西安宝德自动化股份有限公司怎么样?
简介:西安宝德自动化股份有限公司西安宝德自动化股份有限公司位于西安市高新技术产业开发区,是国家批准认证的高新技术企业,专业从事石油、煤炭、冶金、专用设备、新能源等自动化设备的研发、制造及系统成套。公司通过ISO9001、ISO14001及OHSAS18001认证,产品荣获国家科技部、国家质检总局等五大部委颁发的国家重点新产品奖及2007年度西安市科技进步一等奖,并获多项国家专利。西安宝德自动化股份有限公司为石油行业提供1500m到12000m钻机的一体化电控系统、顶驱变频控制系统、海洋钻井平台电控系统、自动送钻控制系统、钻机电视监控系统。西安宝德自动化股份有限公司为冶金行业提供10—20万吨镀锌生产线、10—20万吨彩涂生产线、10—20万吨酸洗生产线、拉矫机、飞剪、纵剪、4辊6辊轧机电气控制系统。西安宝德自动化股份有限公司为航空航天提供风洞控制系统,为亚洲最大的水动力试验室提供拖车控制系统及为多种实验台提供控制及检测系统。西安宝德自动化股份有限公司遵循“创新求精、厚德大成”的立业方针,坚持科技进步、自主创新,以新技术应用、新项目开发、新设备研制为目标,目前,公司已经拥有多项国家专利技术,提升了宝德公司的产品技术领先优势及市场竞争实力。西安宝德自动化股份有限公司为全国各大油田成功配置了直流、交流电传动钻机百余套,产品远销美国、俄罗斯、埃及、利比亚、阿曼、印度尼西亚、等国家和地区,多项产品荣获国家及省市级奖项。
法定代表人:赵敏
成立时间:2001-04-12
注册资本:31610.6775万人民币
工商注册号:610131100013435
企业类型:股份有限公司(上市、自然人投资或控股)
公司地址:西安市高新区草堂科技产业基地秦岭大道西付6号
TMC90的专业救援钻机,总体技术处于国际领先水平,填补了国内空白。该钻机采用了一系列先进配置,使其具备以下特点:一是钻进快速,能为井下救援争取宝贵时间。钻机为全液压、顶驱式高速成孔车装钻机,钻进速度每小时可达25米左右。二是钻进形式多样,采用伸缩式桅杆技术,可满足泥浆、空气、泡沫钻井工艺要求,可钻直井、斜井、水平井、对接井、羽状分支等。三是搭载车采用十轮驱动、独立悬挂模式,具有超强的越障能力,能充分适应各种野外环境,具有全路面行驶功能。四是钻井孔径大,最大开孔直径可达1.2米、最大终孔直径能达0.8米,满足井下救援的需要。五是一机多用,在无救援任务时,该款钻机可作为煤层气、水井钻机使用。
KZ30DB、XD-35DB型交流变频电驱动顶驱式岩心钻机,由中国地质装备总公司和汶川科学钻探工程中心、核工业地质局等单位合作研制,是一种具有我国自主知识产权的新型电动顶驱式岩心钻机。钻探施工能力N口径分别为5000m、3500m。该钻机由工业电网提供动力源,采用模块化交流变频电驱动单元作为提升、回转、送钻、打捞等执行系统,采用全转矩控制、全机械化作业、全数字化操作的工作模式,融合机、电、液、气、电子及信息化技术为一体,服务于孔深3500m的矿产勘探及能源钻采深部钻探作业。
(一)钻机系统设计
1)采用重载K型钻塔,承载1350kN,导轨行程25m,实现18m立根钻进。
2)顶部驱动钻井系统直接在井架上部驱动钻柱,并沿井架内导轨上下移动,通过交流变频绞车实现减压钻进功能,完成回转钻进、钻井液循环、接立根/单根、上卸扣、倒划眼等操作。
3)采用以AC-VFD-AC交流变频方式驱动钻机主要执行部件(绞车、顶驱、绳索卷扬、转盘)的电机。实现顶驱、绞车等部件全程无级调速,取消机械换挡,传动简单、可靠。
4)采用全数字化交流变频控制技术,通过电传系统PLC、触摸屏和气、电、液及仪表参数一体化设计,实现顶驱、绞车、绳索卷扬、转盘等部件的智能化控制,并可实现远程钻进参数的监控。
(二)钻机主要结构
钻机主要结构部件包括K135钻塔、2.0钻井平台、电驱顶驱系统、电驱主绞车(含盘刹)、电驱绳索绞车(含盘刹)、电控系统、司钻房、井口自动化装置、泥浆泵及固控装置等。
1.钻塔、平台
采用K型钻塔,钻塔净空高度31m,最大钩载1350kN(5×6游车绳系),平台高度2.0m,立根盒容量4000m。钻塔结构如图2-14所示。
图2-14 K型钻塔结构示意图
2.顶驱系统
直驱电驱动高速顶驱作为核心部件(图2-15),具备回转、泥浆循环、加接单根、起下立根、拧卸丝扣等功能。该顶驱获国家发明专利,专利号:ZL201310367876.4。机械部分包括以下3部分:
图2-15 顶驱结构
1)托架-滑车总成,由托架与多组滚子组成。确保顶驱沿着导轨高速运动或者慢速给进的运动限制及抗扭功能。
2)电机-水龙头总成,由变频电机组件与水龙头组件组成。
3)自动摆管装置,由提吊侧摆机构与背钳拧卸机构组成。侧摆机构负责从平台拾取钻杆单根,或从二层台抓取立根背钳拧卸机构负责单根钻杆或钻杆立根与顶驱主轴之间的丝扣拧卸。
3.主绞车
主绞车采用300kW交流变频电机,通过减速机、卷筒离合器输出扭矩与速度到卷筒,再通过天车、游车实现对顶驱的提升与下放主卷筒通过电机编码器、制动单元实现能耗制动及零速悬停,通过液压盘刹实现安全制动通过卷筒编码器可以精确测定顶驱系统在钻塔净空内的运行位置通过过卷防碰、井架防碰实现对卷筒的安全制动。主绞车结构如图2-16所示。
图2-16 主绞车结构示意图
送钻装置包含:送钻变频电机通过大速比送钻减速机、送钻离合器、减速机、卷筒离合器输出扭矩与转速给主绞车卷筒。
主绞车具有以下特点:
1)传动方式:交流变频电驱动,气胎离合。
2)控制方式:闭环控制,可实现零位悬停。
3)安全模式:过卷防碰,井架钢丝绳防碰,电子防碰。
4)刹车模式:主刹车为液压盘刹,辅助刹车能耗制动。
5)制动形式:驻车制动、工作制动、紧急制动(失电)。
6)送钻控制:小功率变频电机实现自动送钻,可实现3000N调压精度。
7)控制显示:气源、润滑油压力、游车位置与游车速度的显示与报警。
8)互锁功能:主电机与送钻电机启动互锁。
4.绳索取心绞车
绳索取心绞车(图2-17)最大拉力:25000N最高绳速:200m/min钢丝绳直径:8mm容绳量:4000m。该型绞车获国家发明专利,专利号:ZL201310368723.2,其设计特点及功能优势如下。
图2-17 绳索取心绞车
(1)设计特点
1)传动方式:交流变频电驱动,电磁离合器
2)控制方式:闭环控制,可实现零位悬停
3)刹车模式:主刹为液压盘刹,辅刹为能耗制动
4)排列方式:自动排绳、自动换向
5)控制显示:可检测绳长、绳速、张力。
(2)功能优势
1)具有电磁离合,可实现无动力自由下放
2)具有液压盘刹,可实现安全制动
3)具有排绳、张力、绳长等装置,提高打捞成功率。
5.电控系统(AC-VF-AC)
电控系统由动力部分、变频驱动部分以及各执行单元三部分组成。动力装置为网电变压器或柴油发电机组变频驱动装置为VFD房(Variable-frequency Drive),包含顶驱电机、绞车电机、送钻电机、绳索绞车电机、转盘电机的变频器以及综合控制装置(包含可编程逻辑控制器PLC)执行单元包含各部件的变频电机、传感器、编码器、动力电缆及控制电缆。控制系统布局图如图2-18所示。
6.钻机操作间
钻机操作间是整个钻井现场的“司令部”,如图2-19所示。主要组成部分为电气控制部分和数字化操控界面。除此之外,包含现场多点视频监控、独立检测系统、现场通信装置等。
操作间实现了集中、智能、舒适、安全操控的功能。电气控制部分(元件面板)完成回转、升降转速、扭矩设定,加杆、拧卸、刹车等启停及作业流程数字化界面包括触摸屏、显示屏等,其功能是在各个人机界面中显示工艺参数及设备运行参数并可进行设定。
7.工作室
除操作间的人机操作界面外,还配有远程监控工作室,设置了钻进参数工控机,可实时监视钻机各个部件的运行状态及主要的钻进工艺参数,包括钻进界面、网络布局、装置布局、趋势图、操作记录、数据记录等,不仅可以实时记录设备运行参数、工艺参数、操作记录等,而且可以存储备份并远程传输。
图2-18 电控系统布局图
图2-19 钻机操作间
8.辅助装置
为配合顶驱取心钻进工艺和单吊卡作业的完整流程,配备了液压吊卡、动力钳、气动卡盘三个机械化井口作业专用辅助装置,以提高作业效率、降低人工劳动强度。
1)液压吊卡(图2-20):用于提吊大直径绳索取心钻杆加接单根、立根,协助起下钻作业,可实现自动开合、自动插销、自动锁紧。该吊卡获国家发明专利,专利号:ZL201310367854.9
2)动力钳:用于大直径大扭矩绳索钻杆自动拧卸的动力装置
3)气动卡盘:用于孔口自动夹持大吨位大直径绳索钻杆的装置(图2-21)。
图2-20 液压吊卡
图2-21 气动卡盘
(三)钻机主要技术参数
KZ30DB、XD-35DB型电动顶驱钻机主要技术参数见表2-8。
表2-8 KZ30DB、XD-35DB型电动顶驱钻机主要技术参数
续表
(四)钻机应用实例
XD35DB型钻机,于2012年8月~2013年5月,在江西崇仁相山大型铀矿田为“中国铀矿地质第一科学深钻”提供装备支撑,实现全孔连续取心2818.88m,终孔口径Ф122mm创造了国内S114大口径绳索取心钻深纪录。
自2012年7月起,KZ30DB型钻机用于设计孔深3350m的四川绵阳汶川科学钻探四号孔(WFSD-4)施工,采用电驱动转盘钻进工艺。
能源是电力,
机械传动,通过方钻杆,转动的力在地面传给方钻杆,方钻杆下面是钻杆,钻杆下面是钻头,跟我们在地面上用电钻钻一个孔原理差不多
不同的是钻杆之间用螺纹连接,钻到一定深度,就得拧开中间再加一节钻杆,这样一节一节钻下去,就可以达到几千米深了。
每钻一定深度,还得测量,有专门的测井公司,如发生偏差及时修正,
现在的钻井水平,十分厉害,可以在直着钻上千米深后再拐弯90度,钻孔能拐弯这种情况,在其它行业,是完全不可能的,
在过去的一百多年间,人类已经消耗了45%以上的轻质油可采储量,常规原油的可采储量仅剩1500 亿t。随着常规油气可动用储量日益减少,超稠油作为一种非常规油气资源,其地位日益重要。
稠油粘度很高,一般大于50000mPa?s,在地下流动困难,不易于开采。如何降低成本、有效开采稠油,最大限度地把稠油、超稠油开采出来,使其成为可动用储量是石油工业面临的共同课题。
国内外稠油开采研究重点
稠油钻完井技术: 由于稠油流动性很差,在开发稠油油藏时,为了提高产量,生产井井身结构设计要考虑降低流动阻力以及增大泄流面积。水平井可以实现大井段钻开油层,大幅度增加重力泄油面积,能在较低的油藏渗流速度下达到较高的油井产量,利于高速开发;水平段生产压差较小,可以有效防止底水锥进,并减缓地层出砂。
水平井热采是稠油油藏开发的主要方式,但是由于稠油油藏大多含砂量较高,出砂成为稠油开采的一大难题,因此需要考虑采用合适的防砂完井技术,以防出砂影响水平井的开发效果。
稠油开采技术: 目前世界范围内的稠油开采技术主要可以分为两大类:热采和冷采。
冷采是指无供热条件下, 利用某种施工技术和特殊的抽油设备积极开采稠油的方法,实现降粘、提高油层流动和井筒举升能力。
稠油热采是目前世界上规模最大的提高原油、稠油采收率工程项目,已经取得了突飞猛进的发展,热采主要以蒸汽吞吐、蒸汽驱 、蒸汽辅助重力泄油(SAGD) 、热水驱 、火烧油层热等技术为代表。
稠油举升方式:由于稠油油藏通常含砂量和含气量较高,同时粘度极高,不易流动,常规的人工举升方式在稠油的开采中受到很多限制。在众多的人工举升方式当中,顶驱螺杆泵脱颖而出,显示出了良好的应用前景。
螺杆泵的一个重要特点是可以高效开采含砂的高粘稠油,能够适应各种复杂的油井环境。相对于电潜螺杆泵,顶驱螺杆泵价格低廉,质量可靠,且不存在电潜泵受井下流体温度限制的问题,设备的维护及修理方面具有很大的优势。
进入腊月,年味也越来越浓,基于当前稠油开采面临的主要问题和其未来的开采价值,小编必须不能放过这一课题,本期收集了稠油钻完井、开采以及生产等方面的信息,主要包括哈里伯顿公司对于稠油的解决方案、稠油热采方式介绍和顶驱螺杆泵在稠油开采中的应用等为读者们做了整理,并在以后几期为大家陆续推送,奉上小编们的春节礼物。
哈里伯顿稠油开采方案
哈里伯顿在稠油开采方面具有丰富的经验和先进的技术,针对具体的稠油开采难题,在考虑经济、环境和安全等方面的同时提出最有解决方案。
面对稠油开采方面如此多的难题,哈里伯顿在其钻探、开采、评价和生产等方面具体具备什么样的优势及技术,现场实施效果如何?老牌能源服务公司居然解决了业界最头疼的问题,这下可有的看了!
贝克休斯顶驱螺杆泵
当螺杆泵基于其高效的采收效果,受到各开发商的青睐,但对于岀砂井来说,螺杆泵的使用往往受到了很大的限制。贝克休斯螺杆泵系统完全解决了这一难题,它的一个重要特点就是可以高效开采含砂的高粘稠油,能够适应各种复杂的油井环境。
该技术主要采用地面驱动的方式,因此不需要昂贵的井下马达、变速器、保护器和柔性轴等部件。使得总体开采价格更加低廉,且精简后的设备更易于维护和修理。
这么牛气的东西,小编也要来长长见识!
稠油开采主要方式
原油的开采可以分为三个层次,稠油与常规原油开采的主要区别体现在稠油开采需要大量提高采收率技术的使用。
热采是提高采收率方式的一种,其应用广泛,主要包括蒸汽驱(Steam Flooding)、循环蒸汽驱(CSS)和蒸汽辅助重力泄油技术(SAGD),其中SAGD效果最为显著,其重油回收率可达75%以上。
想必热采的概念大家并不陌生,但具体的实施情况却又知之甚少。本期对于热采的主要方式、技术特点进行了详细介绍,这么神奇的技术,一般人我不告诉他。
当今世界上还有不少地区尚未勘探或充分勘探,深部地层及海洋深水部分的油气勘探刚刚开始不久,还会发现更多的油气藏,已开发的油气藏中应用提高石油采收率技术可以开采出的原油数量也是相当大的;这些都预示着油、气开采的科学技术将会有更大的发展.
石油是深埋在地下的流体矿物.最初人们把自然界产生的油状液体矿物称石油,把可燃气体称天然气,把固态可燃油质矿物称沥青.随着对这些矿物研究的深入,认识到它们在组成上均属烃类化合物,在成因上互有联系,因此把它们统称为石油.1983年9月第11次世界石油大会提出,石油是包括自然界中存在的气态、液态和固态烃类化合物以及少量杂质组成的复杂混合物.所以石油开采也包括了天然气开采.
石油在国民经济中的作用 石油是重要能源,同煤相比,具有能量密度大(等重的石油燃烧热比标准煤高50%)、运输储存方便、燃烧后对大气的污染程度较小等优点.从石油中提炼的燃料油是运输工具、电站锅炉、冶金工业和建筑材料工业各种窑炉的主要燃料.以石油为原料的液化气和管道煤气是城市居民生活应用的优质燃料.飞机、坦克、舰艇、火箭以及其他航天器,也消耗大量石油燃料.因此,许多国家都把石油列为战略物资.
20世纪70年代以来,在世界能源消费的构成中,石油已超过煤而跃居首位.1979年占45%,预计到21世纪初,这种情况不会有大的改变.石油制品还广泛地用作各种机械的润滑剂.沥青是公路和建筑的重要材料.石油化工产品广泛地用于农业、轻工业、纺织工业以及医药卫生等部门,如合成纤维、塑料、合成橡胶制品,已成为人们的生活必需品.
1982年世界石油产量为26.44亿吨,天然气为15829亿立方米.1973年以来,三次石油涨价和1982年的石油落价,都引起世界经济较大的波动(见世界石油工业).
油气聚集和驱动方式 油气在地壳中生成后,呈分散状态存在于生油气层中,经过运移进入储集层,在具有良好保存条件的地质圈闭内聚集,形成油气藏.在一个地质构造内可以有若干个油气藏,组合成油气田.
储层 贮存油气并能允许油气流在其中通过的有储集空间的岩层.储层中的空间,有岩石碎屑间的孔隙,岩石裂缝中的裂隙,溶蚀作用形成的洞隙.孔隙一般与沉积作用有关,裂隙多半与构造形变有关,洞隙往往与古岩溶有关.空隙的大小、分布和连通情况,影响油气的流动,决定着油气开采的特征(见石油开发地质).
油气驱动方式 在开采石油的过程中,油气从储层流入井底,又从井底上升到井口的驱动方式.主要有:①水驱油藏,周围水体有地表水流补给而形成的静水压头;②弹性水驱,周围封闭性水体和储层岩石的弹性膨胀作用;③溶解气驱,压力降低使溶解在油中的气体逸出时所起的膨胀作用;④气顶驱,存在气顶时,气顶气随压力降低而发生的膨胀作用⑤重力驱,重力排油作用.当以上天然能量充足时,油气可以喷出井口;能量不足时,则需采取人工举升措施,把油流驱出地面(见自喷采油法,人工举升采油法).
石油开采的特点 与一般的固体矿藏相比,有三个显著特点:①开采的对象在整个开采的过程中不断地流动,油藏情况不断地变化,一切措施必须针对这种情况来进行,因此,油气田开采的整个过程是一个不断了解、不断改进的过程;②开采者在一般情况下不与矿体直接接触.油气的开采,对油气藏中情况的了解以及对油气藏施加影响进行各种措施,都要通过专门的测井来进行;③油气藏的某些特点必须在生产过程中,甚至必须在井数较多后才能认识到,因此,在一段时间内勘探和开采阶段常常互相交织在一起(见油气田开发规划和设计).
要开发好油气藏,必须对它进行全面了解,要钻一定数量的探边井,配合地球物理勘探资料来确定油气藏的各种边界(油水边界、油气边界、分割断层、尖灭线等);要钻一定数量的评价井来了解油气层的性质(一般都要取岩心),包括油气层厚度变化,储层物理性质,油藏流体及其性质,油藏的温度、压力的分布等特点,进行综合研究,以得出对于油气藏的比较全面的认识.在油气藏研究中不能只研究油气藏本身,而要同时研究与之相邻的含水层及二者的连通关系(见油藏物理).
在开采过程中还需要通过生产井、注入井和观察井对油气藏进行开采、观察和控制.油、气的流动有三个互相联接的过程:①油、气从油层中流入井底;②从井底上升到井口;③从井口流入集油站,经过分离脱水处理后,流入输油气总站,转输出矿区(见油藏工程).
石油开采技术
测井工程 在井筒中应用地球物理方法,把钻过的岩层和油气藏中的原始状况和发生变化的信息,特别是油、气、水在油藏中分布情况及其变化的信息,通过电缆传到地面,据以综合判断,确定应采取的技术措施(见工程测井,生产测井,饱和度测井).
钻井工程 在油气田开发中,有着十分重要的地位,在建设一个油气田中,钻井工程往往要占总投资的50%以上.一个油气田的开发,往往要打几百口甚至几千口或更多的井.对用于开采、观察和控制等不同目的的井(如生产井、注入井、观察井以及专为检查水洗油效果的检查井等)有不同的技术要求.应保证钻出的井对油气层的污染最少,固井质量高,能经受开采几十年中的各种井下作业的影响.改进钻井技术和管理,提高钻井速度,是降低钻井成本的关键(见钻井方法,钻井工艺,完井).
采油工程 是把油、气在油井中从井底举升到井口的整个过程的工艺技术.油气的上升可以依靠地层的能量自喷,也可以依靠抽油泵、气举等人工增补的能量举出.各种有效的修井措施,能排除油井经常出现的结蜡、出水、出砂等故障,保证油井正常生产.水力压裂或酸化等增产措施,能提高因油层渗透率太低,或因钻井技术措施不当污染、损害油气层而降低的产能.对注入井来说,则是提高注入能力(见采油方法,采气工艺,分层开采技术,油气井增产工艺).
油气集输工程 是在油田上建设完整的油气收集、分离、处理、计量和储存、输送的工艺技术.使井中采出的油、气、水等混合流体,在矿场进行分离和初步处理,获得尽可能多的油、气产品.水可回注或加以利用,以防止污染环境.减少无效损耗(见油田油气集输).
石油开采中各学科和工程技术之间的关系见图.
石油开采
石油开采技术的发展 石油和天然气的大规模开采和应用,是近百年的事.美国和俄国在19世纪50年代开始了他们各自的近代油、气开采工业.其他国家稍晚一些.石油开采技术的发展与数学、力学、地质学、物理学、机械工程、电子学等学科发展有密切联系.大致可分三个阶段:
初期阶段 从19世纪末到20世纪30年代.随着内燃机的出现,对油料提出了迫切的要求.这个阶段技术上的主要标志是以利用天然能量开采为主.石油的采收率平均只有15~20%,钻井深度不大,观察油藏的手段只有简单的温度计、压力计等.
第二阶段 从30年代末到50年代末,以建立油田开发的理论体系为标志.主要内容是:①形成了作为钻井工程理论基础的岩石力学;②基本确立了油藏物理和渗流力学体系,普遍采用人工增补油藏能量的注水开采技术.在苏联广泛采用了早期注水保持地层压力的技术,使石油的最终采收率从30年代的15~20%,提高到30%以上,发展了以电测方法为中心的测井技术和钻4500米以上的超深井的钻井技术.在矿场集输工艺中广泛地应用了以油气相平衡理论为基础的石油稳定技术.基本建立了与油气田开发和开采有关的应用科学和工程技术体系.
第三阶段 从60年代开始,以电子计算机和现代科学技术广泛用于油、气田开发为标志,开发技术迅速发展.主要方面有:①建立的各种油层的沉积相模型,提高了预测储油砂体的非均质性及其连续性的能力,从而能更经济有效地布置井位和开发工作;②把现代物理中的核技术应用到测井中,形成放射性测井技术,与原有的电测技术, 加上新的生产测井系列,可以用来直接测定油藏中油、气、水的分布情况,在不同开发阶段能采取更为有效的措施;③对油气藏内部在采油气过程中起作用的表面现象及在多孔介质中的多相渗流的规律等,有了更深刻的理解,并根据物理模型和数学模型对这些现象由定性进入定量解释(见油藏数值模拟),试验和开发了除注水以外提高石油采收率的新技术;④以喷射钻井和平衡钻井为基础的优化钻井技术迅速发展.钻井速度有很大的提高.可以打各种特殊类型的井,包括丛式井,定向井,甚至水平井,加上优质泥浆,使钻井过程中油层的污染降到最低限度;⑤大型酸化压裂技术的应用使很多过去没有经济价值的油、气藏,特别是致密气藏,可以投入开发,大大增加了天然资源的利用程度.对油井的出砂、结蜡和高含水所造成的困难,在很大程度上得到了解决(见稠油开采,油井防蜡和清蜡,油井防砂和清砂,水油比控制);⑥向油层注蒸汽,热采技术的应用已经使很多稠油油藏投入开发;⑦油、气分离技术和气体处理技术的自动化和电子监控,使矿场油、气集输中的损耗降到很低,并能提供质量更高的产品.
靠油藏本身或用人工补给的能量把石油从井底举升到地面的方法.19世纪50年代末出现了专门开采石油的油井.早期油井很浅,用吊桶汲取.后来井深增加,采油方法逐渐复杂,分为自喷采油法和人工举升采油法两类,后者有气举采油法和泵抽采油法(又称深井泵采油法)两种.
自喷采油法: 当油藏压力高于井内流体柱的压力,油藏中的石油通过油管和采油树自行举升至井外的采油方法.石油中大量的伴生天然气能降低井内流体的比重,降低流体柱压力,使油井更易自喷.油层压力和气油比(中国石油矿场习称油气比)是油井自喷能力的两个主要指标.
油、气同时在井内沿油管向上流动,其能量主要消耗于重力和摩擦力.在一定的油层压力和油气比的条件下,每口井中的油管尺寸和深度不变时,有一个充分利用能量的最优流速范围,即最优日产量范围.必须选用合理的油管尺寸,调节井口节流器(常称油嘴)的大小,使自喷井的产量与油层的供油能力相匹配,以保证自喷井在最优产量范围内生产.
为使井口密封并便于修井和更换损坏的部件,自喷井井口装有专门的采油装置,称采油树(见彩图).自喷井的井身结构见图.自喷井管理方便,生产能力高,耗费小,是一种比较理想的采油方法.很多油田都采取早期注水、注气(见注水开采)保持油藏压力的措施,延长油井的自喷期.
人工举升采油法: 人为地向油井井底增补能量,将油藏中的石油举升至井口的方法.随着采出石油总量的不断增加,油层压力日益降低;注水开发的油田,油井产水百分比逐渐增大,使流体的比重增加,这两种情况都使油井自喷能力逐步减弱.为提高产量,需采取人工举升法采油(又称机械采油),是油田开采的主要方式,特别在油田开发后期,有泵抽采油法和气举采油法两种.
气举采油法: 将天然气从套管环隙或油管中注入井内,降低井中流体的比重,使井内流体柱的压力低于已降低了的油层压力,从而把流体从油管或套管环隙中导出井外.有连续气举和间歇气举两类.多数情况下,采用从套管环隙注气、油管出油的方式.气举采油要求有比较充足的天然气源;不能用空气,以免爆炸.气举的启动压力和工作压力差别较大.在井下常需安装特制的气举阀以降低启动压力,使压缩机在较低压力下工作,提高其效率,结构和工作原理见图.在油管外的液面被压到气举阀以下时,气从A孔进入油管,使管内液体与气混合,喷出至地面.管内压力下降到一定程度时,油管内外压差使该阀关闭.管外液面可继续下降.油井较深时,可装几个气举阀,把液面降至油管鞋,使启动压力大为降低.
气举采油法:
气举井中产出的油、气经分离后,气体集中到矿场压缩机站,经过压缩送回井口.对于某些低产油井,可使用间歇气举法以节约气量,有时还循环使用活塞气举法.
气举法有较高的生产能力.井下装置简单,没有运动部件,井下设备使用寿命长,管理方便.虽然压缩机建站和敷设地面管线的一次投资高,但总的投资和管理费用与抽油机、电动潜油泵或水力活塞泵比较是最低的.气举法应用时间较短,一般为15~30%左右;单位产量能耗较高,又需要大量天然气;只适用于有天然气气源和具备以上条件的地区内有一定油层压力的高产油井和定向井,当油层压力降到某一最低值时,便不宜采用;效率较低.
泵抽采油法: 人工举升采油法的一种(见人工举升采油法).在油井中下入抽油泵,把油藏中产出的液体泵送到地面的方法,简称抽油法.此法所用的抽油泵按动力传动方式分为有杆和无杆两类.
有杆泵 是最常用的单缸单作用抽油泵(图1),其排油量取决于泵径和泵的冲程、冲数.有杆泵分杆式泵、管式泵两类.一套完整的有杆泵机组包括抽油机、抽油杆柱和抽油泵(图2).
泵抽采油法 泵抽采油法
抽油机主要是把动力机(一般是电动机)的圆周运动转变为往复直线运动,带动抽油杆和泵,抽油机有游梁式和无游梁式两种.前者使用最普遍,中国一些矿场使用的链条抽油机属后一种(见彩图).抽油杆柱是连接抽油机和抽油泵的长杆柱,长逾千米,因交变载荷所引起的振动和弹性变形,使抽油杆悬点的冲程和泵的柱塞冲程有较大差别.抽油泵的直径和冲程、冲数要根据每口油井的生产特征,进行设计计算来优选.在泵的入口处安装气体分离装置——气锚,或者增加泵的下入深度,以降低流体中的含气量对抽油泵充满程度(即体积效率)的影响.
泵抽采油法
有杆泵是一个自重系统,抽油杆的截面增加时,其载荷也随着增大.各种材质制成的抽油杆的下入深度,都是有极限的,要增加泵的下入深度,主要须改变抽油杆的材质、热处理工艺和级次.根据抽油杆的弹性和地层流体的特征,在选择工作制度时,要选用冲程、冲数的有利组合.有杆泵的工作深度在国外已超过 3000m,抽油机的载荷已超过25t,泵的排量与井深有关,有些浅井日排量可以高达400m3,一般中深井可达200m3,但抽油井的产量主要根据油层的生产能力.有杆抽油机泵组的主要优点是结构简单,维修管理方便,在中深井中泵的效率为50%左右,适用于中、低产量的井.目前世界上有85%以上的油井用机械采油法生产,其中绝大部分用有杆泵.
无杆泵 适用于大产量的中深井或深井和斜井.在工业上应用的是电动潜油泵、水力活塞泵和水力喷射泵.
电动潜油泵 是一套多级离心泵和电动机直接连接的机泵组.由动力电缆把电送给井下的电机以驱动离心泵,把井中的流体泵送到地面,由于机泵组是在套管内使用,机泵的直径受到限制,所以采取细长的形状(图3).为防止井下流体(特别是水)进入电枢使电机失效,需采取特殊的密封装置,并在泵和电动机的连接部位加装保护器.泵的排量受井眼尺寸的限制,扬程决定于泵的级数,二者都取决于电动机的功率.电动潜油泵适用于中、高产液量,含气和砂较少的稀油或含水原油的油井.一般日排量为100~1000m3、扬程在2000m以内时,效率较高,可用于斜井.建井较简单,管理方便,免修期较长,泵效率在60%左右;但不适用于高含气的井和带腐蚀性流体的井,下井后泵的排量不能调节,机泵组成本较高,起下作业和检修都比较复杂.
泵抽采油法
水力活塞泵 利用地面泵注入液体驱动井下液压马达带动井下泵,把井下的液体泵出地面.水力活塞泵的工作原理与有杆泵相似,只是往复运动用液压马达和换向阀来实现(图 4水力活塞泵的井下泵有单作用和双作用两种,地面泵都用高压柱塞泵.流程有两种:①开式流程.单管结构,以低粘度原油为动力液,既能减少管道摩擦阻力,又可降低抽出油的粘度,并与采出液混在一起采出地面.②闭式流程.用轻油或水为动力液,用水时要增添润滑剂和防腐剂,自行循环不与产出的液体相混,工作过程中只需作少量的补充.水力活塞泵可以单井运转,也可以建泵组集中管理,排量适应范围宽,从每日几十到上千立方米等,适用于深井、高扬程井、稠油井、斜井.优点是可任意调节排量,起下泵可不起油管,操作和管理方便.泵效率可达85%以上.缺点是地面要多建一条高压管线,动力液要处理,增加了建井和管理成本.
泵抽采油法
水力射流泵 带有喷嘴和扩散器的抽油泵(图5).水力射流泵没有运动零件,结构简单,成本低,管理方便,但效率低,不高于30~35%,造成的生产压差太小,只适用于高压高产井.一般仅在水力活塞泵的前期即油井的压力较高、排量较大时使用;当压力降低、排量减少时,改用水力活塞泵.
2.1.2.1 地质岩心钻机
目前,国内固体矿产岩心钻机主要有两种,一种是20世纪70年代发展起来的XY系列液压立轴式钻机[图2.2(a),图2.2(b)];另一种是后期研发的全液压动力头式钻机[图2.2(c)]。立轴式钻机钻探深度一般在2000m以内,少数机型钻深能力接近3000m,配套工艺方法以普通回转提钻取心为主,钻机的钻进参数仪表配置落后。泥浆固控系统仍停留在传统的泥浆池加循环槽使岩粉自然沉淀的落后状况,不能满足孔底动力钻具对冲洗液固相含量的要求。“九五”期间研制成功液压立轴式双卡盘不停车倒杆和交流变频双卡盘地质岩心钻机。
“十五”期间,中国地质科学院勘探技术研究所(以下简称勘探所)研制成功了YDX-3型全液压动力头式地质岩心钻机[用Φ71mm绳索取心钻杆钻深能力为1000m,图2.2(c)],钻机适用于金刚石绳索取心、冲击回转、定向钻进、反循环连续取心(样)等多种高效钻探工艺方法。进入“十一五”,YDX系列新一代地质岩心钻机研发全面展开,YDX-2型钻机(钻深能力600m),YDX-1型钻机(钻深能力300m)和YDX-4型钻机(钻深能力1500m)相继研制成功。作为“十一五”“863”计划重点项目“2000m地质岩心钻探关键技术与装备”的核心内容,YDX-5型钻机(钻深能力2000m)于2011年研制成功。至“十一五”末2000m以内新一代全液压动力头式地质岩心钻机形成了完整系列(300~2000m)。目前研制成功的其他型号的全液压动力头式地质岩心钻机主要有:连云港黄海机械厂的HYDX-4、HYDX-5、HYDX-6型,钻深能力分别为800m、1200m和1600m;山东省地质探矿机械厂的XD-3、XD-5型,钻深能力分别为800m和1200m;以及其他一些厂家研制的不同型号的全液压动力头式钻机。
进入“十二五”又相继完成了3000m电动直驱顶驱钻机[图2.3(a)]、3500m地质岩心钻机(YDX-6型)[图2.3(b)]、400m轻便钻机、浅层取样钻机和600m反循环钻机等的研发。至此,我国的地质岩心钻机系列延伸到了3500m,在国家科技计划的支持下,4000m地质岩心钻机也在研制过程中。
图2.2 国内普遍使用的立轴式钻机和新研制的动力头式钻机
图2.3 3000m及3500m地质岩心钻机
2.1.2.2 地质岩心钻探工艺技术现状及新进展
我国的金刚石绳索取心钻探技术自20世纪70年代中期开始推广应用,目前使用深度已接近3000m,最大深度达到4006m。绳索取心钻探技术已成为我国固体矿产岩心钻探工作主要技术方法。
我国的液动潜孔锤钻具研制处于国际领先水平。YZX127型液动潜孔锤在2005年完工的中国大陆科学钻探工程科钻一井施工中创下了总进尺4038.88m、平均小时效率1.13m、平均回次长度6.31m的好成绩。在普通钻探生产和小直径钻孔条件下应用范围也在不断扩大。
我国从20世纪60年代开始金刚石钻头的研制,经过几十年的发展,工艺技术取得了飞速发展和进步。钻头的制造和使用水平大幅度提高,金刚石钻头平均寿命由早期的30~35m提高到100多米,钻进时效提高到新水平。随着钻头切削材料技术的进步,钻头对地层适应性进一步增强。
随着地质工作的整体复苏,岩心钻探工作量在逐年增多。以绳索取心、液动冲击回转、定向钻进等先进钻探技术为主要特征的小口径金刚石地质岩心钻探技术又重新显示出活力。20世纪末至21世纪初,地质岩心钻探技术又有了新的发展。具体表现在如下几个方面。
(1)组合钻探技术研究
该技术实现了一套器具满足不同地质环境及不同取样目的的需要,为地质调查快速取样、干旱缺水复杂地层石油地震物探施工提供了可靠的技术手段。特别是在我国新一轮油气勘探中,该技术方法不仅解决复杂地层油气地震物探爆破孔难以成孔的技术难题,而且使施工效率提高5~8倍。为加速我国新一轮油气勘探及发现一批新的油气矿藏异常发挥了重大作用,引起了石油物探界关注。该技术方法直接产值超过10亿元人民币。
(2)西部地区复杂地层中深孔岩心钻探工艺研究
该成果为加速我国西部复杂地层及中东部深部地质矿产资源的勘探评价提供了非常实用的技术手段。该项成果开发的深孔绳索取心钻杆、钻具及施工技术创造了国产器具在固体矿产资源调查钻孔取样深度超过1900m的孔深记录。
(3)资源评价定向钻探施工技术
该技术可以实现一个主孔内完成多个分支孔而穿过矿体的目的,从而节省大量的钻探工作量,对未来特殊施工环境钻探取样施工提供了经济适用的技术手段。该技术已产生了较大的经济效益和社会效益。
(4)地质填图及化探快速取样钻探设备及施工技术
该技术为我国大比例尺地质填图、化探及海洋地质调查快速取样提供了一种高效的装备及技术手段。在我国地质大调查地质填图、化探取样、海洋地质及环境地质调查施工中取得非常好的应用效果,具有较好应用前景。
(5)液动潜孔锤结构有较大改进,性能有很大提高,“三合一”钻具初步研制成功
“十五”期间研制成功的YZX127液动潜孔锤,采用了全新结构,大幅度提高了液动锤的能量利用率和稳定性,其技术成果获得2项国家发明专利。在中国大陆科学钻探工程科钻一井施工中创造了单井连续使用液动锤进尺3485.69m和使用井深5118.2m两项世界纪录。自主研制的液动潜孔锤+螺杆马达+绳索取心“三合一”钻具在科钻一井主孔5000多米孔深成功钻进一个回次并取出3.5m长的完整岩心,证明该套钻具的研究获得初步成功。
(6)对VDS垂钻系统及保真取样钻具进行了有益探索
多用途微机自动定向钻进系统与工艺的研究以自动控制纠偏为主线,探索利用成熟的传感器、液压和机械等技术组成机、电、液一体化的闭环控制垂钻系统,基本解决了由于空间狭小和工作环境恶劣引发的各项技术难题,探索出一套可用于闭环控制系统的主要硬件设计的工作思路。为今后开展高技术自动垂直钻井或自动定向钻进系统研究积累了经验并为进一步研究打下了基础。开发试制出了可获得原始状态水合物样品的取心钻具结构和钻具样机及其他辅助装置,并进行了室内测试,取得了较理想的效果,为进一步开发实用可靠的水合物保真取样钻具奠定了基础。
(7)定向钻探技术及对接井钻井技术有新发展
设计了适应于定向钻进的组合钻具,改进了中低转速螺杆钻具,使之可适应牙轮钻头、金刚石钻头及复合片钻头;编制了定向钻进与水平钻进设计与控制软件;改变了原水溶性矿产的采矿方式,大大提高了采矿效率和矿产资源利用率。完成了2对近3000m深井对接井,开创了我国对接井技术的新纪元,实现采卤对接井的重大技术突破。
2.1.2.3 钻探技术在资源勘探中的应用
钻探技术在我国资源勘探中曾作出过重要贡献而且还将发挥重要作用。新中国成立以来,在已发现的171个矿种和已探明储量的150余个矿种的勘探过程中均不同程度地动用了钻探技术。钻探技术为保证我国经济发展所需要的矿产资源和能源供应作出了重要贡献。
1903~1949年,全国钻探工作量总和仅约17万m,而且几乎全部是由外国公司利用自带的钻探设备完成的。新中国成立后,完成的钻探工作量逐年上升。仅以地质系统为例,1949~2002年累计完成钻探工作量10600万m。“十五”以后,随着国家对地质工作的重视,钻探工作量又进入了一个强劲的增长期。“十一五”以来,历年岩心钻探工作量也屡创新高,2006年865.01万m;2007年1165万m;2008年1555万m;2009年1720.5万m;2010年1800万m;2011年2400万m;2012年3419.19万m。同时,勘探深度也在不断加深。进入21世纪施工完成的1000m以深的钻孔越来越多。据不完全统计,超1000m钻孔已达数百口,超2000m钻孔达数十口。
我国的矿产资源经过数百年的探寻和开发,地表及浅部矿产资源多已被发现和利用。因此,国土资源部关于促进深部找矿工作的指导意见所明确的深部找矿工作战略目标是“开展主要成矿区带地下500~2000m的深部资源潜力评价,重要固体工业矿体勘查深度推进到1500m”。现以全国危机矿山找矿成果和河北省地勘局第四地质大队承德地区M24异常验证矿区ZK2402钻孔为例说明钻探技术在深部矿产资源勘探中的应用。
(1)全国危机矿山找矿成果
国土资源部于2004年选择了9家矿山开展危机矿山找矿试点。在大冶铁矿深部找到760余万吨铁矿,该矿区共钻孔22个,总进尺13980m,10个孔见矿,其中在尖林山矿段ZK15-7孔792.55~819.2m孔段见到326.65m厚的铁矿体,铁的品位为22.73%~51.5%,铁矿资源量达767万t。同时,通过取心钻探在1500m深处找到了与上部同一成因的铁矿,更新了成矿理论。其余8个危机矿山找矿项目也都取得了进展。辽宁省阜新矿业集团八道壕煤矿施工的9个钻孔有4个孔见到可采煤层,展示了该地区良好的找矿前景。国有大型企业云南老厂锡矿现保有储量仅可维持4年,目前初步估算已获铜金属储量84000t,锡金属储量1033t。此外,辽宁红透山铜锌矿、云南省大姚之苴铜矿、云南省鹤庆锰矿、湖南省瑶岗仙钨矿、四川省金河磷矿等6家危机矿山均不同程度地在找矿上获得了新进展。在启动了第一批9个危机矿山试点项目后,2006年又启动了40个危机矿山接替资源找矿项目。
截至2008年底,全国危机矿山接替资源找矿专项实施5年来,在216个矿山开展了深部找矿,共施工钻探158万m,坑探26万m,累计探明新增资源储量:煤46亿t、铁7亿t、锰739万t、铜196万t、铅锌485万t、钨40万t、金426t、银5696t、磷矿7341万t,其中新增资源量达到大型以上的有34个,中型以上的有62个,可延长矿山服务年限5~30年,稳定职工就业60余万人。上述成果的取得,钻探技术发挥了不可替代的重要作用。同时危机矿山找矿专项的实施也在一定程度上促进了钻探技术的进步,金刚石绳索取心钻探技术钻进深度过去多在1000m以内,现提升到2000m以深。5年中完成的158万m危机矿山找矿钻探工作量中,深度超过1000m的钻孔173个,占总钻探工作量的14.46%,1500m以上的钻孔13个,其中在山东莱州市三山岛金矿施工的2060.5m的钻孔创造了我国固体矿产勘探金刚石绳索取心钻孔最深纪录。
(2)承德地区M24异常验证矿区ZK2402孔
承德某矿区位于黑山基性杂岩体西北部边缘,杂岩体由斜长岩和苏长岩组成。主矿层分布在800~1900m之间,矿区为M24地磁组合异常。河北省地勘局第四地质大队在该矿区已完成的M24异常验证矿区ZK2402钻孔于2007年4月15日开钻,2007年7月18日终孔,终孔孔深1905.92m。采用XY-6型立轴式液压钻机,BW-320型泥浆泵,23m加重直管钻塔,150kW发电机组;国产普通材质的Φ89mm和Φ71mm绳索取心钻杆。
ZK2402孔的经济技术指标为时效2.59m/h、台月效率601m、回次长度2.53m、全孔取心率98%、直孔、终孔处孔斜13°、金刚石钻头平均使用寿命90m、提钻间隔平均为50~60m。
遇到的技术问题有XY-6B型钻机的提升力,立轴扭矩基本满足2000m以内深孔的使用要求,但卡盘的夹紧力和立轴(回转器)固定支架部位强度均显不足。钻机缺少必要的钻进参数检测仪表,导致2000m深孔钻进过程中,技术参数只能凭现场操作经验调节控制。该矿区的勘探实践证明,目前急需钻深能力2000m以上的钻探设备和器具。
ZK2402钻孔取心钻探证明主矿层比原来预计的要厚,预测铁矿石远景资源量3亿t。
2.1.2.4 钻探技术在国家重大科学工程和地质灾害监测预警及治理中的应用
2005年3月8日,连续钻进1353天终孔深度5158m的中国大陆科学钻探主孔工程竣工。2005年12月17日“中国大陆科学钻探工程新型钻井技术体系的研究与应用”科技成果通过了国土资源部的鉴定。该项目创造性地将“组合式钻探技术”、“灵活的双孔方案”和“超前孔小直径取心钻进方法”有机地结合起来,形成了独具中国特色的科学钻井技术体系。该新型钻井技术体系主要由井底动力驱动的冲击回转取心钻探技术、硬岩大直径长井段扩孔钻进技术、强致斜地层井斜控制技术、性能优良的LBM-SD泥浆体系、小间隙固井及活动套管应用技术、孔内事故预防处理技术、钻探数据采集处理技术等组成。高效碎岩钻进技术、液动潜孔锤冲击回转钻进技术、取心技术和泥浆技术,为中国大陆科学钻探工程提供了强有力的技术支撑作用。取得了突破性成效,创造了国内领先、世界先进水平,为中国大陆科学钻探工程项目的完成作出了重要贡献。同时,中国大陆科学钻探工程科钻一井的成功实施及其所取得的科技成果对我国地质岩心钻探技术水平的提高也起到了极大的推动作用。
环境科学钻探技术研究成果应用于国家重大公益性项目——柴达木盆地资源环境科学钻探、罗布泊环境科学钻探、云南鹤庆环境钻探和松辽盆地科学钻探工程,所取出的样品完整、采取率高、不扰动。鹤庆环境钻探岩心采取率97%,罗布泊环境钻探岩心采取率达90%以上,充分显示了取心新技术在环境钻探中不可替代的护心、取心功能,是目前从事环境钻探工作的主要技术。对所取出的样品分析研究后,正确推理出地球上某一时期地球环境的发展演变规律,为国家宏观经济决策提供了理论依据。
“崩滑体监测新技术与系列仪器开发”、“地质灾害监测数据自动化、网络化采集系统研究”、“地质灾害监测预报的关键技术发展工程方法研究”、“崩滑体监测应用示范”、“高陡边坡地质安全监测预警技术示范”以及“典型时空突发性地灾时空预警(含水量测试仪)”等技术和仪器设备研究成果,提高了我国地质灾害监测预警技术水平。研制的“滑坡光纤推力监测系统”和“QXY-5型钻孔倾斜仪”等仪器实现了自动化监测,并已在三峡库区多个县市及其他地区的滑坡深部位移监测中得到大量应用,“含水量测试仪”也在全国范围内得到了很好的推广应用,为确保当地群众的生命财产安全和指导城市建设规划起到了积极作用。
通过研究探索替代金属锚索的新型非金属锚索,解决金属锚索质量大、运输困难,以及耐腐蚀等问题;通过研究新型高强预应力混凝土结构抗滑桩,提高抗滑桩的承载能力;研究成功的“滑坡勘查技术潜孔锤取心钻进技术”在滑坡勘查取心钻进中大幅度提高了钻进速度,确保了滑坡带取样质量。“江河堤坝防渗加固快速高压旋喷技术研究开发”成果成功用于1998年洪水过后病险水库的防渗加固,提高了施工效率。
2.1.2.5 结论
钻探技术仍然是唯一能从地下取出实物岩矿样品的勘查技术方法。随着现代钻探技术的发展,岩心钻机已发展到全液压动力头钻机以及自动化、智能化地质岩心钻机。孔底动力钻具(潜孔锤、螺杆钻、涡轮钻、孔底电钻等)也从发明到发展,至今已具有一定水平。钻探技术发展到人造金刚石及人造复合超硬材料钻探时代。
钻探技术在我国资源勘探、国家重大科学工程、地质灾害监测预警及治理中做出过重要贡献而且还将发挥更重要的作用。