个星座。
12星座:我们一般谈论的『星座』(SIGN),指的是『太阳星座』(SUNSIGN);亦即以地球上的人为中心,同时间看到太阳运行到轨道(希腊文ZODIAC:意即~动物绕成的圈圈,又称"黄道")上哪一个星座的位置,就说那个人是什么星座。 二千多年前希腊的天文学家希巴克斯(Hipparchus,西元前190~120)为标示太阳在黄道上观行的位置,就将黄道带分成十二个区段,以春分点为0°,自春分点(即黄道零度)算起,每隔30° 为一宫,并以当时各宫内所包含的主要星座来命名,依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶、双鱼等宫,称之为黄道十二宫 。总计为十二个星群。在地球运转到每个等份(星群)时所出生的婴儿,长大后总有若干相似的特徵,包括行为特质等。将这些联想(丰富的想像和创造力)串联起来,便使这些星群人性的具像化了;又加入神话的色彩,成为文化(主要指希腊和罗马神话)的重要部份。这套命理演进、流传至今至少五千年的历史,它们以这十二个星座为代表。但这些星座并非是某一个"星星"的意思,只能视为『名称相同的一种代表标记而已』。
关于12星座的一点资料:
1.太阳(Sun)
●象徵著精神的圆,圆中有一小点,意味著混沌中生命的萌芽。
●太阳守护狮子座;在个人出生图上的意义是自我表现。为一切行星光之来源,故影响性格。由太阳来看狮子座,可以发现其爱现和发光体的特质;另外,太阳常常被比喻为帝王,这和狮子座的爱面子和王者之风也有关系。
(这是否说明太阳在12星座中属于狮子座?——美国警察)
关于88星座的一点资料:
仙女座
在讲秋季四边形时,已经提到过仙女座了(参见“飞马座”的星座介绍)。构成这个四边形的α星是仙女座中最亮的一颗,从四边形中飞马座α星到仙女座α星的对角线,向东北方向延伸,仙女座δ、β、γ这三颗亮星(除δ是3m外,其它两颗都是2m星)几乎就在这条延长线。再往前延伸,就碰到英仙座的大陵五了。大陵五与英仙座α星还有仙女座γ星刚好构成了一个直角三角形。
这颗仙女座γ星是个双星,其中主星是颗2.3m的橙色星,伴星为5.1m的黄色星。有趣的是,这颗伴星是个“变色龙”,从黄色、金色到橙色、蓝色,简直像个高明的魔术师一样变来变去。
仙女座中最著名的天体,大概要算是那个大星云了。在仙女座υ星附近,晴朗无月的夜晚,我们可以看到一小块青白色的云雾,这就是仙女座大星云。这个星云早在1612年就被天文学家发现了,但直到本世纪20年代,美国天文学家哈勃才彻底搞清,它和人马座中的那些星云完全是两码事, 它是远在220万光年外的一个大星系,所以它的正确名称应该是“仙女座河外星系”。
仙女座河外星系的直径为17万光年,包含3000多亿颗恒星。它和我们银河系很相似,也是漩涡状的,也有很多变星、星团、星云等。有趣的是,在它身旁还有两个小星系,它们一起构成了一个三重星系。(一点都没涉及太阳——美国警察)
狮子座
介绍春夜星空的牧夫座、室女座时,曾经提到过狮子座。狮子座的β星、牧夫座的大角以及室女座的角宿一,组成了春夜里很重要的“春季大三角”。
狮子座也是黄道星座。由于岁差的缘故,在四千多年前的每年六月,太阳的视运动正好经过狮子座。(现在的六月,太阳的视运动已经到了金牛座与双子座之间。)那时,波斯湾古国迦勒底的人民认为,太阳是从狮子座中获得了很多热量,所以天气才变得热起来。古埃及人也有同感,因为每年的这个时候,许多狮子都迁移到尼罗河河谷中去避暑。
古埃及对狮子座非常崇拜,据说,著名的狮身人面像就是由这头狮子的身体配上室女的头塑造出来的。狮子座里的星在我国古代也很受重视,我国古人把它们喻为黄帝之神,称为轩辕。
我们在春夜通过春季大三角找到了狮子座β星后,它东边的一大片星,就都是狮子座的了。在狮子座中,δ、θ、β三颗星构成一个很显著的三角形,这是狮子的后身和尾巴;从ε到α这六颗星组成了一个镰刀的形状,又象个反写的问号,这是狮子的头,连接大熊座的指极星(即勺口的两颗星)向与北极星相反的方向延伸,就可以找到它。α星我国叫轩辕十四,它的视星等为1.35m,是狮子座最亮的星,也是全天第二十一亮星。 它和大角、角宿一组成了一个等腰三角形,延长大熊座δ和γ星到十倍远的地方可以找到它。古代,航海者经常用它来确定航船在大海中的位置,所以狮子座α星又被授予“航海九星之一”的称号。
狮子座的轩辕十四就位于黄道附近,它和同样处在黄道附近的金牛座毕宿五、天蝎座的心宿二和南鱼座的北落师门一共四颗亮星,在天球上各相差大约90°,正好每个季节一颗,它们被合称为黄道带的“四大天王”。
每年11月中旬,尤其是14、15两日的夜晚,在狮子座反写问号的ζ星附近,会有大量的流星出现,这就是著名的狮子座流星雨。它大约每33年出现一次极盛, 早在公元931年,我国五代时期就已记录了它极盛时的情景。到了1833年的最盛期,流星就像焰火一样在ζ星附近爆发,每小时有上万颗。以致第二天晚上有位农夫赶紧跑到屋外,看看天上的星是不是都掉光了。(能说明太阳属于狮子座吗?——美国警察)
总结:太阳在12星座和88星座中是不是都属于狮子座呢?我对星座的了解不深,你到下面的网址中再去看看吧,或者请教一下专家。
参考资料:http://www.astronomy.com.cn/bbs/archive/o_t/t_36182/start_0/ http://www.hongen.com/art/twdg/index4.htm
太阳能电池
引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域, 是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。 化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。德国费莱堡太阳能研究所采用区馆再结晶技术在FZ Si衬底上制得的多晶硅电池转换效率为19%,日本三菱公司用该法制备电池,效率达16.42%。 液相外延(LPE)法的原理是通过将硅熔融在母体里,降低温度析出硅膜。美国Astropower公司采用LPE制备的电池效率达12.2%。中国光电发展技术中心的陈哲良采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为“硅粒”太阳能电池,但有关性能方面的报道还未见到。 多晶硅薄膜电池由于所使用的硅远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 1.3 非晶硅薄膜太阳能电池 开发太阳能电池的两个关键问题就是:提高转换效率和 降低成本。由于非晶硅薄膜太阳能电池的成本低,便于大规模生产,普遍受到人们的重视并得到迅速发展,其实早在70年代初,Carlson等就已经开始了对非晶硅电池的研制工作,近几年它的研制工作得到了迅速发展,目前世界上己有许多家公司在生产该种电池产品。 非晶硅作为太阳能材料尽管是一种很好的电池材料,但由于其光学带隙为1.7eV, 使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S一W效应,使得电池性能不稳定。解决这些问题的这径就是制备叠层太阳能电池,叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。叠层太阳能电池提高转换效率、解决单结电池不稳定性的关键问题在于:①它把不同禁带宽度的材科组台在一起,提高了光谱的响应范围;②顶电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;③底电池产生的载流子约为单电池的一半,光致衰退效应减小;④叠层太阳能电池各子电池是串联在一起的。 非晶硅薄膜太阳能电池的制备方法有很多,其中包括反应溅射法、PECVD法、LPCVD法等,反应原料气体为H2稀释的SiH4,衬底主要为玻璃及不锈钢片,制成的非晶硅薄膜经过不同的电池工艺过程可分别制得单结电池和叠层太阳能电池。目前非晶硅太阳能电池的研究取得两大进展:第一、三叠层结构非晶硅太阳能电池转换效率达到13%,创下新的记录;第二.三叠层太阳能电池年生产能力达5MW。美国联合太阳能公司(VSSC)制得的单结太阳能电池最高转换效率为9.3%,三带隙三叠层电池最高转换效率为13%,见表1 上述最高转换效率是在小面积(0.25cm2)电池上取得的。曾有文献报道单结非晶硅太阳能电池转换效率超过12.5%,日本中央研究院采用一系列新措施,制得的非晶硅电池的转换效率为13.2%。国内关于非晶硅薄膜电池特别是叠层太阳能电池的研究并不多,南开大学的耿新华等采用工业用材料,以铝背电极制备出面积为20x20cm2、转换效率为8.28%的a-Si/a-Si叠层太阳能电池。 非晶硅太阳能电池由于具有较高的转换效率和较低的成本及重量轻等特点,有着极大的潜力。但同时由于它的稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅大阳能电池无疑是太阳能电池的主要发展产品之一。 2 多元化合物薄膜太阳能电池 为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代 砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,因此,是很理想的电池材料。GaAs等III-V化合物薄膜电池的制备主要采用 MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V比率、总流量等诸多参数的影响。 除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%.见表2。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。 铜铟硒CuInSe2简称CIC。CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。 CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。 CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 3 聚合物多层修饰电极型太阳能电池 在太阳能电池中以聚合物代替无机材料是刚刚开始的一个太阳能电池制爸的研究方向。其原理是利用不同氧化还原型聚合物的不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机P-N结的单向导电装置。其中一个电极的内层由还原电位较低的聚合物修饰,外层聚合物的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一个电极上两种聚合物的还原电位均高于后者的两种聚合物的还原电位。当两个修饰电极放入含有光敏化剂的电解波中时.光敏化剂吸光后产生的电子转移到还原电位较低的电极上,还原电位较低电极上积累的电子不能向外层聚合物转移,只能通过外电路通过还原电位较高的电极回到电解液,因此外电路中有光电流产生。 由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 4 纳米晶化学太阳能电池 在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。 自瑞士Gratzel教授研制成功纳米TiO2化学大阳能电池以来,国内一些单位也正在进行这方面的研究。纳米晶化学太阳能电池(简称NPC电池)是由一种在禁带半导体材料修饰、组装到另一种大能隙半导体材料上形成的,窄禁带半导体材料采用过渡金属Ru以及Os等的有机化合物敏化染料,大能隙半导体材料为纳米多晶TiO2并制成电极,此外NPC电池还选用适当的氧化一还原电解质。纳米晶TiO2工作原理:染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。 纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到2O年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。 5 太阳能电池的发展趋势 从以上几个方面的讨论可知,作为太阳能电池的材料,III-V族化合物及CIS等系由稀有元素所制备,尽管以它们制成的太阳能电池转换效率很高,但从材料来源看,这类太阳能电池将来不可能占据主导地位。而另两类电池纳米晶太阳能电池和聚合物修饰电极太阳能电地存在的问题,它们的研究刚刚起步,技术不是很成熟,转换效率还比较低,这两类电池还处于探索阶段,短时间内不可能替代应系太阳能电池。因此,从转换效率和材料的来源角度讲,今后发展的重点仍是硅太阳能电池特别是多晶硅和非晶硅薄膜电池。由于多晶硅和非晶硅薄膜电池具有较高的转换效率和相对较低的成本,将最终取代单晶硅电池,成为市场的主导产品。 提高转换效率和降低成本是太阳能电池制备中考虑的两个主要因素,对于目前的硅系太阳能电池,要想再进一步提高转换效率是比较困难的。因此,今后研究的重点除继续开发新的电池材料外应集中在如何降低成本上来,现有的高转换效率的太阳能电池是在高质量的硅片上制成的,这是制造硅太阳能电池最费钱的部分。因此,在如何保证转换效率仍较高的情况下来降低衬底的成本就显得尤为重要。也是今后太阳能电池发展急需解决的问题。近来国外曾采用某些技术制得硅条带作为多晶硅薄膜太阳能电池的基片,以达到降低成本的目的,效果还是比较现想的。