可再生能源中,发电成本最高的是 A.水电 B.太阳能 C.风能 D.潮汐能
水电要移民,考虑自然环境的后期影响,这个成本最大。度电成本COE的话现在的水电还是很便宜的。风电,现在也得5毛到1块,太阳能1块到2块吧。潮汐能不了解。
水电对自然破坏太严重,隐形成本计入的话,这个最大。
正在如火如荼建设中的海上风电再次迎来不确定性。近日,有消息显示,有关部门或将在2021年之后取消海上风电国家补贴;与此同时,省级财政补贴也存在较强不确定性。一旦政策落地,意味着我国海上风电将提前进入平价上网时代。
发展海上风电是我国能源革命的必然选择。一个时期以来,消纳难限制了我国新能源发展,与陆上风电集中在西北内陆不同,海上风电由于紧邻我国东部沿海电力负荷中心,消纳前景非常广阔;同时,海上风电对电网更加友好。当前,众多国家将海上风电作为加快推进能源转型的核心路径。我国发展海上风电拥有天然优势。我国海岸线长达1.8万公里,可利用海域面积300多万平方公里,海上风能资源丰富。根据中国气象局风能资源详查初步成果,我国5米至25米水深线以内近海区域、海平面以上50米高度范围内,风电可装机容量约2亿千瓦。经过多年的稳步发展,无论是在可开发的资源量上,还是在技术、政策层面,我国海上风电目前已基本具备大规模开发条件。
不过,装机量不断增长,也给国家补贴制造了难题。不可否认的是,海上风电是目前度电成本最高的可再生能源之一。海上风电目前0.85元/千瓦时的标杆电价,约合每千瓦时电补贴0.4元左右,是陆上风电度电补贴金额的3倍左右。与此同时,政府补贴缺口正在拉大,据国家发改委能源研究所测算,截至2018年底,可再生能源补贴拖欠已经达到2000亿元。
补贴缺口问题需要积极解决,但也要考虑到海上风电现阶段面临的现实问题。我国陆上风电发展较早,通过十余年的补贴,规模已经跃居世界第一,技术也得到长足进步,在大部分地区能够实现平价上网。但是,海上风电还处于起步阶段,规模较小,未来几年是技术创新和变革的关键期,仍有很多降本增效空间。比如,通过应用大型化机组,可以有效降低初始投资、安装与运维费用;再加上大规模开发所形成的规模效应、专业化施工船舶和设备的投用、数字化技术手段的普及等,都将带动全生命周期成本下降,以及发电效率提升。
一个产业走向成熟难免要经历“断奶”的阵痛,可再生能源退补是大趋势,但如今我国海上风电刚进入高速发展期不久,政策调整还要确保产业 健康 发展不受影响。因而,政策的连续性对起步阶段的海上风电产业至关重要,不搞“一刀切”也应当是海上风电退补的基本原则。逐步退坡,保证一定的市场容量,有助于海上风电进一步发展。同时,考虑到国家补贴的现实困难,以及发展海上风电对地方经济发展的带动作用,在国补稳步退出的同时,直接受益于海上风电发展的相关省份也应当承担起相应的责任,高瞻远瞩,接力补贴,为海上风电发展营造稳定的政策环境,助力其尽快走完关键成长期,成为地方经济 社会 发展的新引擎。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
一、你的命题中包括两个主题:1.可再生能源建设成本过高;2.风电相较于其他可再生能源具备更加接近商业化的优势。
二、针对所包含的两个主题,思路分析如下:
(一)可再生能源中确实有很多成本较高,较广泛的如光伏发电,目前西部发电成本为2.0元/WP以上,风电略低于光伏发电,这是事实;但同时也有部分可再生能源发电成本低于常规能源,如沼气能等;发电成本的因素很多,包括国内技术瓶颈导致的进口设备价格较高、建设地点一般地处偏远交通人力费用等;国内既然成本较高,就务必需要国家相关政策扶持(例如电价补贴),以此促进可再生能源的大力建设。目前风电电价在0.49-0.69元/W(各地区会有不同),对于太阳能电价,去年上半年国家发改委出台基本定在1.15元/WP(详细发布等记不太清了,你可以上网查一下)。
报告中一定要全面覆盖,为增加报告的完整及时效性,建议可以插入更新的概念(例如2010年在青海省海西地区发现的可燃冰,这也是一种新能源,储藏量可保证中国使用90年!当然它和可再生能源概念并不同,但是国家非常重视,同时单说可燃冰的开采成本,要远远高于光伏发电的发电成本),可以酌情阐述。
至于关键词,个人建议:发电成本、技术制约、政策扶持等。
(二)风电相较于其他可再生能源具备更加接近商业化的优势。这个命题必须结合(一)所说的国家政策扶持这点,之所以风电有优势,原因包括:1.国内沿海(如烟台的风电厂,电价0.69元/W)地区相较于西部地区本身经济、信息发展较发达,且早已具备风电发展的相关配套产业,而我国风能资源较好的地带主要地处经济相对较落后的西南、西北两块;2.前国内风电大部分仍是示范项目,并非商业化,只是接近商业化;
阐述过程中最好结合市场化(即商业化)这一主题,从其他产品商业化模式中求同取异,最好有自己的观点,同时需要提出制约风电市场化、商业化的关键问题以及解决办法,观点有偏颇没事,但一定要符合实际和逻辑;
至于关键词,个人建议:风力发电、发展障碍、大规模应用等。
另:很高兴可以与你交流分享关于可再生能源的问题,面对能源逐渐枯竭、环境日益恶化,积极参与到可再生能源建设队伍中,这不仅是利于社会的行为,也是个人实现社会责任感这一重大生活意义的高端表现,所以:努力,加油,成功!
可再生能源的介绍
可再生能源指的是在自然界可以循环再生,取之不尽,用之不竭的能源,并且不需要人力参与便会自动再生。可再生能源有很多,比较常见的有太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。这些能源主要是通过植物的光合作用吸收太阳能或太阳光加热地球上的空气和水而形成的。
虽然可再生能源具有可持续性和减少污染等优点,但是目前依然存在一定的问题,比如利用效率低、技术水平低、成本高、补贴资金缺口扩大等等。
10月29日,中国石油化工集团有限公司(下称中石化)新闻办发布消息称,下属新星公司将参与开发位于陕西渭南市大荔县的分散式风电项目,总装机容量20兆瓦。这将是中石化首个风电项目。
中石化称,分散式风电是一种小规模分散式、布置在用户附近、高效可靠的发电模式。虽然总容量较小,但它可利用已建成的电网进行输送,更加灵活,可实现风能资源的有效利用和就地消纳。
上述项目整体占地面积约35平方公里,设计安装八台单机容量2.5兆瓦风力发电机组,建成后上网年发电量可达4286.5万千瓦时,相当于年节约标准煤1.32万吨。
中国新能源电力投融资联盟秘书长彭澎对界面新闻表示,与其他央企风电项目最小为50兆瓦相比,中石化20兆瓦的总装机容量非常小,加之中国分散式风电的市场空间仍有局限性,未来进行大规模发展的可能性较小。
彭澎认为,中石化上述风电项目仅是“试水”。
风能是中石化未来构建新能源体系的业务之一。今年3月30日,中石化董事长张玉卓在2019年度业绩发布会上提出“一基两翼三新”的发展格局。
其中,在新能源领域,中石化提出将着力建设以风光热氢为引领的新能源体系,积极引领发展氢能,推进太阳能、风能发展,优化发展生物质能。
随着中石化此次加入,中国油气巨头“三桶油”齐聚风电领域。
中国石油天然气集团有限公司(下称中石油)和中国海洋石油集团有限公司(下称中国海油)在风电领域的布局稍早。
去年4月,中国电建集团山东电建四川公司发布消息称,中标了中国石油海洋工程(青岛)海上风电项目A、B段电气设备安装施工项目。
山东电建四川公司表示,该项目位于江苏省灌云、如东海域 ,A标段风电场拟安装95台单机容量为4.2 MW风力发电机组,总装机容量400兆瓦。B标段共布置50台单机容量为4兆瓦的风电机组,总装机规模200兆瓦。
中石油在《2019年环境保护公报》里表示,将适度发展风电和光伏等。但截至目前,尚未看到中石油对外公布相关风电项目的最新进展。
与中石化和中石油相比,中国海油在海上风电的发展决心更大、行动也更积极。
2019年年初,中国海油正式透露在 探索 海上风电业务。同年4月30日,中国海油第一个合作开发的江苏海上风电项目开工。今年9月15日,该项目实现并网发电。
据中国海油介绍,江苏海上风电场中心离岸距离39公里,水深约12米。该项目规划装机容量300兆瓦,计划在海上建设67台风机,首批风机已实现并网发电。项目预计今年底前全部投产,年上网电量达约8.6亿千瓦时。
这次是中国海油重返风电领域。2006年,中国海油首次提出进军上海风电业务,并将其列为“未来30年重点投入”领域,但后因盈利情况欠佳,2014年中断了新能源业务的发展。
去年6月10日,中国海油首次发布了《绿色发展行动计划》,提出大力发展海上风电产业开发等新能源新业务。
中国海油首席执行官袁光宇称,海上风电是诸多清洁能源、可再生能源种类中,与中国海油契合度最高的领域。中国海油有丰富的海上工程资源和生产作业经验,均可以应用到海上风电领域。
今年7月2日,中海石油(中国)有限公司全资子公司中海油融风能源有限公司在上海正式揭牌成立。该公司的发展思路是“本着低成本、市场化的原则,先近浅海练兵,后深远海发力,积极稳妥推进海上风电业务”。
中国海油正在同步开发广东省附近海域海上风电场,未来还将在深远海风电和分散式海上风电研发和投资方面持续发力。
在全球石油需求增长放缓,能源向低碳清洁转型的大背景下,“三桶油”进军风电等可再生能源行业是大势所趋。加之今年新冠疫情“雪上加霜”,全球石油企业加速转型成为必然。
2019年中国的可再生能源发电量结构中,水电、光伏发电、风电、生物质发电占比分别是63.73%、19.89%、10.10%、5.45%,同比增速分别是5.7%、10.9%、26.3%、20.4%。
其中,风电是增长速度较快、电源占比高的一类。
第三方咨询机构WoodMackenzie估算,以江苏沿海的风资源算,海上风电项目内部收益率约为8%-10%。在福建、广东等地海域,投资成本较高,约为1.8万-2.2万元/千瓦,但由于风资源更为优越,内部收益率可达10%-12%。
但风电行业留给“三桶油”的时间和空间并不多。
彭澎表示,陆上风电经过15年的高速发展后,适合安装风机并具备消纳条件的区域,已基本被开发了;80%的优质项目已沉淀在电力央企手里,通过交易进行产权置换的可能性较小。
“经过补贴阶段后,海上风电未来的发展规模也有限。“彭澎认为,从短期和中期看,风电尚难和光伏竞争。
与光伏发电相比,目前风电的发电成本更高。去年10月国网能源研究院发布的《2019年中国新能源发电分析报告》显示,当前陆上风电平均度电成本约为0.38元,海上风电平均度电成本约为0.64元;光伏电站平均度电成本约0.377元。
该报告预计,2020年中国陆上风电度电成本将下降至0.3-0.4元,光伏发电度电成本将下降到0.26-0.3元。
受困于建设安装技术不成熟和海上风机运维成本高企,海上风电是度电成本最高的可再生能源之一。
目前海上风电标杆电价为0.85元/度,相当于每度电补贴约0.4元,是陆上风电度电补贴金额的3倍。若去除中央补贴后,地方不支持海上风电补贴,且其成本未能实现降低,海上风电前景存忧。
“长期看,海上大型风电项目能否以合适的价格融入未来电力市场,存在较大的不确定性。”彭澎表示。
今年3月,财政部、国家发改委、国家能源局联合《关于促进非水可再生能源发电 健康 发展的若干意见》,明确提出新增海上风电和光热项目不再纳入中央财政补贴范围,按规定完成核准(备案)并于2021年12月31日前全部机组完成并网的存量海上风力发电和太阳能光热发电项目,按相应价格政策纳入中央财政补贴范围。
这意味着2021年之后将取消海上风电国家补贴。
按照中国《可再生能源发展“十三五”规划》目标,到2020年,风电项目电价可与当地燃煤发电同平台竞争,光伏项目电价可与电网销售电价相当。在部分资源条件较好的地区,这一目标已基本实现。“十四五”期间,中国风电、光伏发电将全面迎来平价上网时代。
尽管如此,“三桶油”在风电领域也有机会。彭澎表示,“三桶油”旗下的油田矿区和炼化企业大多建有自备电网,具备消纳太阳能和风能电力的电网条件,可以根据情况重新布局可再生能源的电力供应。
另外,“三桶油”具备大量的油田区块,如果有风资源比较好的区域,也可以进行开发。“三桶油”油田矿区集中分布在西北和东北地区,太阳能和风能资源较为丰富,且以盐碱地、戈壁荒漠为主,占用耕地和林地少,无高大遮挡物,具备良好的场地条件和资源条件。
彭澎建议,“三桶油”可以尽可能地开拓新的市场,比如做能源管理,开展综合能源、清洁能源和智慧能源等新的增值业务。
特点是:
1)资源丰富,普遍具备可再生特性,可供人类永续利用;
2)能量密度低,开发利用需要较大空间;
3)不含碳或含碳量很少,对环境影响小;
4)分布广,有利于小规模分散利用;
5)间断式供应,波动性大,对持续供能不利;
6)除水电外,可再生能源的开发利用成本较化石能源高。
可再生能源包括:太阳能、水力、风力、生物质能、波浪能、潮汐能、海洋温差能等。
特点是它们在自然界可以循环再生。
共性:优于不可再生能源
地热发电平均利用效率达73%,约为太阳光伏发电的3.5倍,风力发电的2倍,在所有可再生能源中综合利用效率最高。
基本原理与火力发电类似,也是根据能量转换原理,首先把地热能转换为机械能,再把机械能转换为电能。地热发电实际上就是把地下的热能转变为机械能,然后再将机械能转变为电能的能量转变过程或称为地热发电。
地热能
地热能直接利用于烹饪、沐浴及暖房,已有悠久的历史。至今,天然温泉与人工开采的地下热水,仍被人类广泛使用。据联合国统计,世界地热水的直接利用远远超过地热发电。中国的地热水直接利用居世界首位,其次是日本。
地热水的直接用途非常广泛,主要有采暖空调、工业烘干、农业温室、水产养殖、旅温泉疗养保健等。
太阳能、地热能、风能、海洋能等。
分类
1、新能源按其形成和来源分类:
(1)、来自太阳辐射的能量,如:太阳能、水能、风能、生物能等。
(2)、来自地球内部的能量,如:核能、地热能。
(3)、天体引力能,如:潮汐能。
2、新能源按开发利用状况分类:
(1)、常规能源,如:水能、核能。
(2)、新能源,如:生物能、地热、海洋能、太阳能、风能。
3、新能源按属性分类:
(1)、可再生能源,如:太阳能、地热、水能、风能、生物能、海洋能。
(2)、非可再生能源,如:核能。
4、新能源按转换传递过程分类:
(1)、一次能源,直接来自自然界的能源。如:水能、风能、核能、海洋能、生物能。
(2)、二次能源,如:沼气、蒸汽、火电、水电、核电、太阳能发电、潮汐发电、波浪发电等。
知识拓展
新能源( NE):又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
特点
1)资源丰富,普遍具备可再生特性,可供人类永续利用;比如,陆上估计可开发利用的风力资源为253GW, 而截止2003年只有0.57GW被开发利用,预计到2010年可以利用的达到4GW, 到2020年到20GW,而太阳能光伏并网和离网应用量预计到2020年可以从的0.03GW增加1至2个GW。
2)能量密度低,开发利用需要较大空间;
3)不含碳或含碳量很少,对环境影响小;
4)分布广,有利于小规模分散利用;
5)间断式供应,波动性大,对持续供能不利;
6)除水电外,可再生能源的开发利用成本较化石能源高。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电(Small-hydro)、太阳能(Solar)、风能(Wind)、现代生物质能(Modern biomass)、地热能(Geothermal)、海洋能(Ocean)(潮汐能);传统生物质能(Traditional biomass)。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等。
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为3种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
生物质能利用现状
2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。
中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。
第二个制约的因素是设备成本,大型水电解制氢设备的成本相对于其他方式也偏高。
第三个因素是设备大型化,目前能制造出来的单台最大为1000立方,应用于能源来说还是太小。设备大型化后可以降低设备制造成本。
其他的因素就是市场应用,水电解在氢气作为能源前只有用于特殊工业应用,没有市场支撑导致技术研发进步缓慢,单体制造成本下降困难。
水电解的优点是,技术成熟,工艺简单,气体纯度高,是目前唯一一种能与可再生能源衔接制氢方式。